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Abstract. The paper focuses on the design and
performance evaluation of a basic “vanilla” spiking
neural network (SNN) with a simulated bidirectional
architecture, intended for signal noise suppression.
The testing was conducted on a synthetic dataset
composed of periodic signals with various types of
additive noise. The proposed solution was imple-
mented using Leaky Integrate-and-Fire (LIF) neurons
within the SNNTorch framework. The procedure
consisted of generating noise scenarios, implementing
comparative classical filters and neural architectures:
a recurrent neural network (RNN), a convolutional
neural network (CNN) and a spiking neural network
(SNN), designing the bidirectional model, and training
it on a defined sample of signals. The paper also
included the definition of evaluation metrics and
timing parameters for comparing the performance of
the individual approaches. The paper describes the
entire development process, from architectural design
to functional testing at the software simulation level.

Keywords. Spiking neural network, Recurrent neural
network, Convolutional neural network, Denoising

1 Introduction

Noise reduction in signals represents a fundamental
challenge in the processing of time-dependent data. In
engineering practice, various methods are employed to
address this issue. Noise suppression is commonly ap-
plied in the medical and biomedical fields. For ex-
ample, it is used to mitigate distortions caused by pa-
tient movement or possible electromagnetic interfer-
ence from power lines. It also plays a critical role
in processing weak brain signals or suppressing other
physiological signals. In telecommunications, noise re-

moval is essential to ensure reliable and high-quality
communication. In radar systems, noise suppression
is used for accurate object detection and improved tar-
get resolution. Within industrial automation, denois-
ing sensor signals is necessary to maintain correct pro-
cess control and regulation, as well as to detect faults
and anomalies. Noise reduction is also applied in au-
dio technology to enhance the quality of recordings and
sound transmission. In the financial sector, denoising
techniques are primarily used to filter market signals
in order to uncover underlying trends and predict price
movements of various assets.

Conventional noise suppression methods are tradi-
tionally classified (Martínez et al., 2022) based on their
functional principles. The most widely used, thanks
to their computational simplicity and sufficient accu-
racy, are the linear filters, which satisfy the superpo-
sition principle. Martínez et al., 2022 use the term
traditional filtering methods, for a subset of linear fil-
ters, albeit the largest one. These methods are based
on the assumption that noise occupies different, usu-
ally higher frequencies than the original (clean) signal;
therefore, frequencies above a chosen cutoff need to be
blocked by a low-pass filter (LPF). Besides these tradi-
tional methods, the superposition principle is also sat-
isfied by other filters such as the Savitzky-Golay filter.
Adaptive filters require a reference signal with which is
the noisy signal compared. Such a reference signal is
often difficult to obtain; in practice it is either provided
by the manufacturer, or derived from the same noisy
signal, temporarily shifted. The filtering is based on
minimization of the error between the reference signal
and the filtered signal using a specified statistical met-
ric.

Artificial neural networks (ANNs) approximate the
clean signal by being trained to minimize error either
between noisy and clean signals (supervised learning),
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or between noisy signals alone (unsupervised learn-
ing).

Other methods not covered by these categories in-
clude signal transforms (wavelet transform), statistical
methods (Kalman filter), nonlinear and regularization-
based methods (e.g., total variation (TV) denoising,
non-local means), and non-neural-model-based ap-
proaches (e.g., autoregressive models). The four meth-
ods (Butterworth LPF, Savitzky-Golay filter, LMS, and
RLS filters) that were chosen for the comparison are
covered in more detail in the chapter 2.2.

Unlike the aforementioned methods, artificial neu-
ral networks adapt to model nonlinear relationships be-
tween noisy and clean signals without needing prior
information about the signal shape or the noise model
(Maas et al., 2012). If a clean or reference signal–or
signals–are available, ANNs can be trained by min-
imizing the loss function (typically MSE or L1) be-
tween the noisy and clean versions (supervised train-
ing). This is usually achieved using ANNs designed
for temporal data processing, thanks to their inher-
ent statefulness–examples include RNNs, transform-
ers, and SNNs. On the other hand, ANNs, and espe-
cially autoencoders, can be trained for signal denoising
in an unsupervised manner.

