
Compressibility of WGANs in a Distributed Learning
Environment

Luka Lukač, Damjan Strnad, Štefan Horvat
University of Maribor

Faculty of Electrical Engineering and Computer Science
Koroška cesta 46, 2000 Maribor, Slovenia

{luka.lukac, damjan.strnad, stefan.horvat}@um.si

Abstract. This work presents a method for com-
pressing Wasserstein generative adversarial networks
(WGANs) in a distributed learning environment to
reduce network load and server memory usage.
Instead of transferring raw data from edge devices
to a central server, a WGAN is trained locally on
each edge device. The generator part of a trained
WGAN is then pruned according to the lottery ticket
hypothesis, and compressed using a general-purpose
codec. Experimental results demonstrate that the
generator can be compressed by up to 15x and still
retain the ability to generate high-quality samples.

Keywords. machine learning, generative adversarial
network, Wasserstein distance, lottery ticket hypothe-
sis, data compression

1 Introduction
In the recent era, a rapid development of low-cost sen-
sor devices and their widespread deployment have led
to the collection of vast amounts of data. This presents
a significant challenge for centralized machine learn-
ing (ML) approaches, as transferring massive datasets
from edge devices to the server can be resource inten-
sive (Margara et al., 2023). Furthermore, the data dis-
tribution across clients can be non-IID in a real-world
environment, therefore, it is essential to capture local
data distributions of all clients. To address these issues,
a special type of the distributed learning paradigm has
been proposed (X. Cao et al., 2023), in which separate
clients train their local models and send them to the
server where they are aggregated into a global model.

Generative ML models that enable generating syn-
thetic data are often used for reducing the commu-
nication between clients and the server within a dis-
tributed learning environment (Kasturi and Hota, 2023;
Merugu and Ghosh, 2003; Sajjadi Mohammadabadi et
al., 2024). The idea behind the approach is that the gen-
erative models are trained on edge devices and trans-
ferred to the server instead of the raw data. This way,
the network load and the server memory consumption
can be greatly reduced. Aggregated generative models

on the server enable on-the-fly generation of data that
resembles the local samples of clients, which can sig-
nificantly increase the performance of trained models
(Wijesinghe et al., 2024).

Modern generative ML models are becoming in-
creasingly more complex (C. Li et al., 2016), which
presents a significant burden on the communication
channels in a distributed setting. Several model com-
pression techniques for ML models were proposed to
reduce the memory consumption and network loads (Z.
Li et al., 2023), including model pruning (He et al.,
2019; Yang et al., 2017), parameter quantisation (Wu et
al., 2016), low-rank decomposition (H. Li et al., 2023),
and knowledge distillation (Qin et al., 2021; Tung and
Mori, 2019). One of the most promising and efficient
model pruning techniques is known as the lottery ticket
hypothesis (Frankle and Carbin, 2019). In many cases,
this method is able to prune more than 90% of neu-
ral network (NN) parameters, and obtain the so called
winning tickets (Malach et al., 2020). Pruning by it-
self does not reduce the model size, as it only sets the
redundant parameters to zero (Z. Li et al., 2023). How-
ever, this reduces the information entropy of the data,
and consequently, enables a more efficient model com-
pression. Therefore, compressing the obtained win-
ning tickets from the locally trained generators using
general-purpose data compression algorithms before
sending them to the server can significantly reduce net-
work load and improve communication efficiency.

The main contributions of this paper are:

• A novel approach for compression of WGAN gen-
erators using the lottery ticket pruning and general-
purpose compression methods.

• Experimental work, which indicates the efficiency of
the proposed compression scheme for WGANs, hav-
ing a negligible impact on the generator performance.

The remainder of this paper is structured in the fol-
lowing way: Section 2 describes the existing methods
for compression of NN models along with the related
generative adversarial networks (GANs). Section 3 ex-
plains the methodology behind the proposed Wasser-
stein GAN (WGAN), the lottery ticket extraction, and

Proceedings of the Central European Conference on Information and Intelligent Systems_____________________________________________________________________________________________________437

36th CECIIS, September 17-19, 2025_____________________________________________________________________________________________________ Varaždin, Croatia



the pruned model compression. Section 4 summarises
the results and analyses them, while Section 5 con-
cludes the paper and presents future work.

2 Related Work
This section consists of two parts. Firstly, the existing
methods for compression of neural network models are
reviewed. After that, the basic principles of GANs are
presented.

