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Abstract. This study investigates the detection of toxic 
content in text data by integrating deep learning 
models with explainable artificial intelligence (XAI) 
techniques, with a particular focus on model 
transparency and usability. We evaluate three widely 
used neural architectures—CNN, LSTM, and BERT—
on a labeled Twitter dataset, comparing their 
classification performance and the interpretability of 
their outputs. To enhance model explainability, we 
apply SHAP and Layer-wise Relevance Propagation 
(LRP) methods, visualizing word-level contributions to 
each prediction. The usability of these models is 
assessed through the clarity and reliability of their 
explanations. Our results show that while LSTM 
achieved the best overall classification performance, 
the combination of SHAP with LSTM provided the most 
interpretable and actionable insights. This work 
highlights the trade-offs between accuracy, 
explainability, and usability in toxicity detection, 
offering practical guidance for deploying trustworthy 
AI systems in content moderation. 
 
Keywords. BERT, classification, CNN, detection of 
toxicity, explainable AI, LRP, LSTM, SHAP 

1 Introduction 

This work addresses the detection of toxic content in 
text data, combining deep learning with explainability 
techniques. It begins with a theoretical overview and 
analysis of existing approaches. The main goal is to 
apply and evaluate selected models and explainability 
methods to better understand the decision-making of 
neural networks. Finally, all methods are assessed and 
compared using standard evaluation metrics.  

This work also builds on previous research 
presented at CECIIS 2024, where we explored the 
usability challenges of integrating multiple data 
sources for toxic behavior detection in social media 
(Lohaj et al., 2024). While that study focused on the 
broader context of combining heterogeneous data 

inputs to support detection models, the present work 
narrows the focus to the explainability and usability of 
the models themselves. Specifically, we aim to make 
the decision-making processes of individual deep 
learning models more transparent and actionable for 
end users. This progression reflects a shift from 
system-level integration concerns to model-level 
interpretability, aligning with the growing need for 
trustworthy and user-centered AI systems in content 
moderation. While our dataset originates from 
sentiment analysis, we frame negative sentiment as 
indicative of toxic content for the purposes of model 
training and evaluation. This framing enables us to 
assess toxicity detection methods using sentiment-
labelled social media data, while maintaining focus on 
the broader societal relevance of mitigating harmful 
online interactions. 

Toxicity detection plays a critical role in protecting 
individuals from online harassment, hate speech, and 
other harmful behaviors. As online communication 
increasingly shapes public discourse, detecting and 
mitigating toxic content is essential for maintaining 
respectful dialogue, preventing psychological harm, 
and supporting the work of moderators on social media 
platforms. By focusing on explainability and usability, 
this study addresses not only the accuracy of detection 
but also the trust and accountability required for 
societal adoption of AI moderation tools. 

2 Related Works 

2.1 Text classification 
Several studies have addressed toxic content 
classification in online environments. One notable 
work (Grine, 2021) analyzed various methods, 
including SVM (Support Vector Machine), CNN 
(Convolutional Neural Network), and LSTM (Long-
Short-Term Memory Network), to identify toxic 
comments and evaluate their performance. The main 
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challenges tackled in the study were the lack of multi-
label support and significant class imbalance. 

The models were trained and tested on the 
Conversation AI "Wikipedia Talk" dataset, containing 
nearly 160,000 comments labelled across six 
categories: toxic, severe toxic, obscene, threat, insult, 
and identity hate. The study revealed a substantial 
imbalance in label distribution, which negatively 
influenced the models' performance on minority 
classes. A correlation matrix also showed strong co-
occurrence between classes such as toxic and insult or 
obscene (e.g., r = 0.74 for insult–obscene). 

Evaluation based on Precision, Recall, and F1-
score metrics demonstrated that CNN outperformed 
others in most categories, especially for the minority 
class threat. SVM achieved the best precision, while 
LSTM showed slightly better recall. All models 
performed better on majority classes, with F1-scores 
above 80%, and worse on minority ones (47–73%). 

