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Abstract. This study investigates the detection of toxic
content in text data by integrating deep learning
models with explainable artificial intelligence (XAI)
techniques, with a particular focus on model
transparency and usability. We evaluate three widely
used neural architectures—CNN, LSTM, and BERT—
on a labeled Twitter dataset, comparing their
classification performance and the interpretability of
their outputs. To enhance model explainability, we
apply SHAP and Layer-wise Relevance Propagation
(LRP) methods, visualizing word-level contributions to
each prediction. The usability of these models is
assessed through the clarity and reliability of their
explanations. Our results show that while LSTM
achieved the best overall classification performance,
the combination of SHAP with LSTM provided the most
interpretable and actionable insights. This work
highlights  the trade-offs  between  accuracy,
explainability, and usability in toxicity detection,
offering practical guidance for deploying trustworthy
Al systems in content moderation.

Keywords. BERT, classification, CNN, detection of
toxicity, explainable AI, LRP, LSTM, SHAP

1 Introduction

This work addresses the detection of toxic content in
text data, combining deep learning with explainability
techniques. It begins with a theoretical overview and
analysis of existing approaches. The main goal is to
apply and evaluate selected models and explainability
methods to better understand the decision-making of
neural networks. Finally, all methods are assessed and
compared using standard evaluation metrics.

This work also builds on previous research
presented at CECIIS 2024, where we explored the
usability challenges of integrating multiple data
sources for toxic behavior detection in social media
(Lohaj et al., 2024). While that study focused on the
broader context of combining heterogeneous data
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inputs to support detection models, the present work
narrows the focus to the explainability and usability of
the models themselves. Specifically, we aim to make
the decision-making processes of individual deep
learning models more transparent and actionable for
end users. This progression reflects a shift from
system-level integration concerns to model-level
interpretability, aligning with the growing need for
trustworthy and user-centered Al systems in content
moderation. While our dataset originates from
sentiment analysis, we frame negative sentiment as
indicative of toxic content for the purposes of model
training and evaluation. This framing enables us to
assess toxicity detection methods using sentiment-
labelled social media data, while maintaining focus on
the broader societal relevance of mitigating harmful
online interactions.

Toxicity detection plays a critical role in protecting
individuals from online harassment, hate speech, and
other harmful behaviors. As online communication
increasingly shapes public discourse, detecting and
mitigating toxic content is essential for maintaining
respectful dialogue, preventing psychological harm,
and supporting the work of moderators on social media
platforms. By focusing on explainability and usability,
this study addresses not only the accuracy of detection
but also the trust and accountability required for
societal adoption of Al moderation tools.

2 Related Works

2.1 Text classification

Several studies have addressed toxic content
classification in online environments. One notable
work (Grine, 2021) analyzed various methods,
including SVM (Support Vector Machine), CNN
(Convolutional Neural Network), and LSTM (Long-
Short-Term Memory Network), to identify toxic
comments and evaluate their performance. The main
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challenges tackled in the study were the lack of multi-
label support and significant class imbalance.

The models were trained and tested on the
Conversation Al "Wikipedia Talk" dataset, containing
nearly 160,000 comments labelled across six
categories: toxic, severe toxic, obscene, threat, insult,
and identity hate. The study revealed a substantial
imbalance in label distribution, which negatively
influenced the models' performance on minority
classes. A correlation matrix also showed strong co-
occurrence between classes such as toxic and insult or
obscene (e.g., r = 0.74 for insult-obscene).

Evaluation based on Precision, Recall, and F1-
score metrics demonstrated that CNN outperformed
others in most categories, especially for the minority
class threat. SVM achieved the best precision, while
LSTM showed slightly better recall. All models
performed better on majority classes, with Fl-scores
above 80%, and worse on minority ones (47—73%).

Learning curve analysis further showed that CNN
reached strong performance with only 2% of training
data, outperforming both SVM and LSTM early in
training. LSTM required more data (up to 25%) to
surpass SVM, with diminishing returns observed
beyond 80% of the dataset.

Another study by authors (Anand & Enswari, 2019)
focused on CNN and LSTM models, comparing their
training behavior using two key metrics: training
accuracy and training loss. The models were trained on
a dataset from Wikipedia's talk page edits. In this
dataset, there are almost 160.000 comments and
labelled with different categories some of the
comments belong to more than one category. The
visualized results showed that CNN achieved rapid
accuracy gains during training, consistent with
previously reported trends for convolutional
architectures in text classification. CNN achieved a
rapid increase in accuracy, reaching 97.8%, with a low
training loss of 5.42%. In contrast, LSTM
demonstrated lower accuracy and higher loss,
indicating slower convergence and potentially less
effective learning dynamics.