Recurrent neural networks (RNNs) are a common
approach, successfully used for noise suppression in
audio processing (Maas et al., 2012), biosignal (ECG,
EMG) analysis (Antczak, 2019) and others (e.g., indus-
trial or scientific data) (Chen et al., 2020, Piccolomini
et al., 2019). While the traditional unidirectional vari-
ant is mostly considered sufficient, it has several draw-
backs in comparison with the so-called bi-directional
RNN (BiRNN), particularly in the first few time steps
of the denoised signal.

A BiRNN processes each input sequence twice, once
from start to finish and then in reverse, so that each hid-
den state is influenced not only by its previous value,
but also by its future value.

In this paper, we investigate whether the bi-
directionality traditionally used in RNNs can also be
applied to spiking neural networks (SNNs). Spiking
neurons are also described by their internal state, and
since they are biologically inspired, the state is known
as the membrane potential. The literature on SNNs for
signal noise suppression is limited, with most existing
studies focusing on SNNs designed as autoencoders
(Ren et al., 2025), hybridized with CNNs (Dorzhigulov
and Saxena, 2024) or enhanced with mathematical al-
gorithms such as active tuning (Ciurletti et al., 2021).
In our work, we propose a vanilla SNN (using only
LIF neurons) that simulates bidirectionality, which to
our knowledge has been discussed only by (Xiao et al.,
2023). Using a set of synthetic signals, we compare,
using statistical metrics and processing times, the use
of conventional noise suppression with RNNs (forward
and bi-directional), CNN AE and SNNs (forward and
bi-directional).

2 Methodology
This section describes the signal dataset, noise suppres-
sion methods, and metrics used for the performance
analysis.

2.1 Signal dataset
For evaluation, we use a synthetic signal dataset of
size n = 1000. As the study focuses on the proof-
of-concept of a bi-directional SNN for noise suppres-
sion and its comparison to other methods, we found
a single, controlled dataset sufficient. Although we
acknowledge the possible limited generalizability, we
believe that our approach minimizes confounding vari-
ables and allows for a clear comparison. The base sig-
nal of our dataset is periodic, composed of two sine
waves (Eq. 1).

y(t) = A1 sin (2πf1t+ φ1) +A2 sin (2πf2t+ φ2)
(1)

with different amplitudes (A1 = 1, A2 = 0.5),
frequencies (f1 = 30 Hz, f2 = 70 Hz), and phases
(φ1 = 0, φ2 = π/4). The resulting signal is sam-
pled at a frequency Fs = 1000 Hz for a duration of
2 s, yielding 2000 samples. The additive noise we use
is Gaussian, although we also tested the performance
with impulse and quantization noise, which were omit-
ted for brevity.

Gaussian noise is based on the Gaussian (nor-
mal) distribution, whose probability density function is
given by Eq. 2, where µ is the mean of the distribution
and σ is the standard deviation.

f(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 (2)

Gaussian noise is among the most widely used
noise types for noise simulations, as it closely
approximates real-world noise and has well-
understood mathematical properties that make
it controllable and predictable. In our project,
it is generated using the numpy library method,
np.random.normal(mean, std_dev, size), with
mean µ = 0 and standard deviation σ = 0.5. The
value of the standard deviation was chosen arbitrarily
to introduce a significant level of noise to the synthetic
signal to create a challenging, yet consistent, denoising
problem for all the methods being compared.