Learning curve analysis further showed that CNN 
reached strong performance with only 2% of training 
data, outperforming both SVM and LSTM early in 
training. LSTM required more data (up to 25%) to 
surpass SVM, with diminishing returns observed 
beyond 80% of the dataset. 

Another study by authors (Anand & Enswari, 2019) 
focused on CNN and LSTM models, comparing their 
training behavior using two key metrics: training 
accuracy and training loss. The models were trained on 
a dataset from Wikipedia's talk page edits. In this 
dataset, there are almost 160.000 comments and 
labelled with different categories some of the 
comments belong to more than one category. The 
visualized results showed that CNN achieved rapid 
accuracy gains during training, consistent with 
previously reported trends for convolutional 
architectures in text classification. CNN achieved a 
rapid increase in accuracy, reaching 97.8%, with a low 
training loss of 5.42%. In contrast, LSTM 
demonstrated lower accuracy and higher loss, 
indicating slower convergence and potentially less 
effective learning dynamics. 

In another publication by (Maslej-Krešňáková et 
al., 2020), the authors examined and compared 
traditional deep learning models (FFNN (Feedforward 
Neural Network), CNN, GRU (Gated Recurrent Unit), 
BiGRU (Bidirectional Gated Recurrent Unit), 
BiLSTM-CNN (Bidirectional Long Short-Term 
Memory)) and transformer-based language models 
(BERT, DistilBERT, XLNet) under various 
preprocessing and text representation techniques. The 
experiments were conducted on the Kaggle Toxic 
Comment Classification dataset, which training data 
contains almost 160.000 Wikipedia comments labelled 
across six toxicity categories. The dataset exhibits a 
strong imbalance toward non-toxic classes, making it a 
challenging benchmark for classification models. The 
experiments revealed that the combined BiLSTM-
CNN model achieved the best results among the 
traditional architectures, with an F1 score of 

approximately 0.67. When TF-IDF (Term Frequency-
Inverse Document Frequency) text representation was 
used along with standard preprocessing techniques—
tokenization, lowercasing, punctuation removal, and 
stop word elimination—performance significantly 
improved. The F1 score increased from 0.09 to 0.35. 
Furthermore, in the comparison of transformer-based 
models, the BERT-base (uncased) variant achieved the 
highest performance, with an F1 score of 0.69 and an 
AUC score of 0.984, outperforming both other 
transformer variants and traditional models. Study by 
(Ansar et al., 2024) reviews new strategies for 
optimizing transformer-based NLP models for faster 
inference and lower resource use, including pruning, 
quantization, and low-rank adaptation and supports the 
transformer advancement and efficiency. Recent work 
by (Wu et al., 2025) highlights how transformer-based 
architectures, such as BERT and GPT, have redefined 
state-of-the-art performance in text understanding by 
effectively handling long-range dependencies and 
complex contextual relationships. Their 
methodological framework and insights into efficiency 
optimization could inform the integration of advanced 
NLP techniques into similar AI-driven applications 
discussed in the present study. 

2.2 Using explainable artificial intelligence 
in text classification 

Authors (Nguyen et al., 2024) compared three popular 
XAI techniques: LIME (Local Interpretable Model 
Agnostic Explanations), SHAP (SHapley Additive 
exPlanations), and CAM (Class Activation Mapping), 
and proposed enhancements for their evaluation and 
application. Their stability analysis showed that LIME 
and SHAP produce consistent results with 1,000 
samples, but become less reliable with 500 or 200 
samples, indicating that a higher sample count 
improves result stability and accuracy.  

Each method had distinct advantages: CAM offered 
the fastest computation, while SHAP uniquely 
identified both positive and negative feature 
contributions. However, LIME and CAM are limited to 
classification tasks, and CAM is image-specific. In 
contrast, SHAP demonstrated broader applicability 
across data types and tasks. 