In another publication by (Maslej-Kresnakova et
al., 2020), the authors examined and compared
traditional deep learning models (FFNN (Feedforward
Neural Network), CNN, GRU (Gated Recurrent Unit),
BiGRU (Bidirectional Gated Recurrent Unit),
BiLSTM-CNN (Bidirectional Long Short-Term
Memory)) and transformer-based language models
(BERT, DistilBERT, XLNet) under various
preprocessing and text representation techniques. The
experiments were conducted on the Kaggle Toxic
Comment Classification dataset, which training data
contains almost 160.000 Wikipedia comments labelled
across six toxicity categories. The dataset exhibits a
strong imbalance toward non-toxic classes, making it a
challenging benchmark for classification models. The
experiments revealed that the combined BiLSTM-
CNN model achieved the best results among the
traditional architectures, with an F1 score of
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approximately 0.67. When TF-IDF (Term Frequency-
Inverse Document Frequency) text representation was
used along with standard preprocessing techniques—
tokenization, lowercasing, punctuation removal, and
stop word elimination—performance significantly
improved. The F1 score increased from 0.09 to 0.35.
Furthermore, in the comparison of transformer-based
models, the BERT-base (uncased) variant achieved the
highest performance, with an F1 score of 0.69 and an
AUC score of 0.984, outperforming both other
transformer variants and traditional models. Study by
(Ansar et al, 2024) reviews new strategies for
optimizing transformer-based NLP models for faster
inference and lower resource use, including pruning,
quantization, and low-rank adaptation and supports the
transformer advancement and efficiency. Recent work
by (Wu et al., 2025) highlights how transformer-based
architectures, such as BERT and GPT, have redefined
state-of-the-art performance in text understanding by
effectively handling long-range dependencies and
complex contextual relationships. Their
methodological framework and insights into efficiency
optimization could inform the integration of advanced
NLP techniques into similar Al-driven applications
discussed in the present study.

2.2 Using explainable artificial intelligence
in text classification

Authors (Nguyen et al., 2024) compared three popular
XAI techniques: LIME (Local Interpretable Model
Agnostic Explanations), SHAP (SHapley Additive
exPlanations), and CAM (Class Activation Mapping),
and proposed enhancements for their evaluation and
application. Their stability analysis showed that LIME
and SHAP produce consistent results with 1,000
samples, but become less reliable with 500 or 200
samples, indicating that a higher sample count
improves result stability and accuracy.

Each method had distinct advantages: CAM offered
the fastest computation, while SHAP uniquely
identified both positive and negative feature
contributions. However, LIME and CAM are limited to
classification tasks, and CAM is image-specific. In
contrast, SHAP demonstrated broader applicability
across data types and tasks.

In another paper by (Gholizadeh & Zhou, 2021) the
authors applied LRP (Layer-wise Relevance
Propagation) to explain SVM-based review
classification. They used a dataset of over 229,000
customer reviews, reformulated as  binary
classification. To analyze the SVM predictions, a CNN
model was trained to replicate SVM outputs, using pre-
trained word embeddings and multiple convolutional
filter sizes. After five epochs (batch size 30), the CNN
achieved high agreement with SVM predictions (F1
score of 0.93).

LRP highlighted the most relevant tokens influencing
classifications and visualized them for interpretability.
This approach demonstrated that LRP + CNN can
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effectively interpret machine learning models and offer
actionable insights for improving business decisions
based on customer feedback.

3 Deep Learning Methods

Deep learning has become a dominant approach in
many natural language processing (NLP) tasks due to
its ability to automatically extract complex features
from large datasets. Among the wide variety of deep
learning  architectures, certain models have
demonstrated exceptional performance in text
classification and interpretability research. This section
provides a concise overview of three models: CNN,
LSTM, and BERT.

3.1 Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) (O’Shea,
2015), originally designed for image processing, have
been adapted to text classification to capture local n-
gram patterns using convolutional filters. A typical
CNN for text includes convolutional and activation
layers (e.g., ReLU) to detect patterns, pooling layers to
reduce dimensionality, and fully connected layers for
classification. CNNs are valued for their computational
efficiency and ability to capture short-range
dependencies in text.