2.2 Conventional noise suppression meth-
ods

In this section, four conventional noise suppression
methods (Butterworth LPF, Savitzky-Golay filter, LMS
and RLS filters) are described. These four methods
were picked as they represent different paradigms of
conventional filtering approaches and are commonly
used in practice, as they provide a fair balance between
computational complexity and accuracy.
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2.2.1 Butterworth LPF

The Butterworth low-pass filter (LPF) was designed to
have the frequency response H(jω) in the passband
as flat as possible (with minimal ripple), which distin-
guishes it from, for example, Chebyshev filters, which
ripple either in the passband or in the stopband (Zhang
and Jiang, 2021). The squared frequency response of
the filter is given by the Eq. 3.

|H(jω)|2 =
1

1+
(

ω
ωC

)2N (3)

Based on this formula, two parameters for the de-
sign of the filter are crucial. The first one is the order
of the filter N : the higher the order, the steeper the
frequency response in the transition band. The sec-
ond one is the cutoff angular frequency ωC . In our
project, after some experimentation, we chose the or-
der N = 10 as a good trade-off between computational
complexity and accuracy. The cutoff frequency was
chosen as fc = 100 Hz, based on the representation of
the signal in the frequency domain using Fourier trans-
form. The butter(order, Wn) function in Python’s
scipy.signal library calculates internally the cut-
off angular frequency using the normalized frequency
Wn–the function’s second parameter. Its value is usu-
ally computed using the formula Wn = fc/fN , where
fN is the Nyquist frequency (fN = Fs/2, in our case
1000Hz/2 = 500Hz).

2.2.2 Savitzky-Golay filter

The Savitzky-Golay filter is based on a least-squares
polynomial approximation of a window of odd length
N = 2m + 1 (Liu et al., 2016; Samann and Schanze,
2019). For each window, a polynomial of the order k
with coefficients b = [b0, . . . , bk] is fitted using least
squares. Accordingly, the savgol_filter function in
Python’s scipy.signal library has, in addition to the
noisy signal, two other parameters: the window length
N and the polynomial order k. In our case, we exper-
imentally found that, for a given polynomial order k,
the best window length is approximately given by the
Eq. 4.

N ≈ 7 ·
⌊
k

2

⌋
+ 7. (4)

If N is even, 1 is added to the result. We use k = 7
and N = 31.

2.2.3 LMS and RLS filters

LMS (least mean squares) and RLS (recursive least
squares) filters both require a reference (or desired) sig-
nal for their computations. LMS filter minimizes the
difference–the mean squared error–between the noisy
and the desired signals using stochastic gradient de-
scent (Hinton, 2003). The filter simplifies the algo-
rithm further by calculating only an estimate of the gra-

dient vector. In general, the k-th sample of a noisy sig-
nal x is denoised using a formula given by Eq. 5.

ŝk = yk −
N−1∑
i=0

wk(i) · xk−i (5)

In the formula, y is the reference signal, w repre-
sents the weights and N is the filter length. In the case
of LMS, the weight update rule for the next sample is
given by Eq. 6.

wk+1(i) = wk(i) + 2µekxk−i (6)

for i = 0 to N − 1, where µ is the learning rate, x
is the input (noisy) signal vector of size N and e is the
error between the desired and actual output.

RLS, in comparison, minimizes the exponentially
weighted sum of squared errors; all formulas describ-
ing the filter are provided by Tosi et al., 2013.

2.3 Artificial neural networks
In this section, we discuss different artificial neural net-
work (ANN) architectures commonly used for time se-
ries analysis.

2.3.1 Recurrent neural networks

Recurrent neural networks (RNNs) were originally de-
veloped to address the limitations of feedforward neu-
ral networks (FNNs). FNNs were found to be excep-
tional at static data processing, e.g. measuring datasets
or images, but they perform poorly on time-dependent
data (time series, signals, audio, video), which must be
input one step at a time rather than all at once.

Units in RNNs are enhanced with inner hidden
states, neuronal outputs are wired recurrently, i.e. in
the next time step, they return to the same neuron or
other neurons in the same layer. Hidden states subse-
quently act act as a kind of memory for each unit, up-
dated based on the previous state and the input. Thanks
to this, RNNs are able to capture temporal information
and patterns within sequences.

There are three main architectures of RNNs: the
vanilla RNN and the RNNs with GRU (gated recurrent
unit) or LSTM (long short term memory) units. Vanilla
RNN is the default architecture used by the Pytorch
nn.RNN module, with hyperbolic tangent as the default
activation function. In our project, we found the vanilla
RNN to provide a good balance of computational com-
plexity, accuracy, and training time. Both versions we
used are many-to-many, since both the output and the
input of the same size is expected (a denoised signal).