2.1 Compression of Neural Network Mod-
els

The most common and earliest methods for the com-
pression of NNs are known as pruning methods. Their
main principle is to remove components inside an NN
that have negligible impact on its performance (Z. Li et
al., 2023). From the early days of weight decay (Han-
son and Pratt, 1988), many different pruning methods
have been developed. Structured pruning methods typ-
ically remove redundant channels in separate layers of
the NN (Luo et al., 2019; Xiang et al., 2021) where the
importance of each channel is calculated using differ-
ent heuristics (Chang et al., 2022; Kuang et al., 2022;
Q. Li et al., 2022; Lin et al., 2018). On the other hand,
unstructured pruning methods set separate, unrelated
NN parameters to zeros (Han et al., 2016; Molchanov
et al., 2019). Therefore, such pruned NNs are not com-
pressed by itself after the pruning, and their represen-
tation needs to be compressed with data compression
algorithms (Frankle and Carbin, 2019).

Parameter quantisation lowers the precision of in-
ternal NN parameters (Z. Li et al., 2023), and, con-
sequently, reduce the total NN storage space. Some
methods perform the quantisation after the training
phase (Cai et al., 2020; Fang et al., 2020; Shomron
et al., 2021) while others quantise the NN parameters
during each forward and backward propagation of the
training (Rastegari et al., 2016; Tailor et al., 2021).
The advantage of the first group of methods is simplic-
ity and high-speed quantisation, while the post-training
quantisation methods yield more accurate results (Z. Li
et al., 2023).

Low-rank decomposition approximates the weight
matrix of the NN with the product of lower-rank matri-
ces (H. Li et al., 2023). Although some decomposition
methods deal with fully connected layers (Denil et al.,
2013; Lu et al., 2017; Yu et al., 2017), most of the pro-
cedures for low-rank decomposition operate on convo-
lutional layers (Denton et al., 2014; S. Lee et al., 2021;
Lin et al., 2019; Rigamonti et al., 2013). Generally,
such form of model compression removes redundancy
and is applicable to a wide variety of NN architectures.
It may, however, be less effective in state-of-the-art net-
works due to common occurrences of 1x1 convolution
filters, which cannot be efficiently decomposed (Z. Li
et al., 2023).

Knowledge distillation is a form of model compres-
sion where a smaller student network is trained us-
ing the results of a large pre-trained teacher network
(Gou et al., 2021). Different approaches for training
such teacher-student architectures were proposed. The
simplest methods use the output of the last layer of
the teacher network and train the student network to
mimic such outputs (Ba and Caruana, 2014; Hinton et
al., 2015). On the other hand, more advanced distilla-
tion models also match outputs of intermediate layers
and/or their relations to train the student (S. H. Lee et
al., 2018; Yim et al., 2017), which can increase the per-
formance of the student model.

2.2 Generative Adversarial Networks

A generative adversarial network (GAN) is a popu-
lar generative ML model that was proposed in 2014
(Goodfellow et al., 2014). It consists of two NNs:
generator, which is trained to produce samples that re-
semble the original data distribution, and discrimina-
tor that evaluates the realism of samples (either real or
artificially generated). The main goal of the alternat-
ing training of both models is to train the generator to
the point where the discriminator can no longer reli-
ably distinguish between real and fake samples. The
GAN structure is depicted in Figure 1. Conditional
GAN (cGAN) was introduced shortly after the vanilla
GAN, providing the user with control over generated
samples’ classes (Mirza and Osindero, 2014).

Discriminator

Fake image
GeneratorRandom

noise

Real image
Dataset Fake

Real

Figure 1. Structure of a GAN.

One of the most common problems that can occur
during the training of GANs is mode collapse (Ding et
al., 2022). Different ways of tackling this issue were
proposed in the past (Bhagyashree et al., 2020; Dai et
al., 2024; Durall et al., 2020). A major improvement
in training of GANs was the introduction of Wasser-
stein GAN (WGAN) (Arjovsky et al., 2017), which
uses the Wasserstein distance instead of the conven-
tional divergence-based losses. Consequently, the al-
ternating training process of a discriminator (often re-
ferred to as a critic) and a generator leads to greater
stability and reduces the likelihood of a mode collapse.
Due to their great performance and ability to generate
a wide variety of data types, WGANs are successfully
used in many modern applications (J. Li et al., 2020;
Liu et al., 2023; Vo et al., 2024; Wang et al., 2019).

438_____________________________________________________________________________________________________Proceedings of the Central European Conference on Information and Intelligent Systems

36th CECIIS, September 17-19, 2025_____________________________________________________________________________________________________ Varaždin, Croatia



3 Method

This section consists of three parts: firstly, the princi-
ples behind the WGAN are described, after that, the
lottery ticket pruning is explained, and lastly, the com-
pression techniques of pruned models are presented.

3.1 WGAN

Let Gi be a generator, and let Ci be a critic of a con-
ditional WGAN that belongs to the client ci ∈ C. The
main goal of Gi is to fool Ci by generating samples that
resemble the real data (i.e., critic assigning high scores
to fake samples). During the training, Gi is optimised
based on the generator loss function LGi in Equation
1.