3.2 Long Short-Term Memory Network
(LSTM)

LSTM networks (DiPietro, 2020) are designed to
capture long-term dependencies in sequential data by
using a memory cell and three gates (forget, input,
output) to regulate information flow. This architecture
overcomes the vanishing gradient problem in
traditional RNNs and is particularly effective for tasks
requiring contextual understanding, such as sentiment
analysis and speech recognition.
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3.3 Bidirectional Encoder Representations
from Transformers (BERT)

BERT is a transformer-based model that utilizes a
bidirectional attention mechanism to understand the
context of a word based on its surrounding words,
regardless of their position (Sun et al., 2019). Unlike
traditional left-to-right models, BERT processes text in
both directions simultaneously.

The training process includes:

e Masked Language Modeling (MLM): predicting
masked words in a sentence.

e Next Sentence Prediction (NSP): determining
whether two sentences follow each other.

After pre-training, BERT is fine-tuned on specific
NLP tasks using smaller, domain-specific datasets. Its
strong contextual understanding has made it state-of-
the-art in various classification and interpretation tasks.

4 Explainable A1 Methods

Modern machine learning models, especially deep
learning architectures, are often referred to as black
box (Awati & Yasar, 2024) due to their complex
internal structures that make it difficult to understand
how input data leads to a particular output. This lack of
transparency poses significant challenges in domains
where trust, accountability, or legal compliance are
crucial. To address this issue, XAI (Ryo, 2022)
methods have been developed to provide insights into
model behavior and decision-making. We can count
the following methods as frequently used:

e SHapley Additive exPlanations (SHAP)

This approach is based on game theory and uses
Shapley values to evaluate the contribution of
individual factors to the model’s outcome (Atesli,
2023). Since computing exact Shapley values is
computationally expensive, the method approximates
them to provide an understanding of how each factor
contributes to the prediction.

e Layer-wise Relevance Propagation (LRP)

LRP is a model-specific method that provides detailed
explanations of predictions, especially for deep neural
networks (Praveen, 2021). This process analyzes
which parts of the input data—such as image pixels or
words in text—contributed the most to a given
prediction. Relevance is propagated backward through
the layers of the neural network, helping to identify the
inputs that had the greatest impact on the model’s
result.
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5 Data Understanding and
Preparation

5.1 Data Description

This section provides an overview of the dataset used
in this study, focusing on its structure, quality, and
potential issues that may impact model accuracy.
Understanding the data is crucial for optimizing
preprocessing and designing effective models.

The dataset consists of tweets from
Twitter\Hugging Face in English, divided into three
subsets:

e Training set: 12.9k tweets
e Test set: 3.7k tweets
e Validation set: 1.85k tweets
The dataset has two attributes:
e Text— the tweet content
e Sentiment — numeric attribute (1 for Positive, 0 for

Negative) representing the sentiment of the tweet.

Each row represents a tweet with its assigned
sentiment. The sentiment labels in this dataset were
provided by the original dataset creators on the
Hugging Face platform. Annotation was performed
through a combination of manual review and
automated classification heuristics, with 0 representing
a negative sentiment and 1 representing a positive
sentiment. The labeling guidelines ensured that tweets
containing expressions of dissatisfaction, criticism, or
negative tone were marked as negative, while those
with expressions of approval, gratitude, or positive
tone were marked as positive. Data quality checks
revealed no missing values or duplicates, and the
sentiment attribute contains only unique values (0, 1).
In this study, tweets labeled with negative sentiment
polarity (0) are treated as toxic content, while those
with positive sentiment polarity (1) are considered non-
toxic. This mapping allows us to apply toxicity
detection techniques to a sentiment-labeled dataset,
reflecting the assumption that negative sentiment often
corresponds to toxic or harmful language in online
discourse. Initial data analysis was performed through
visualizations to better understand the dataset's
structure. The training set contains approximately
7,000 positive and 6,000 negative tweets, showing a
slight imbalance (see Fig. 1).

Sentiment distribution in the dataset
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Figure 2. Visualizing sentiment distribution in the
Twitter dataset
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The analysis of the tweet lengths revealed that the
average tweet contains 70.17 characters (see Fig. 2).
Interestingly, there was little difference in length
between positive and negative tweets, with the average
lengths being 70.13 characters for positive tweets and
70.21 characters for negative ones. This suggests that
there is no significant correlation between tweet length
and sentiment in the dataset.