In another paper by (Gholizadeh & Zhou, 2021) the 
authors applied LRP (Layer-wise Relevance 
Propagation) to explain SVM-based review 
classification. They used a dataset of over 229,000 
customer reviews, reformulated as binary 
classification. To analyze the SVM predictions, a CNN 
model was trained to replicate SVM outputs, using pre-
trained word embeddings and multiple convolutional 
filter sizes. After five epochs (batch size 30), the CNN 
achieved high agreement with SVM predictions (F1 
score of 0.93). 

LRP highlighted the most relevant tokens influencing 
classifications and visualized them for interpretability. 
This approach demonstrated that LRP + CNN can 
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effectively interpret machine learning models and offer 
actionable insights for improving business decisions 
based on customer feedback. 

3 Deep Learning Methods 

Deep learning has become a dominant approach in 
many natural language processing (NLP) tasks due to 
its ability to automatically extract complex features 
from large datasets. Among the wide variety of deep 
learning architectures, certain models have 
demonstrated exceptional performance in text 
classification and interpretability research. This section 
provides a concise overview of three models: CNN, 
LSTM, and BERT. 

3.1 Convolutional Neural Network (CNN) 
Convolutional Neural Networks (CNNs) (O’Shea, 

2015), originally designed for image processing, have 
been adapted to text classification to capture local n-
gram patterns using convolutional filters. A typical 
CNN for text includes convolutional and activation 
layers (e.g., ReLU) to detect patterns, pooling layers to 
reduce dimensionality, and fully connected layers for 
classification. CNNs are valued for their computational 
efficiency and ability to capture short-range 
dependencies in text. 

3.2 Long Short-Term Memory Network 
(LSTM) 

LSTM networks (DiPietro, 2020) are designed to 
capture long-term dependencies in sequential data by 
using a memory cell and three gates (forget, input, 
output) to regulate information flow. This architecture 
overcomes the vanishing gradient problem in 
traditional RNNs and is particularly effective for tasks 
requiring contextual understanding, such as sentiment 
analysis and speech recognition. 

 

 
Figure 1. LSTM architecture0F

1 

1 https://d2l.ai/chapter_recurrent-modern/lstm.html 

3.3 Bidirectional Encoder Representations 
from Transformers (BERT) 

BERT is a transformer-based model that utilizes a 
bidirectional attention mechanism to understand the 
context of a word based on its surrounding words, 
regardless of their position (Sun et al., 2019). Unlike 
traditional left-to-right models, BERT processes text in 
both directions simultaneously. 

The training process includes: 
• Masked Language Modeling (MLM): predicting 

masked words in a sentence. 
• Next Sentence Prediction (NSP): determining 

whether two sentences follow each other. 
After pre-training, BERT is fine-tuned on specific 

NLP tasks using smaller, domain-specific datasets. Its 
strong contextual understanding has made it state-of-
the-art in various classification and interpretation tasks. 

4 Explainable AI Methods 

Modern machine learning models, especially deep 
learning architectures, are often referred to as black 
box (Awati & Yasar, 2024) due to their complex 
internal structures that make it difficult to understand 
how input data leads to a particular output. This lack of 
transparency poses significant challenges in domains 
where trust, accountability, or legal compliance are 
crucial. To address this issue, XAI (Ryo, 2022) 
methods have been developed to provide insights into 
model behavior and decision-making. We can count 
the following methods as frequently used:  
• SHapley Additive exPlanations (SHAP) 

This approach is based on game theory and uses 
Shapley values to evaluate the contribution of 
individual factors to the model’s outcome (Atesli, 
2023). Since computing exact Shapley values is 
computationally expensive, the method approximates 
them to provide an understanding of how each factor 
contributes to the prediction. 
• Layer-wise Relevance Propagation (LRP) 
LRP is a model-specific method that provides detailed 
explanations of predictions, especially for deep neural 
networks (Praveen, 2021). This process analyzes 
which parts of the input data—such as image pixels or 
words in text—contributed the most to a given 
prediction. Relevance is propagated backward through 
the layers of the neural network, helping to identify the 
inputs that had the greatest impact on the model’s 
result. 
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5 Data Understanding and 
Preparation 

5.1 Data Description 
This section provides an overview of the dataset used 
in this study, focusing on its structure, quality, and 
potential issues that may impact model accuracy. 
Understanding the data is crucial for optimizing 
preprocessing and designing effective models. 