LGi = −Ez∼N (0,I) [Ci(Gi(z|y)|y)] (1)

where z is a latent vector sampled from the standard
Gaussian distributionN (0, I), ∼ is the sampling oper-
ation, and y is the class label.

The critic Ci estimates the Wasserstein distance be-
tween the real and generated data distributions. The
main idea is that a well-trained Ci should produce
higher scores for real samples and lower values for
fake samples. Additionally, the critic loss function
LCi should impose 1-Lipschitz constraint (bounding
the gradient to range [0, 1]) (Zhang et al., 2020). This
constraint is enforced with a gradient penalty technique
(Gulrajani et al., 2017). The critic loss function LCi

is
given in Equation 2.

LCi = Ex∼Pi
r
[Ci(x|y)]− Ez∼N (0,I) [Ci(Gi(z|y)|y)]

+ λ · Ex̂

[
(∥∇x̂Ci(x̂|y)∥2 − 1)

2
]

(2)

where x represents a real data sample from the i-th
client’s data distribution Pi

r, λ the strength of the gradi-
ent penalty term, and x̂ a synthetic sample interpolated
between a real and a fake sample.

The training loop of the WGAN with gradient
penalty is presented in Algorithm 1. The training is
performed for N iterations (Line 8), during which the
Gi and Ci are trained in alternating cycles. Usually,
Ci is trained for R iterations (Line 10) where LCi is
calculated in Line 12 using real samples x, latent vec-
tors z, and class labels y. The parameters of Ci are
recalculated in Line 13. After that, in Line 16, LGi

is calculated using the newly sampled latent vectors z.
The parameters of Gi are updated in Line 17. After the
training is performed for N iterations, the trained Gi

and Ci are returned as a result of the function in Line
19.

Algorithm 1 Training loop of the WGAN with gradi-
ent penalty on ci ∈ C.

1: function WGAN-TRAIN(Gi, Ci, N , B, R, ηG,
ηC , λ)

2: ▷ N : number of iterations
3: ▷ B: batch size
4: ▷ R: no. of critic iterations per generator iteration
5: ▷ ηG, ηC : generator and critic learning rate
6: ▷ λ: gradient penalty term strength
7:
8: for N iterations do
9: x, y← LoadRealSamples(B)

10: for R iterations do
11: z← SampleLatentVectors(B)
12: LCi

← CriticLoss(x, z, y, λ) ▷ Eq. 2
13: Ci← Backpropagation(LCi , ηC)
14: end for
15: z← SampleLatentVectors(B)
16: LGi

← GeneratorLoss(z, y) ▷ Eq. 1
17: Gi ← Backpropagation(LGi

, ηG)
18: end for
19: return Gi, Ci

20: end function

3.2 Lottery Ticket Pruning
The lottery ticket hypothesis states that a dense, ran-
domly initialised NN contains a subnetwork that can
match the accuracy of the original network after train-
ing for at most the same number of iterations. To prune
models efficiently, non-pruned parameters should be
reset to their initial values and retrained after each
pruning iteration (Frankle and Carbin, 2019).

Let f(x, θ) be a NN with initial parameters θ ∈ Rd.
The network achieves accuracy a after N iterations.
There exists a subnetwork f(x,M ⊙ θ) with mask M
that achieves accuracy a

′
after at most N

′
iterations

where ⊙ denotes elementwise multiplication. The lot-
tery ticket hypothesis predicts the existence of a sub-
network:

• ∥M∥1 ≪ d
The subnetwork will always have fewer parameters.

• a
′ ≥ a

The subnetwork will have comparable accuracy.

• N
′ ≤ N

The subnetwork will learn in a comparable number
of NN training iterations.

The subnetwork f(x,M ⊙ θ) is called the winning
ticket (Frankle and Carbin, 2019), and is extracted by
the iterative pruning procedure shown in Algorithm 2.
The default initialisation of the generator and critic pa-
rameters, denoted as G0

i and C0
i , is remembered in

Line 7. The pruning mask M is initialised to ones
in Line 8, and determines which generator parameters
have been pruned (i.e., mask value of zero denotes a

Proceedings of the Central European Conference on Information and Intelligent Systems_____________________________________________________________________________________________________439

36th CECIIS, September 17-19, 2025_____________________________________________________________________________________________________ Varaždin, Croatia



pruned parameter). After the initialisation, iterative
pruning of Gi is performed for P iterations. The in-
tensity of pruning is determined by the pruning rate δ,
which specifies the percentage of remaining parame-
ters that are pruned in each iteration. This means that
the total share ρ of pruned parameters after p iterations
is given by:

ρ = 1− (1− δ)
p (3)

In Line 11, the parameters of Gi are reset to the
default initialisation according to M , where the previ-
ously pruned parameters are set to zero and frozen dur-
ing subsequent training. The Ci parameters are always
reset to the default initialisation and remain unaffected
by the pruning mask, since only Gi is being pruned.
The models are retrained for a fixed number of train-
ing iterations in Line 12. After training, the pruning
is performed in Line 13 by sorting the parameters by
increasing magnitude, and marking the share ρ of the
lowest for pruning by setting the corresponding mask
values to zero. After P pruning iterations, the final Gi

is declared a winning ticket.