Tweet length distribution
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Figure 3. Tweet length distribution in the Twitter
dataset

Additionally, the average word count per tweet was
13.24 (see Fig. 3), with slightly higher counts for
negative tweets (13.43 words) compared to positive
ones (13.07 words). This indicates that tweet content
does not appear to vary significantly in terms of word
count between the two sentiment classes.

Histogram of word count in tweets
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Figure 4. Number of words in tweets in the Twitter
dataset

One particularly insightful visualization was the
word cloud in Fig. 4, which was used to display the
most frequent words in the tweets. This graphical
representation highlighted words like "love", "thank",
and "good", which were used frequently in the dataset.
In addition to these common words, the word cloud
also revealed recurring fragments such as "S", "m",
"II", "im", and "t", which likely represent truncated
words or abbreviations. These patterns provide
valuable insights for the next steps in preprocessing,
where handling these truncated forms and
abbreviations could improve model performance and
ensure better text representation.
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Figure 5. Most used words in tweets

5.2 Data Pre-Processing

This stage focuses on transforming raw tweets into
a clean, standardized format suitable for analysis and
modeling. Tweets are often noisy — containing
inconsistent casing, numbers, excessive punctuation,
links, usernames, and other irrelevant elements —
which can affect model performance.

To address this, a custom preprocess function was
implemented. It performs the following key steps:
e Normalization — converts all text to lowercase

(e.g., "HAPPY DAY" — "happy day").
e Noise removal — eliminates URLs, emails, HTML
tags, usernames (e.g., _user), numbers,

punctuation, and extra spaces.

e Tokenization — splits text into individual words.

e Stop-word removal — removes common,
uninformative words like "is", "a", "the".

e Lemmatization - converts words to their base
forms (e.g., "took" — "take").

This process uses libraries such as re for pattern
matching, string for punctuation handling, and nltk for
tokenization, stop-word filtering, and lemmatization.
As a result, the text becomes cleaner and better suited
for machine learning models (see Table 1).

Table 1 Comparison of input and processed tweets

The initial form of tweets | Processed tweets
Just took my IC photo! just take ic photo look
Looks good - good
http://tweet.sg
I’m so mad I won’t be mad will ughhh
there! 11111 UGHHH!!!
Oh yes! Level 40 yes level
thank you! Marc Jacobs thank marc jacob thou
thou ....Jlove limited too love limit
6 Modeling

6.1 Setting up models

To evaluate the effectiveness of different deep learning
architectures in toxic content classification, three
representative models were implemented:
Convolutional Neural Network (CNN), Long Short-
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Term Memory (LSTM), and BERT (Bidirectional
Encoder Representations from Transformers). Each
model was configured with tailored architectures and

training  strategies, considering the  unique
characteristics of text data and model-specific
requirements.

CNN Configuration

The CNN model was designed to capture local
textual patterns through convolutional operations. It
began with an Embedding layer of dimension 50,
which transformed input tokens into dense vector
representations. Tweets were padded to a fixed length
to ensure consistent input shape across the dataset. A
1D Convolutional layer with 100 filters and a kernel
size of 3 was used to extract tri-gram level features.
Instead of a pooling layer, a Flatten layer was
employed to retain the full spatial structure of the
learned features. This was followed by a Dense layer
with 128 units and ReLU activation, along with a
Dropout layer (rate = 0.3) to mitigate overfitting. The
final layer was a single-unit output layer with sigmoid
activation, suitable for binary classification. The model
was compiled with binary cross-entropy loss, Adam
optimizer, and trained over 2 epochs with a batch size
of 32.

LSTM Configuration

The LSTM model was employed to capture the
sequential dependencies and contextual flow in the
text. It also began with an Embedding layer (dimension
= 50). A single-layer LSTM unit with 64 memory cells
processed the input sequences, capturing both short-
and long-term dependencies. The output of the LSTM
layer was passed through a Dropout layer (rate = 0.4)
to enhance generalization. A fully connected Dense
layer with a sigmoid output completed the model
architecture. The model was trained using the Adam
optimizer and binary cross-entropy loss, with a batch
size of 32 over 2 epochs. Token sequences were padded
to a uniform length, and text preprocessing ensured
consistent input representation.