At first, we designed a unidirectional (forward)
RNN, where the sequence is processed from start to
finish and the hidden state of each neuron is updated
based on its direct previous value. On the other hand, in
a bi-directional RNN, each time sequence is processed
twice, at first from start to finish and then from finish
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to start. The single-hidden-layer architecture of a bi-
directional RNN is schematically depicted in Fig. 1.

Figure 1. Bi-directional RNN architecture

The forward pass of a bi-directional RNN is de-
scribed by the Eq. 7, while the backward pass is de-
scribed by the Eq. 8.

hfwd[t] = tanh(
−→
Wx[t] +

−→
U hfwd[t− 1]) (7)

hbwd[t] = tanh(
←−
Wx[t] +

←−
U hbwd[t+ 1]) (8)

Denoting n as the input sequence length and d as the
hidden size, in eqs. 7 and 8, t is time (t = 0..n − 1 in
the forward pass, t = n − 1..0 in the backward pass),
x[t] is the scalar input, W ∈ Rd×1 are the input-to-
hidden weight matrices, U ∈ Rd×d are the hidden-to-
hidden weight matrices and h[t] ∈ Rd×1 the hidden
state vectors. The weights are shared across time steps.

Both passes yield forward and backward hidden
state vectors for each layer for each time step; the hid-
den state vectors of both passes of the last hidden layer
are concatenated as h[t] ∈ R2d×1 (Eq. 9) and serve as
inputs to the linear layer (Eq. 10, where W ∈ R1×2d is
the linear layer weight matrix).

h[t] =

[
hfwd[t]
hbwd[t]

]
(9)

y[t] = 2 · tanh(Wh[t]) (10)

The input layer and the output layer each have size
1, and the activation function of the output layer is
twice the hyperbolic tangent (eq. 10) as it better cap-
tures information on the interval [−2, 2]. The interval is
slightly larger than the interval of possible amplitudes
of our base signal.

2.3.2 Convolutional neural networks

Convolutional neural networks (CNNs), feedforward in
nature and therefore widely used for static data pro-
cessing, can also be applied to time sequences. They
learn features in data using a filter, and while in static
data (especially 2D data such as images) the filter

“moves” across space, in time series (1D data) the fil-
ter “moves” across time. Convolutional filters are also
translation-invariant, which means that if a temporal
pattern is learned in one part of the signal, it can be
recognized elsewhere as well. On the other hand, they
are usually well-suited for learning short-term features
only, and for long-term dependencies are often com-
bined with other neural network architectures (RNN,
SNN) or other signal processing techniques (wavelet
transforms).

One CNN architecture for denoising is an autoen-
coder (AE), composed of two parts: an encoder and a
decoder. The data in the encoder is compressed, until
it reaches a specific layer called the bottleneck (or la-
tent space). From there on, the compressed data is re-
constructed. The layers in the decoder symmetrically
mirror the layers of the encoder. The number of chan-
nels in the encoder increases in each layer to capture
finer details, while in the decoder it decreases. Con-
versely, the data size decreases (the number of time
steps in time series) in the encoder by a factor of two
and symmetrically increases by the same factor in the
decoder. This architecture is self-supervised, meaning
that it doesn’t need to have the original underlying base
signal, but it learns patterns that are consistent through-
out the entire dataset.

The CNN AE in our project (architecture shown in
Fig. 2) consists of two layers in the encoder and the
decoder, with neurons in each layer having ReLU as
their activation function. The number of time steps de-
creases before increasing by a factor of two.

Figure 2. CNN AE architecture

432_____________________________________________________________________________________________________Proceedings of the Central European Conference on Information and Intelligent Systems

36th CECIIS, September 17-19, 2025_____________________________________________________________________________________________________ Varaždin, Croatia



2.3.3 Spiking neural networks

Spiking neural networks (SNNs) (Eshraghian et al.,
2023) are biologically inspired, with neuron activation
functions that are essentially unit steps: at each time
step, a neuron’s output is either 0 or 1. This out-
put depends on the neuron’s internal state, called the
membrane potential, which produces an output called
a spike (a 1 value) when a certain threshold θ is reached
and then resets (either to zero or decreases by a set
value).