Algorithm 2 Iterative pruning lottery ticket algorithm.

1: function ITERATIVELOTTERYTICKET(Gi, Ci, P ,
δ)

2: ▷ Gi: initialised generator model
3: ▷ Ci: initialised critic model
4: ▷ P : no. of lottery ticket pruning iterations
5: ▷ δ: pruning rate
6:
7: G0

i , C0
i ← GetInitParams(Gi, Ci)

8: M ← InitPruningMask()
9: for p← 1 to P do

10: ρ← 1− (1− δ)
p

▷ Eq. 3
11: Gi, Ci ← ResetToInitParams(G0

i , C0
i , M )

12: Ge
i , Ce

i ←WGAN-Train(Gi, Ci) ▷ Alg. 1
13: Gi, Ci, M ← Prune(Ge

i , Ce
i , M , ρ)

14: end for
15: return Gi

16: end function

There are two approaches to model pruning. The
first approach is local pruning where the proportion ρ
of parameters is pruned in each layer separately. This
technique is simple and stable, but can prune param-
eters with larger magnitudes, potentially resulting in
reduced model performance. The second approach is
global pruning where the parameters are pruned with
respect to the global magnitude order. This can lead to
higher efficiency and flexibility, but if layers have low
numbers of parameters, a layer crash can appear, where
all layer parameters are set to zero and the pruned net-
work becomes unusable (Frankle and Carbin, 2019).

3.3 Compression of Pruned Models
The obtained winning ticket model f(x,M ⊙ θ) has
the same size as the original, non-pruned Gi. How-
ever, as it contains many zero parameters (depend-
ing on the number of pruning iterations P ), the in-
formation entropy of f(x,M ⊙ θ) is significantly
lower. Low information entropy signifies that the
pruned f(x,M ⊙ θ) is much more compressible than
Gi. Consequently, f(x,M ⊙ θ) is compressed with
an arbitrary general-purpose data compression algo-
rithm, such as zlib (Gailly, Jean-loup and Adler, Mark,
2004), LZMA (“XZ Utils”, 2025), bzip2 (“bzip2 and
libbzip2”, 2025), or paq9a (Mahoney, 2025).

4 Results
The purpose of the experiments was to examine how
WGANs can be compressed within a distributed learn-
ing environment. The experiments are demonstrated
for a single client ci yet the proposed training and
compression pipeline can easily be re-used on multiple
clients. In the continuation of this section, the results
of the WGAN training, the lottery ticket pruning, and
the compression of the pruned model using general-
purpose compressors are presented in detail.

The experiments were conducted on our own vec-
tor dataset named Handwritten Character Dataset
(HWCD). As per its name, it consists of 26 handwritten
letters of the English, 3 additional letters of the Slove-
nian alphabet (Č, Š, and Ž), and digits from 0 to 9. Al-
together, the HWCD contains 3,314 handwritten char-
acter samples across 39 classes. Each sample consists
of 10 consecutive vectors with 3 respective components
(movement by x-axis, movement by y-axis, and pen
down/up). Examples of the character classes that be-
long to the HWCD are shown in Figure 2.

Figure 2. The set of characters in the HWCD. The
blue vector color symbolises the first pen stroke, the
red color denotes the second stroke, and the green color
the third stroke.

The generator Gi that was used in the WGAN train-
ing consists of a fully connected layer followed by two
1D convolutional layers. None of the generator layers
uses biases. On the other hand, the critic Ci is a multi-
layer perceptron composed of three fully connected
layers. The training hyperparameters of the WGAN are
collected in Table 1. The WGAN was implemented in
Python 3.11 using the module PyTorch (Paszke et al.,
2019).

440_____________________________________________________________________________________________________Proceedings of the Central European Conference on Information and Intelligent Systems

36th CECIIS, September 17-19, 2025_____________________________________________________________________________________________________ Varaždin, Croatia



Table 1. The hyperparameters for the training of
WGAN.

Hyperparameter Symbol Value
No. of iterations N 150,000

Batch size B 256
Critic/generator iterations R 256

Generator learning rate ηG 0.0001
Critic learning rate ηC 0.0001

Gradient penalty term λ 10

The outputs of the trained WGAN are displayed in
Figure 3. It can be seen that all generated samples are
recognisable and resemble the real samples from the
HWCD, although some samples carry different char-
acteristic that the ones depicted in Figure 2 due to the
diverse set of training samples (e.g., number of strokes
and distinct local shapes).