The dataset consists of tweets from 
Twitter\Hugging Face in English, divided into three 
subsets: 
• Training set: 12.9k tweets 
• Test set: 3.7k tweets 
• Validation set: 1.85k tweets 

The dataset has two attributes:  
• Text – the tweet content 
• Sentiment – numeric attribute (1 for Positive, 0 for 

Negative) representing the sentiment of the tweet. 
Each row represents a tweet with its assigned 

sentiment. The sentiment labels in this dataset were 
provided by the original dataset creators on the 
Hugging Face platform. Annotation was performed 
through a combination of manual review and 
automated classification heuristics, with 0 representing 
a negative sentiment and 1 representing a positive 
sentiment. The labeling guidelines ensured that tweets 
containing expressions of dissatisfaction, criticism, or 
negative tone were marked as negative, while those 
with expressions of approval, gratitude, or positive 
tone were marked as positive. Data quality checks 
revealed no missing values or duplicates, and the 
sentiment attribute contains only unique values (0, 1). 
In this study, tweets labeled with negative sentiment 
polarity (0) are treated as toxic content, while those 
with positive sentiment polarity (1) are considered non-
toxic. This mapping allows us to apply toxicity 
detection techniques to a sentiment-labeled dataset, 
reflecting the assumption that negative sentiment often 
corresponds to toxic or harmful language in online 
discourse. Initial data analysis was performed through 
visualizations to better understand the dataset's 
structure. The training set contains approximately 
7,000 positive and 6,000 negative tweets, showing a 
slight imbalance (see Fig. 1). 

 

 
Figure 2. Visualizing sentiment distribution in the 

Twitter dataset 

The analysis of the tweet lengths revealed that the 
average tweet contains 70.17 characters (see Fig. 2). 
Interestingly, there was little difference in length 
between positive and negative tweets, with the average 
lengths being 70.13 characters for positive tweets and 
70.21 characters for negative ones. This suggests that 
there is no significant correlation between tweet length 
and sentiment in the dataset.  

 

 
Figure 3. Tweet length distribution in the Twitter 

dataset 
 

Additionally, the average word count per tweet was 
13.24 (see Fig. 3), with slightly higher counts for 
negative tweets (13.43 words) compared to positive 
ones (13.07 words). This indicates that tweet content 
does not appear to vary significantly in terms of word 
count between the two sentiment classes. 

 

 
Figure 4. Number of words in tweets in the Twitter 

dataset 
 

One particularly insightful visualization was the 
word cloud in Fig. 4, which was used to display the 
most frequent words in the tweets. This graphical 
representation highlighted words like "love", "thank", 
and "good", which were used frequently in the dataset. 
In addition to these common words, the word cloud 
also revealed recurring fragments such as "S", "m", 
"ll", "im", and "t", which likely represent truncated 
words or abbreviations. These patterns provide 
valuable insights for the next steps in preprocessing, 
where handling these truncated forms and 
abbreviations could improve model performance and 
ensure better text representation. 
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Figure 5. Most used words in tweets 

5.2 Data Pre-Processing 
This stage focuses on transforming raw tweets into 

a clean, standardized format suitable for analysis and 
modeling. Tweets are often noisy — containing 
inconsistent casing, numbers, excessive punctuation, 
links, usernames, and other irrelevant elements — 
which can affect model performance. 

To address this, a custom preprocess function was 
implemented. It performs the following key steps: 
• Normalization – converts all text to lowercase 

(e.g., "HAPPY DAY" → "happy day"). 
• Noise removal – eliminates URLs, emails, HTML 

tags, usernames (e.g., _user), numbers, 
punctuation, and extra spaces. 