SNNs are typically designed using so-called Leaky
Integrate-and-Fire (LIF) neurons, which offer a trade-
off between computational complexity and biological
implausibility. They are described by the formula given
by Eq. 11.

U [t] = βU [t− 1]︸ ︷︷ ︸
decay

+WX[t]︸ ︷︷ ︸
input

−Sout[t− 1]θ︸ ︷︷ ︸
reset

(11)

In the formula, t is time, U is the membrane poten-
tial, W is a weight matrix, β is the decay rate, θ is the
threshold and Sout is the output spike (the activation
function) (Eq. 12),

Sout[t] =

{
1 U [t] ≥ θ

0 otherwise
(12)

Spikes then travel across synapses to other neurons,
where they accumulate and increase the membrane po-
tential. Unlike units in RNNs, without any external
stimuli (spikes), the internal state U of LIF neurons
decreases (decays) by each time step. Any information
passed through the SNN is therefore not encoded in the
value of the output (since it is binary), but typically in
the timing of the spikes (latency code) or the spike rate
(rate coding).

One of the main problems when training SNNs is the
so-called dead neuron problem: since backpropagation
relies on stochastic gradient descent, by the chain rule,
the Eq. 13 follows.

dL

dW
=

dL

dS

dS

dU

dU

dI

dI

dW
(13)

In Eq. 13, L is the loss function, W is the weight
matrix, S is the activation function and I represents
the inputs. Since S is essentially a unit step, its weak
derivative dS

dU is the Dirac delta function, which takes
on only two values: ∞ when the threshold is reached
and 0 otherwise. Consequently, dL

dW will have the same
value, which prevents the weights from being updated.
In practice, one of the most common ways to resolve
this is by using a surrogate function during the back-
ward pass, usually a smoothed version of the unit step
(e.g., sigmoid or arctangent).

Nonetheless, the provided architecture results in var-
ious advantages of SNNs: they’re asynchronous and
highly parallelizable, which stems from the fact that
most of the time most of the neurons are at rest. With

the exception of membrane potentials, most of the in-
formation that travels in SNNs is not only non-floating,
but also binary; and can be stored in vectors or simply
as lists of spike times.

The driving principle behind SNN research is en-
ergy reduction: ANNs are known for their enormous
energy consumption. In general, SNNs were shown to
reduce energy use; the review of various architectures
and their effect on energy consumption is provided by
(Malcolm and Casco-Rodriguez, 2023). For exam-
ple, the SNN Brain-Machine Interface, developed by
(Liao et al., 2022), achieved reductions in comparison
to aconventional ANN in total operations and memory
accesses by well over 90%. To achieve this, a spe-
cial neuromorphic hardware, which can support asyn-
chronicity and parallelization, is needed. Various chips
(Intel Loihi) and institutional supercomputers (Univer-
sity of Manchester’s SpiNNaker) were built, although
there were successful implementations of SNNs on FP-
GAs as well (Padovano et al., 2024).

That said, it is possible to simulate SNNs on tradi-
tional computer architectures using various libraries. In
our project, we use SNNTorch, based on PyTorch, that
we use in our RNN and CNN modules.

As with RNNs, we used both a forward model, but
also a model that simulates bi-directionality. The over-
all architecture of the bi-directional variant is schemat-
ically depicted in the Figure 3.