Figure 3. Results of a trained WGAN.

Both pruning approaches yielded similar results,
with global pruning achieving marginally superior per-
formance. Therefore, the global pruning method was
used throughout the experiments. As critics do not
need to be compressed and transferred to the server in
a distributed environment, pruning was applied only to
Gi. The pruning rate δ of 20% was chosen based on
a series of preliminary tests. This means that approx-
imately half of generator weights were pruned after 5
iterations, and approximately 90% of them were frozen
after 10 iterations.

In Figure 4, outputs of a pruned WGAN are visu-
alised after different numbers of iterations P . It can be
observed that the ability to generate artificial samples
that resemble the real samples is pertained even when
the pruning rate ρ is high. The generator performance
starts to gradually deteriorate after many pruning iter-
ations as some generated characters become unrecog-
nisable (e.g., Q, X, and 8) in Figure 4f. The generator
is still able to produce realistic samples even when over
97% of weights are pruned, indicating high efficiency
of such approach (Figure 4e).

The generator model is compressed after each itera-
tion of the lottery ticket pruning in order to observe the
compressibility of the pruned model. The compression
ratios of the generator with the general-purpose com-
pression methods zlib, LZMA, bzip2, and paq9a are
collected in Table 2. It can be observed that in the case
of a lower number of iterations P , paq9a is the superior
compressor, while in the case of a higher number of it-

erations, LZMA yields better compression ratios. All
in all, it can be seen that the generator model can be
pruned to the extend where it can be compressed up to
15x without a significant loss of the ability to produce
high-quality samples. This can significantly reduce the
network load when transferring the model to the server
within a distributed learning environment.

Table 2. Compressibility of the pruned generators. The
compression algorithm with the highest compression
ratio at each is marked bold.

P % pruned Compression ratio
zlib LZMA bzip2 paq9a

/ 0.00% 1.08 1.08 1.05 1.17
1 20.00% 1.21 1.24 1.23 1.33
2 36.00% 1.43 1.49 1.48 1.59
3 48.80% 1.70 1.80 1.79 1.91
4 59.04% 2.05 2.19 2.17 2.30
5 67.23% 2.50 2.68 2.64 2.79
6 73.79% 3.08 3.33 3.27 3.42
7 79.03% 3.60 3.98 3.92 4.06
8 83.22% 4.16 4.68 4.63 4.75
9 86.58% 4.79 5.49 5.41 5.53

10 89.26% 5.52 6.40 6.30 6.40
11 91.41% 6.31 7.46 7.32 7.35
12 93.13% 7.16 8.57 8.40 8.36
13 94.50% 8.11 9.83 9.56 9.50
14 95.60% 9.05 11.12 10.84 10.64
15 96.48% 9.96 12.43 12.02 11.76
16 97.19% 10.86 13.74 13.38 12.88
17 97.75% 11.85 15.17 14.72 14.14

5 Conclusion
This paper introduces a new method for compression
of WGAN generators inside a distributed learning en-
vironment. Trained WGANs on separate clients are
iteratively pruned with the lottery ticket pruning pro-
cedure in the first step. After that, each WGAN is
compressed using one of the state-of-the-art general-
purpose compression algorithms. The method was ex-
tensively tested on vectorised characters of Handwrit-
ten Character Dataset. The experiments indicate that
the generators can be highly compressed while their
ability of generating real-like samples is preserved,
which can significantly decrease the network load in
a distributed learning environment.

In the future, it would be beneficial for the method
to adapt to client data distribution changes with contin-
ual learning and on-the-fly pruning of generator mod-
els. Generator models could then be periodically sent
to the server and aggregated into a global model. Fur-
thermore, using the differential privacy mechanisms,
the method could also be modified to operate within
a federated learning environment.

Proceedings of the Central European Conference on Information and Intelligent Systems_____________________________________________________________________________________________________441

36th CECIIS, September 17-19, 2025_____________________________________________________________________________________________________ Varaždin, Croatia



(a) (b)

(c) (d)

(e) (f)

Figure 4. Results of a pruned WGAN: (a) P = 1, (b) P = 5, (c) P = 10, (d) P = 15, (e) P = 16, (f) P = 17.

Acknowledgments
The authors acknowledge the financial support from
the Slovenian Research and Innovation Agency under
Research Project J2-4458, Young Researcher Funding
under Grant 0796-59772, and Research Core Funding
P2-0041.

References
Arjovsky, M., Chintala, S., & Bottou, L. (2017).

Wasserstein generative adversarial networks.
ICML’17: Proceedings of the 34th International
Conference on Machine Learning, 214–223.