• Tokenization – splits text into individual words. 
• Stop-word removal – removes common, 

uninformative words like "is", "a", "the". 
• Lemmatization - converts words to their base 

forms (e.g., "took" → "take"). 
This process uses libraries such as re for pattern 

matching, string for punctuation handling, and nltk for 
tokenization, stop-word filtering, and lemmatization. 
As a result, the text becomes cleaner and better suited 
for machine learning models (see Table 1). 

 
Table 1 Comparison of input and processed tweets 

 
The initial form of tweets Processed tweets 
Just took my IC photo! 
Looks good - 
http://tweet.sg 

just take ic photo look 
good 

I’m so mad I won’t be 
there!!!!!!!!! UGHHH!!! 

mad will ughhh 

Oh yes! Level 40 yes level 
thank you! Marc Jacobs 
thou ....love limited too 

thank marc jacob thou 
love limit 

6 Modeling 

6.1 Setting up models 
To evaluate the effectiveness of different deep learning 
architectures in toxic content classification, three 
representative models were implemented: 
Convolutional Neural Network (CNN), Long Short-

Term Memory (LSTM), and BERT (Bidirectional 
Encoder Representations from Transformers). Each 
model was configured with tailored architectures and 
training strategies, considering the unique 
characteristics of text data and model-specific 
requirements. 

 
CNN Configuration 

 
The CNN model was designed to capture local 

textual patterns through convolutional operations. It 
began with an Embedding layer of dimension 50, 
which transformed input tokens into dense vector 
representations. Tweets were padded to a fixed length 
to ensure consistent input shape across the dataset. A 
1D Convolutional layer with 100 filters and a kernel 
size of 3 was used to extract tri-gram level features. 
Instead of a pooling layer, a Flatten layer was 
employed to retain the full spatial structure of the 
learned features. This was followed by a Dense layer 
with 128 units and ReLU activation, along with a 
Dropout layer (rate = 0.3) to mitigate overfitting. The 
final layer was a single-unit output layer with sigmoid 
activation, suitable for binary classification. The model 
was compiled with binary cross-entropy loss, Adam 
optimizer, and trained over 2 epochs with a batch size 
of 32. 

 
LSTM Configuration 

 
The LSTM model was employed to capture the 

sequential dependencies and contextual flow in the 
text. It also began with an Embedding layer (dimension 
= 50). A single-layer LSTM unit with 64 memory cells 
processed the input sequences, capturing both short- 
and long-term dependencies. The output of the LSTM 
layer was passed through a Dropout layer (rate = 0.4) 
to enhance generalization. A fully connected Dense 
layer with a sigmoid output completed the model 
architecture. The model was trained using the Adam 
optimizer and binary cross-entropy loss, with a batch 
size of 32 over 2 epochs. Token sequences were padded 
to a uniform length, and text preprocessing ensured 
consistent input representation. 

 
BERT Configuration 

 
The transformer-based BERT model was leveraged 

to take advantage of its powerful contextual language 
understanding. Specifically, the bert-base-uncased 
variant from Hugging Face’s Transformers library was 
used. Tokenization was performed using 
BertTokenizerFast, which ensured compatibility with 
the model’s vocabulary and token structure. The base 
model outputs were passed through a custom 
classification head comprising three Dense layers (768 
→ 512 → 256 → 2), with GELU activations and 
Dropout layers (rate = 0.2) in between for 
regularization. The final output was normalized using 
LogSoftmax to produce log probabilities for each class. 
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The model was fine-tuned for 9 epochs using the 
AdamW optimizer with a learning rate of 2e-5, and 
training was stabilized using a linear learning rate 
scheduler with warm-up steps. The batch size was set 
to 32.  

The number of training epochs for CNN and LSTM 
was limited to 2 based on preliminary experiments in 
which both models reached near-optimal validation 
performance very quickly. Extending training beyond 
this point led to early signs of overfitting, with 
increased validation loss and minimal accuracy gains. 
This rapid convergence is partly due to the relatively 
small dataset size and the extensive preprocessing, 
which reduced noise and simplified the learning task. 
The chosen setting balances performance with 
computational efficiency. 