BERT Configuration

The transformer-based BERT model was leveraged
to take advantage of its powerful contextual language
understanding. Specifically, the bert-base-uncased
variant from Hugging Face’s Transformers library was
used.  Tokenization = was  performed  using
BertTokenizerFast, which ensured compatibility with
the model’s vocabulary and token structure. The base
model outputs were passed through a custom
classification head comprising three Dense layers (768
— 512 — 256 — 2), with GELU activations and
Dropout layers (rate = 0.2) in between for
regularization. The final output was normalized using
LogSoftmax to produce log probabilities for each class.
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The model was fine-tuned for 9 epochs using the
AdamW optimizer with a learning rate of 2e-5, and
training was stabilized using a linear learning rate
scheduler with warm-up steps. The batch size was set
to 32.

The number of training epochs for CNN and LSTM
was limited to 2 based on preliminary experiments in
which both models reached near-optimal validation
performance very quickly. Extending training beyond
this point led to early signs of overfitting, with
increased validation loss and minimal accuracy gains.
This rapid convergence is partly due to the relatively
small dataset size and the extensive preprocessing,
which reduced noise and simplified the learning task.
The chosen setting balances performance with
computational efficiency.

The selected hyperparameters for CNN and LSTM
(embedding size = 50, 100 filters with kernel size = 3,
dropout rates of 0.3 and 0.4) follow commonly used
configurations in toxic content and sentiment
classification tasks on short text datasets (e.g., Anand
& Eswari, 2019; Maslej-Kresnakova et al., 2020).
These settings balance model complexity and
computational efficiency, ensuring stable training
without overfitting. The BERT learning rate (2e-5) was
chosen in line with recommendations from Sun et al.
(2019) for fine-tuning transformer-based models.
Preliminary tests with slightly higher embedding
dimensions and lower dropout rates did not yield
notable performance improvements, so the original
configuration was retained.

Each model was trained and evaluated under the
same data conditions to ensure a fair comparison.
Evaluation metrics included Accuracy, Precision,
Recall, F1 score, and AUC, allowing for both
predictive and probabilistic performance analysis.

6.2 Evaluation

After completing the modeling phase, the next critical
step is the evaluation of the developed models. This
phase focuses on analyzing their performance using
selected metrics to assess their effectiveness in toxic
text classification. The main objective is to determine
which of the implemented models achieves the best
results and is therefore most suitable for the task.

Three previously mentioned models were evaluated
and compared in this study: CNN, LSTM, and BERT
— each representing a different approach to text
processing. Their evaluation results are summarized in
Table 2.

Table 2 Comparison of the performance metrics of
CNN, LSTM and BERT

Accuracy Precision Recall F1 score i[(fr(e::
CNN | 0.8492 | 0.8712 | 0.8376 | 0.8541 | 0.92
Lst™ | (0.8568 | 0.8580 | 0.8726 | 0.8652 | 0.93
BERT | (0.8106 | 0.8100 | 0.8106 | 0.8102 | 0.89
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Based on the comparison, the LSTM model
achieved the highest overall performance and is
recommended as the most suitable for the given
classification task. The CNN model also showed strong
results and can be considered an effective alternative.
Although BERT performed slightly lower in terms of
accuracy, it offers stable outputs and has the potential
for improvement through further training optimization.

6.3 Application of the LRP XAI method

This section presents the application of the LRP
method for explaining the decision-making processes
of CNN and BERT models. To enable LRP, the final
sigmoid layer was removed from the CNN model, as
LRP requires access to pre-activation outputs. The
innvestigate library was used, specifically the
"lIrp.alpha 2 beta 1" rule, which balances positive
and negative contributions of neurons.

The method was applied to selected test examples.
For each word in the input, LRP computed relevance
scores, indicating its impact on the model's prediction.
These scores were normalized using min-max scaling
(0 to 1) and visualized using a blue gradient — darker
blue indicating higher influence, white indicating none.

For example, in a correctly classified positive
tweet, CNN assigned relevance scores such as:

haha love two girl
0.0563 0.0585 0.0542 0.0730
Figure 6. Relevance scores by CNN

In a negative example, LRP highlighted key
influencing words with scores like:

ugggh school bore cant wait year stress shoulda stay home today

0.0440  0.1066 0.1200 0.0934 0.0806 0.0423 0.0594 0.0269  0.0327 0.0031 0.0000

Figure 7. Negative example scores

For the BERT model, a modified version was
created by removing the final LogSoftmax activation
to enable analysis of raw model outputs. A custom
simple Irp implementation was used to compute
relevance scores by backpropagating gradients through
input embeddings.