Ba, L. J., & Caruana, R. (2014). Do deep nets really
need to be deep? NIPS’14: Proceedings of the 28th
International Conference on Neural Information
Processing Systems, 2, 2654–2662.

Bhagyashree, V. Kushwaha, & G. C. Nandi. (2020).
Study of prevention of mode collapse in gener-
ative adversarial network (GAN). Proceedings of
the 2020 IEEE 4th Conference on Information &
Communication Technology (CICT), 1–6.

Bzip2 and libbzip2 [Available:
https://sourceware.org/bzip2/.]. (2025, May).

Cai, Y., Yao, Z., Dong, Z., Gholami, A., Mahoney,
M. W., & Keutzer, K. (2020). ZeroQ: A novel zero
shot quantization framework. Proceedings of the
2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 13166–13175.

Chang, J., Lu, Y., Xue, P., Xu, Y., & Wei, Z. (2022). Au-
tomatic channel pruning via clustering and swarm
intelligence optimization for CNN. Appl. Intell.,
52(15), 17751–17771.

Dai, Z., Zhao, L., Wang, K., & Zhou, Y. (2024).
Mode standardization: A practical countermeasure
against mode collapse of GAN-based signal syn-
thesis. Appl. Soft Comput., 150, 111089.

Denil, M., Shakibi, B., Dinh, L., Ranzato, M., & de
Freitas, N. (2013). Predicting parameters in deep
learning. Proceedings of the 27th International
Conference on Neural Information Processing Sys-
tems, 2, 2148–2156.

Denton, E., Zaremba, W., Bruna, J., LeCun, Y., & Fer-
gus, R. (2014). Exploiting linear structure within
convolutional networks for efficient evaluation.
NIPS’14: Proceedings of the 28th International
Conference on Neural Information Processing Sys-
tems, 1, 1269–1277.

Ding, Z., Jiang, S., & Zhao, J. (2022). Take a close look
at mode collapse and vanishing gradient in GAN.
Proceedings of the 2022 IEEE 2nd International
Conference on Electronic Technology, Communi-
cation and Information (ICETCI), 597–602.

Durall, R., Chatzimichailidis, A., Labus, P., & Keuper,
J. (2020). Combating mode collapse in GAN train-
ing: An empirical analysis using Hessian eigenval-
ues. arxiv:2012.09673.

Fang, J., Shafiee, A., Abdel-Aziz, H., Thorsley, D.,
Georgiadis, G., & Hassoun, J. (2020). Post-training
piecewise linear quantization for deep neural net-
works. arXiv:2002.00104.

Frankle, J., & Carbin, M. (2019). The lottery ticket
hypothesis: Finding sparse, trainable neural net-
works. arXiv:1803.03635.

Gailly, Jean-loup & Adler, Mark. (2004, Decem-
ber). Zlib compression library [Available:
http://www.dspace.cam.ac.uk/handle/1810/3486.].

442_____________________________________________________________________________________________________Proceedings of the Central European Conference on Information and Intelligent Systems

36th CECIIS, September 17-19, 2025_____________________________________________________________________________________________________ Varaždin, Croatia



Goodfellow, I. J., Pouget-Abadie, J., & Mirza, e. a.,
Mehdi. (2014, December). Generative adversarial
nets. In Z. Ghahramani, M. Welling, C. Cortes, N.
Lawrence, & K. Q. Weinberger (Eds.), Advances
in Neural Information Processing Systems (NIPS
2014) (Vol. 27). Curran Associates, Inc.

Gou, J., Yu, B., Maybank, S. J., & Tao, D. (2021).
Knowledge distillation: A survey. Int. J. Comput.
Vis., 129(6), 1789–1819.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin,
V., & Courville, A. (2017). Improved training of
Wasserstein GANs. NIPS’17: Proceedings of the
31st International Conference on Neural Informa-
tion Processing Systems, 5769–5779.

Han, S., Mao, H., & Dally, W. J. (2016). Deep com-
pression: Compressing deep neural network with
pruning, trained quantization and Huffman coding.
Proceedings of the 4th International Conference on
Learning Representations (ICLR 2016).

Hanson, S., & Pratt, L. Y. (1988, January). Com-
paring biases for minimal network construction
with back-propagation. In D. Touretzky (Ed.),
NIPS’88: Proceedings of the 2nd International
Conference on Neural Information Processing Sys-
tems (pp. 177–185, Vol. 1). MIT Press.

He, Y., Liu, P., Wang, Z., Hu, Z., & Yang, Y. (2019).
Filter pruning via geometric median for deep con-
volutional neural networks acceleration. Proceed-
ings of the 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR),
4335–4344.

Hinton, G., Vinyals, O., & Dean, J. (2015). Dis-
tilling the knowledge in a neural network.
arXiv:1503.02531.