Figure 3. Bi-directional SNN architecture

The architecture of the bi-directional SNN consists
of two branches (one for the forward pass and one for
the backward pass), with single-neuron input and out-
put layers and multiple hidden layers. Mathematically,
and for demonstration purposes with only one hidden
layer, in the forward pass for each time step t, the for-
mula given by Eq. 14 is used for each neuron, and for
the backward pass, the formula given by Eq. 15 is used.
−→
U [t] = β

−→
U [t− 1] +

−→
WX[t]−

−→
S out[t− 1]θ (14)

←−
U [t] = β

←−
U [t+ 1] +

←−
WX[t]−

←−
S out[t+ 1]θ (15)

Eqs. 14 and 15 are based on the Eq. 11. The spike
output formula (Eq. 12) remains unchanged. Denot-
ing d as the hidden size, for neurons in the hidden
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layer, X[t] is a scalar input,
−→
W [t],

←−
W [t] ∈ Rd×1 are the

weight matrices,
−→
U [t],

←−
U [t] ∈ Rd×1 are the membrane

potential matrices, and
−→
S out[t],

←−
S out[t] ∈ {0, 1}d×1

are the spike matrices. For the single output neuron, the
weight matrices are of size 1 × d and all other quanti-
ties are scalar. As with the RNN (chapter 2.3.1), the re-
sulting membrane potentials are then concatenated and
passed through a linear layer.

The main difference between the SNN and the RNN
architecture (Figure 1) is in the way the information is
propagated between the neurons in the hidden layers.

In our project, bi-directionality was implemented us-
ing a class SNNBranch with two hidden layers of LIF
neurons (100 and 75 neurons, respectively).

We found bi-directional SNN to be a promising ar-
chitecture for signal denoising, based on initial exper-
iments with shorter, simpler sine wave signals with an
amplitude of A = 1 and a frequency of f = 2π/60 Hz,
sampled at 500 time steps. Both the forward and the bi-
directional SNN were trained on 80% of the 5000 sam-
ples. While the forward SNN yielded a non-optimal
denoised output, the bi-directional SNN significantly
enhanced the denoising quality (Fig. 4). The average
MSE between the noisy and BiSNN-denoised signals
was 0.2506.

Figure 4. Simple single-sine signal denoising with
BiSNN

2.4 Metrics
In our project, we use the mean squared error (MSE),
which is based on the squared differences between the
clean signal and the denoised signal; the lower the
MSE, the better the denoising performance. The MSE
values shown in the table are averages computed across
all noisy-denoised signal pairs in the testing dataset.
Other metrics, such as the root mean squared error
(RMSE) and the signal-to-noise ratio (SNR), were con-

sidered but were omitted from presented results mostly
due to brevity, as their values were roughly concordant
with MSE.

We also measured computational time. For the con-
ventional denoising methods, we recorded the time
taken to process the entire dataset. For the ANN-based
methods, we recorded the time it took for the neural
network to be trained. These times were chosen be-
cause they represent the most time-consuming opera-
tions in the overall computation.

3 Results
The methods discussed in Chapters 2.2 and 2.3 and the
metrics described in Chapter 2.4 were implemented in
the Python programming language. Existing libraries
such as Scikit-learn (for MSE/RMSE), SciPy (for But-
terworth LPF and Savitzky-Golay filter), PyTorch (for
neural networks), and SNNTorch (for SNNs) were uti-
lized. Custom implementations were developed for
LMS and RLS filters, as well as SNR/PSNR metrics.
Neural networks were trained on Google Colab using
v2-8 TPU processing units.

The results obtained from measurements are pro-
vided in Tables 1 and 2.

Table 1. Performance of conventional denoising meth-
ods

Denoising Method MSE Denoising
time [s]

Butterworth LPF 0.0481 0.15
Savitzky-Golay filter 0.0439 0.48
LMS filter 0.0309 12.95
RLS filter 0.0427 138.28

Table 2. Performance of ANNs

Denoising Method MSE Training
time [s]

Forward RNN 0.0220 146.25
Bi-directional RNN 0.0117 453.41
CNN autoencoder 0.0254 3.07
Forward SNN 0.1672 223.15
Bi-directional SNN
(175 neurons)

0.1030 479.72

Bi-directional SNN
(650 neurons)

0.0777 3589.26

The conventional methods performed similarly in
denoising the datasets, with the LMS filter achieving
the lowest MSE, and the RLS, Savitzky-Golay, and
Butterworth LP filters performing marginally worse.
The main disadvantage of both adaptive filters was
the time required to denoise the entire dataset, with
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the RLS filter in particular taking more than 2 min-
utes to denoise the entire dataset. The good perfor-
mance of the Savitzky-Golay filter can be attributed to
the polynomial nature of the sine wave, which, how-
ever, may hinder in denoising of non-stationary sig-
nals. Both adaptive filters also initialize their weights
at zero; therefore, they take some time to learn, which
is why the amplitude for the first couple of hundredths
of a second is at 0.