Relevance scores were calculated for each token in
a selected test example, indicating their contribution to
the final classification. These scores were normalized
to a [0,1] range using min-max scaling. A visualization
was created using a colour scale — blue representing
strong contributions, and red weak or no influence.

In a positive example, the token-level relevance

SCOres were:
I = - I
0.3502 0.0000 0.9076 0.8845

1.0000

Figure 8. Token-level relevance scores
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For a negative (toxic) input, the scores were: e —
get |
| Foiah coffen |
e lam et [bod soon bloody iphone backup syme fmish e ——
0.7045 0.897  0.6970 1.0000 0.5072 0.2153  0.0328 03130  0.3842  0.0000 o —_
appropriate |

Figure 9. Negative input scores

This visualization made it possible to identify the
key tokens that influenced the classification decision.
The method demonstrated that BERT relies on
semantically relevant words, confirming that the
model’s decision-making is largely interpretable and
transparent.

6.4 Application of the SHAP XAI method

Another explainability technique used in this work is
SHAP, applied to interpret the predictions of the LSTM
neural network model. The KernelExplainer from the
SHAP library was used, enabling SHAP value
computation for each word in the input tweet. Positive
SHAP values indicated contribution toward the non-
toxic class, while negative values supported the toxic
class.

The explanations were visualized as horizontal bar
plots, where each word was color-coded — blue for
non-toxic influence and red for toxic influence. These
visualizations provided clear insight into which words
influenced the model’s decisions.

Several examples from the test set were analyzed.
In the first case, the LSTM correctly classified a toxic
input. The SHAP values highlighted the words that
strongly contributed to the toxic label.

would
like

9

back

bed
horrible
headache
pound
behind
eye

skull

0.25 -0.20 -0.15 -0.10 -0.05 0.00

Figﬁre 10. SHAP analysis for LSTM— 1% example

Another example showed a correctly classified
non-toxic input:

haha I
welcome |
honesdy { I

|
I
el

000 005 010 015 020

Figure 11. SHAP analysis for LSTM — 2" example

A third example involved a misclassified input: the
model predicted the toxic class with a probability of
0.2897, but the true label was non-toxic. SHAP values
revealed which specific words misled the model,
highlighting how even well-performing models can
struggle with certain inputs due to misinterpretation of
key terms.
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Figure 12. SHAP analysis for LSTM — 3™ example

This analysis demonstrated how SHAP helps
uncover the reasoning behind both correct and
incorrect classifications, enhancing the interpretability
of the model.

In the context of this study, “usability” is used as a
broader term that encompasses explainability,
interpretability, and the clarity of the model outputs.
Here, it refers to how easily a human moderator could
understand and act upon the explanations provided by
SHAP and LRP visualizations. While these analyses
demonstrate interpretability potential, no formal user
study or quantitative usability metrics were collected in
this work.

7 Conclusion

This study demonstrates that integrating deep learning
with explainable artificial intelligence (XAI) methods
significantly enhances the transparency and usability
of toxicity detection systems. By aligning model
performance with transparency and usability, this work
contributes to the development of Al systems that are
not only effective but also trusted and responsible,
supporting healthier online communities and reducing
the impact of toxic discourse on individuals and
society. Through comparative analysis of CNN,
LSTM, and BERT architectures, we found that LSTM
achieved the highest classification performance, while
the application of SHAP and LRP offered valuable
insights into model decision-making processes. These
results underscore the necessity of balancing predictive
accuracy with interpretability in applications where
trust, fairness, and accountability are critical.

From a practical perspective, we recommend that
developers and platform operators prioritize
explainability when selecting models for content
moderation tasks. Incorporating visual explanation
tools—such as SHAP plots or LRP-based heatmaps—
can support moderation teams in understanding and
validating Al-driven decisions. Additionally, the early
integration of user-centered evaluation into the model
development process ensures that explanations are
accessible and actionable for non-expert users. To
maintain fairness and performance over time, toxicity
detection systems should also incorporate continuous
feedback mechanisms from end-users and moderators.

By aligning model performance with transparency
and usability—understood here as a broader concept
encompassing explainability and interpretability—this
work contributes to the development of Al systems that
are not only effective but also trusted and responsible.
The usability evaluation in this study was based solely
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on visual inspection of model explanations, without
direct input from end users. As usability often depends
on users’ subjective perceptions and experiences,
future work could benefit from incorporating
structured user feedback to better assess how
explanation visualizations support moderation tasks in
practice.
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