Kasturi, A., & Hota, C. (2023). OSGAN: One-shot dis-
tributed learning using generative adversarial net-
works. J. Supercomput., 79(12), 13620–13640.

Kuang, J., Shao, M., Wang, R., Zuo, W., & Ding, W.
(2022). Network pruning via probing the impor-
tance of filters. Int. J. Mach. Learn. Cybern., 13(9),
2403–2414.

Lee, S. H., Kim, D. H., & Song, B. C. (2018). Self-
supervised knowledge distillation using singular
value decomposition. Computer Vision – ECCV
2018: 15th European Conference, 339–354.

Lee, S., Kim, H., Jeong, B., & Yoon, J. (2021). A
training method for low rank convolutional neu-
ral networks based on alternating tensor compose-
decompose method. Appl. Sci., 11(2), 643.

Li, C., Yang, Y., Feng, M., Chakradhar, S., & Zhou,
H. (2016). Optimizing memory efficiency for deep
convolutional neural networks on GPUs. SC ’16:
Proceedings of the International Conference for
High Performance Computing, Networking, Stor-
age and Analysis, 633–644.

Li, H., Wang, Z., Yue, X., Wang, W., Tomiyama, H.,
& Meng, L. (2023). An architecture-level analysis

on deep learning models for low-impact computa-
tions. Artif. Intell. Rev., 56(3), 1971–2010.

Li, J., Niu, K., Liao, L., Wang, L., Liu, J., Lei, Y.,
& Zhang, M. (2020, July). A generative steganog-
raphy method based on WGAN-GP. In X. Sun,
J. Wang, & E. Bertino (Eds.), Proceedings of the
Artificial Intelligence and Security (ICAIS 2020)
(pp. 386–397). Springer Singapore.

Li, Q., Li, H., & Meng, L. (2022). Feature map
analysis-based dynamic CNN pruning and the ac-
celeration on FPGAs. Electronics, 11(18), 2887.

Li, Z., Li, H., & Meng, L. (2023). Model compression
for deep neural networks: A survey. Computers,
12(3), 60.

Lin, S., Ji, R., Chen, C., Tao, D., & Luo, J. (2019).
Holistic CNN compression via low-rank decompo-
sition with knowledge transfer. IEEE Trans. Pat-
tern Anal. Mach. Intell., 41(12), 2889–2905.

Lin, S., Ji, R., Li, Y., Wu, Y., Huang, F., & Zhang,
B. (2018). Accelerating convolutional networks via
global & dynamic filter pruning. Proceedings of
the 27th International Joint Conference on Artifi-
cial Intelligence, 2425–2432.

Liu, M., Wang, Z., Li, H., Wu, P., Alsaadi, F. E.,
& Zeng, N. (2023). AA-WGAN: Attention aug-
mented Wasserstein generative adversarial network
with application to fundus retinal vessel segmenta-
tion. Comput. Biol. Med., 158, 106874.

Lu, Y., Kumar, A., Zhai, S., Cheng, Y., Javidi, T., &
Feris, R. (2017). Fully-adaptive feature sharing in
multi-task networks with applications in person at-
tribute classification. 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
1131–1140.

Luo, J. .-., Zhang, H., Zhou, H. .-., Xie, C. .-., Wu, J.,
& Lin, W. (2019). ThiNet: Pruning CNN filters for
a thinner net. IEEE Trans. Pattern Anal. Mach. In-
tell., 41(10), 2525–2538.

Mahoney, M. (2025, May). Data Compression Pro-
grams [Available: https://mattmahoney.net/dc/].

Malach, E., Yehudai, G., Shalev-Schwartz, S., &
Shamir, O. (2020). Proving the lottery ticket hy-
pothesis: Pruning is all you need. Proceedings
of the 37th International Conference on Machine
Learning, 119, 6682–6691.

Margara, A., Cugola, G., Felicioni, N., & Cilloni, S.
(2023). A model and survey of distributed data-
intensive systems. ACM Comput. Surv., 56(1), 1–
69.

Merugu, S., & Ghosh, J. (2003, November). Privacy-
preserving distributed clustering using generative
models. In X. Wu, A. Tuzhilin, & J. Shavlik (Eds.),
Proceedings of the Third IEEE International Con-
ference on Data Mining (pp. 211–218). IEEE.

Mirza, M., & Osindero, S. (2014). Conditional genera-
tive adversarial nets. arXiv:1411.1784.

Molchanov, P., Mallya, A., Tyree, S., Frosio, I., &
Kautz, J. (2019). Importance estimation for neural

Proceedings of the Central European Conference on Information and Intelligent Systems_____________________________________________________________________________________________________443

36th CECIIS, September 17-19, 2025_____________________________________________________________________________________________________ Varaždin, Croatia



network pruning. 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR),
11256–11264.