The selected hyperparameters for CNN and LSTM 
(embedding size = 50, 100 filters with kernel size = 3, 
dropout rates of 0.3 and 0.4) follow commonly used 
configurations in toxic content and sentiment 
classification tasks on short text datasets (e.g., Anand 
& Eswari, 2019; Maslej-Krešňáková et al., 2020). 
These settings balance model complexity and 
computational efficiency, ensuring stable training 
without overfitting. The BERT learning rate (2e-5) was 
chosen in line with recommendations from Sun et al. 
(2019) for fine-tuning transformer-based models. 
Preliminary tests with slightly higher embedding 
dimensions and lower dropout rates did not yield 
notable performance improvements, so the original 
configuration was retained. 

Each model was trained and evaluated under the 
same data conditions to ensure a fair comparison. 
Evaluation metrics included Accuracy, Precision, 
Recall, F1 score, and AUC, allowing for both 
predictive and probabilistic performance analysis. 

6.2 Evaluation 
After completing the modeling phase, the next critical 
step is the evaluation of the developed models. This 
phase focuses on analyzing their performance using 
selected metrics to assess their effectiveness in toxic 
text classification. The main objective is to determine 
which of the implemented models achieves the best 
results and is therefore most suitable for the task. 

Three previously mentioned models were evaluated 
and compared in this study: CNN, LSTM, and BERT 
— each representing a different approach to text 
processing. Their evaluation results are summarized in 
Table 2. 

 
Table 2 Comparison of the performance metrics of 

CNN, LSTM and BERT 
 Accuracy Precision Recall F1 score AUC 

score 

СNN 0.8492 0.8712 0.8376 0.8541 0.92 
LSTM 0.8568 0.8580 0.8726 0.8652 0.93 
BERT 0.8106 0.8100 0.8106 0.8102 0.89 

 

Based on the comparison, the LSTM model 
achieved the highest overall performance and is 
recommended as the most suitable for the given 
classification task. The CNN model also showed strong 
results and can be considered an effective alternative. 
Although BERT performed slightly lower in terms of 
accuracy, it offers stable outputs and has the potential 
for improvement through further training optimization. 

6.3 Application of the LRP XAI method 
This section presents the application of the LRP 
method for explaining the decision-making processes 
of CNN and BERT models. To enable LRP, the final 
sigmoid layer was removed from the CNN model, as 
LRP requires access to pre-activation outputs. The 
innvestigate library was used, specifically the 
"lrp.alpha_2_beta_1" rule, which balances positive 
and negative contributions of neurons. 

The method was applied to selected test examples. 
For each word in the input, LRP computed relevance 
scores, indicating its impact on the model's prediction. 
These scores were normalized using min-max scaling 
(0 to 1) and visualized using a blue gradient — darker 
blue indicating higher influence, white indicating none. 

For example, in a correctly classified positive 
tweet, CNN assigned relevance scores such as: 

 

 
0.0563   0.0585   0.0542  0.0730 

Figure 6. Relevance scores by CNN 

In a negative example, LRP highlighted key 
influencing words with scores like: 
 

 
0.0440      0.1066    0.1200  0.0934 0.0806 0.0423  0.0594    0.0269       0.0327   0.0031   0.0000 

Figure 7. Negative example scores 

For the BERT model, a modified version was 
created by removing the final LogSoftmax activation 
to enable analysis of raw model outputs. A custom 
simple_lrp implementation was used to compute 
relevance scores by backpropagating gradients through 
input embeddings. 

Relevance scores were calculated for each token in 
a selected test example, indicating their contribution to 
the final classification. These scores were normalized 
to a [0,1] range using min-max scaling. A visualization 
was created using a colour scale — blue representing 
strong contributions, and red weak or no influence. 