Similar problems can be observed in the forward ar-
chitectures of the RNN and the SNN. The inaccuracies
in the first time steps can be attributed to the initial-
ization of weights; in other words, the neural network
does not yet have any knowledge about the data. Bi-
directionality addresses this problem by having an ac-
cess to the future context in the early time steps. The
bi-directional RNN outperformed all of the conven-
tional methods used, as did the marginally less accu-
rate CNN autoencoder, which also has the advantage
of no need for the clean version of the signal. Particu-
larly significant was the superior performance of RNNs
over other methods that require a reference signal.

The improved performance of bi-directional SNN
compared to the forward SNN described in the chap-
ter 2.3.3 was also observed when training the SNN on
the two-sine dataset (Table 2), where the bi-directional
SNN outperformed its forward counterpart by almost
40%. Nevertheless, both architectures were outper-
formed by other methods in terms of accuracy. How-
ever, the training time of the bi-directional SNN was
comparable with that of bi-directional RNN despite the
significant increase in the number of neurons (the RNN
having 30 units in the hidden layer, while the SNN hav-
ing 175 neurons in both hidden layers combined).

Further refinement of the bi-directional SNN in-
cluded the addition of another hidden layer and an in-
crease in neuron count per layer (250, 200, and 200
neurons, respectively). This upgraded architecture re-
sulted in an MSE of 0.0777, representing nearly a 25%
improvement (a sample is shown in the Figure 5).

4 Discussion
The initial experiments with SNNs on simpler signals
provided valuable insights into their behavior and the
benefits of bi-directionality. The quantitative improve-
ment observed with the bi-directional SNN on the ac-
tual dataset, despite its lower accuracy compared to
other methods, suggests that SNNs hold promise, par-
ticularly considering their comparable training times to
bi-directional RNNs even with a significantly higher
number of neurons. This efficiency, coupled with the
potential for more biologically plausible computation
and potential energy consumption reduction given a
proper architecture, warrants further investigation.

Although the architectural upgrade to the bi-
directional SNN yielded a substantial improvement in
MSE, its overall accuracy still lags behind other meth-

Figure 5. Signal sample with upgraded Bi-SNN

ods. Future research avenues could explore more com-
plex SNN architectures, such as incorporating learn-
able decay parameters as demonstrated by Hao et al.,
2024, or investigating hybrid models combining SNNs
with RNNs, CNNs, or autoencoders to leverage the
strengths of different neural network paradigms for en-
hanced denoising performance.

5 Conclusion

The paper presents the design and implementation of
a “vanilla” spiking neural network featuring two hid-
den layers composed of Leaky Integrate-and-Fire neu-
rons, utilizing a simulated bidirectional architecture in
the SNNTorch framework. The proposed solution was
evaluated on a synthetic dataset of periodic signals cor-
rupted by noise and compared against traditional and
neural-based denoising approaches. The development
process included the design of the dataset, implementa-
tion of baseline filters and networks, construction of the
bidirectional SNN processing mechanism, and the se-
lection of metrics for accuracy and computational cost
assessment. The results demonstrate that the proposed
bidirectional SNN architecture offers clear improve-
ments over its unidirectional counterpart. Although it
lags behind BiRNNs and CNN-based autoencoders in
certain metrics, its key advantage generally lies in sig-
nificantly lower energy consumption given a specific
hardware, although the training time advantage is also
noteworthy. Future research may explore hybrid archi-
tectures, e.g., SNN-RNN combinations, or the appli-
cation of learned parameters for membrane potential
decomposition.
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