Paszke, A., Gross, S., Massa, F., Lerer, A., &
Bradbury, e. a. (2019). PyTorch: An impera-
tive style, high-performance deep learning library.
arXiv:1912.01703.

Qin, D., Bu, J.-J., Liu, Z., Shen, X., Zhou, S., Gu, J.-J.,
Wang, Z.-H., Wu, L., & Dai, H.-F. (2021). Efficient
medical image segmentation based on knowledge
distillation. IEEE Trans. Med. Imaging, 40(12),
3820–3831.

Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A.
(2016, September). XNOR-Net: ImageNet classifi-
cation using binary convolutional neural networks.
In B. Leibe, J. Matas, N. Sebe, & M. Welling
(Eds.), Computer Vision – ECCV 2016 (pp. 525–
542). Springer International Publishing.

Rigamonti, R., Sironi, A., Lepetit, V., & Fua, P. (2013).
Learning separable filters. Proceedings of the 2013
IEEE Conference on Computer Vision and Pattern
Recognition, 2754–2761.

Sajjadi Mohammadabadi, S. M., Entezami, M., Karimi
Moghaddam, A., Orangian, M., & Nejadshamsi,
S. (2024). Generative artificial intelligence for dis-
tributed learning to enhance smart grid communi-
cation. Int. J. Intell. Netw., 5, 267–274.

Shomron, G., Gabbay, F., Kurzum, S., & Weiser, U.
(2021). Post-training sparsity-aware quantization.
Proceedings of the 35th International Conference
on Neural Information Processing Systems.

Tailor, S. A., Fernandez-Marques, J., & Lane, N. D.
(2021). Degree-quant: Quantization-aware training
for graph neural networks. arXiv:2008.05000.

Tung, F., & Mori, G. (2019). Similarity-preserving
knowledge distillation. Proceedings of the 2019
IEEE/CVF International Conference on Computer
Vision (ICCV).

Vo, H. V., Du, H. P., & Nguyen, H. N. (2024). APELID:
Enhancing real-time intrusion detection with aug-
mented WGAN and parallel ensemble learning.
Comput. Secur., 136, 103567.

Wang, Q., Zhou, X., Wang, C., Liu, Z., Huang, J.,
Zhou, Y., Li, C., Zhuang, H., & Cheng, J. .-. (2019).
WGAN-based synthetic minority over-sampling
technique: Improving semantic fine-grained classi-
fication for lung nodules in CT images. IEEE Ac-
cess, 7, 18450–18463.

Wijesinghe, A., Zhang, S., & Ding, Z. (2024). PS-
FedGAN: An efficient federated learning frame-
work with strong data privacy. IEEE Internet
Things J., 11(16), 27584–27596.

Wu, J., Leng, C., Wang, Y., Hu, Q., & Cheng, J. (2016).
Quantized convolutional neural networks for mo-
bile devices. Proceedings of the 2016 IEEE Con-
ference on Computer Vision and Pattern Recogni-
tion (CVPR), 4820–4828.

X. Cao, T. Başar, S. Diggavi, & Y. C. Eldar, e. a.
(2023). Communication-efficient distributed learn-
ing: An overview. IEEE J. Sel. Areas Commun.,
41(4), 851–873.

Xiang, Q., Wang, X., Song, Y., Lei, L., Li, R., & Lai, J.
(2021). One-dimensional convolutional neural net-
works for high-resolution range profile recognition
via adaptively feature recalibrating and automati-
cally channel pruning. Int. J. Intell. Syst., 36(1),
332–361.

XZ Utils [Available: https://tukaani.org/xz/.]. (2025,
April).

Yang, T.-J., Chen, Y.-H., & Sze, V. (2017). Designing
energy-efficient convolutional neural networks us-
ing energy-aware pruning. Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 6071–6079.

Yim, J., Joo, D., Bae, J., & Kim, J. (2017). A gift from
knowledge distillation: Fast optimization, network
minimization and transfer learning. Proceedings of
the 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 7130–7138.

Yu, X., Liu, T., Wang, X., & Tao, D. (2017). On com-
pressing deep models by low rank and sparse de-
composition. Proceedings of the 2017 IEEE Con-
ference on Computer Vision and Pattern Recogni-
tion (CVPR), 67–76.

Zhang, Z., Zeng, Y., Bai, L., Hu, Y., Wu, M., Wang,
S., & Hancock, E. R. (2020). Spectral bound-
ing: Strictly satisfying the 1-Lipschitz property for
generative adversarial networks. Pattern Recognit.,
105, 107179.

444_____________________________________________________________________________________________________Proceedings of the Central European Conference on Information and Intelligent Systems

36th CECIIS, September 17-19, 2025_____________________________________________________________________________________________________ Varaždin, Croatia