In a positive example, the token-level relevance 
scores were: 

 

 
1.0000        0.3502    0.0000   0.9076     0.8845 

Figure 8. Token-level relevance scores 

408_____________________________________________________________________________________________________Proceedings of the Central European Conference on Information and Intelligent Systems

36th CECIIS, September 17-19, 2025_____________________________________________________________________________________________________ Varaždin, Croatia



For a negative (toxic) input, the scores were: 

 
0.7045   0.897      0.6970 1.0000    0.5072    0.2153         0.0328       0.3130        0.3842     0.0000 

Figure 9. Negative input scores 
 

This visualization made it possible to identify the 
key tokens that influenced the classification decision. 
The method demonstrated that BERT relies on 
semantically relevant words, confirming that the 
model’s decision-making is largely interpretable and 
transparent. 

6.4 Application of the SHAP XAI method 
Another explainability technique used in this work is 
SHAP, applied to interpret the predictions of the LSTM 
neural network model. The KernelExplainer from the 
SHAP library was used, enabling SHAP value 
computation for each word in the input tweet. Positive 
SHAP values indicated contribution toward the non-
toxic class, while negative values supported the toxic 
class. 

The explanations were visualized as horizontal bar 
plots, where each word was color-coded — blue for 
non-toxic influence and red for toxic influence. These 
visualizations provided clear insight into which words 
influenced the model’s decisions. 

Several examples from the test set were analyzed. 
In the first case, the LSTM correctly classified a toxic 
input. The SHAP values highlighted the words that 
strongly contributed to the toxic label.  

 

 
Figure 10. SHAP analysis for LSTM– 1st example 

 
Another example showed a correctly classified 

non-toxic input: 

 
Figure 11. SHAP analysis for LSTM – 2nd example 

 
A third example involved a misclassified input: the 

model predicted the toxic class with a probability of 
0.2897, but the true label was non-toxic. SHAP values 
revealed which specific words misled the model, 
highlighting how even well-performing models can 
struggle with certain inputs due to misinterpretation of 
key terms. 

 

 
Figure 12. SHAP analysis for LSTM – 3rd example 

 
This analysis demonstrated how SHAP helps 

uncover the reasoning behind both correct and 
incorrect classifications, enhancing the interpretability 
of the model. 

In the context of this study, “usability” is used as a 
broader term that encompasses explainability, 
interpretability, and the clarity of the model outputs. 
Here, it refers to how easily a human moderator could 
understand and act upon the explanations provided by 
SHAP and LRP visualizations. While these analyses 
demonstrate interpretability potential, no formal user 
study or quantitative usability metrics were collected in 
this work. 

7 Conclusion 

This study demonstrates that integrating deep learning 
with explainable artificial intelligence (XAI) methods 
significantly enhances the transparency and usability 
of toxicity detection systems. By aligning model 
performance with transparency and usability, this work 
contributes to the development of AI systems that are 
not only effective but also trusted and responsible, 
supporting healthier online communities and reducing 
the impact of toxic discourse on individuals and 
society. Through comparative analysis of CNN, 
LSTM, and BERT architectures, we found that LSTM 
achieved the highest classification performance, while 
the application of SHAP and LRP offered valuable 
insights into model decision-making processes. These 
results underscore the necessity of balancing predictive 
accuracy with interpretability in applications where 
trust, fairness, and accountability are critical. 

From a practical perspective, we recommend that 
developers and platform operators prioritize 
explainability when selecting models for content 
moderation tasks. Incorporating visual explanation 
tools—such as SHAP plots or LRP-based heatmaps—
can support moderation teams in understanding and 
validating AI-driven decisions. Additionally, the early 
integration of user-centered evaluation into the model 
development process ensures that explanations are 
accessible and actionable for non-expert users. To 
maintain fairness and performance over time, toxicity 
detection systems should also incorporate continuous 
feedback mechanisms from end-users and moderators. 

By aligning model performance with transparency 
and usability—understood here as a broader concept 
encompassing explainability and interpretability—this 
work contributes to the development of AI systems that 
are not only effective but also trusted and responsible. 
The usability evaluation in this study was based solely 
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on visual inspection of model explanations, without 
direct input from end users. As usability often depends 
on users’ subjective perceptions and experiences, 
future work could benefit from incorporating 
structured user feedback to better assess how 
explanation visualizations support moderation tasks in 
practice. 
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