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Abstract. This paper discusses an adapted CRISP-DM 
methodological framework for an automated 
comparison of the performance of dimensionality 
reduction methods — PCA, LDA, Factor Analysis and 
AE, t-SNE, Kernel PCA — in the context of multiclass 
and binary classification tasks using different datasets. 
The use of the adapted CRISP-DM methodology 
ensures an automated and systematic analysis in all 
phases of the CRISP-DM process, including data 
preparation, modelling and evaluation. The 
automation is achieved by dynamically determining the 
number of components according to the dimensional 
structure of the datasets by integrating dimensionality 
reduction methods and machine learning classification 
methods. The results within this study indicate that 
PCA and Autoencoder are effective dimensionality 
reduction techniques in linear and nonlinear space, 
respectively. Furthermore, the results show that, on 
average, PCA achieves higher classification accuracy 
with significantly lower computational effort, while AE 
shows advantages in higher classification accuracy of 
the nonlinear domain with the trade-off in low 
computational efficiency. The proposed approach 
enables a replicable, modular and computationally 
efficient evaluation of algorithms for analysing high-
dimensional data and thus contributes to the 
improvement of automated systems in the field of 
intelligent data analysis. A Python implementation of 
the adapted CRISP-DM methodology for the 
automated comparison of the performance of two 
dimensionality reduction methods can be found at the 
following GitHub link: 
https://github.com/smitroviefos/amf_dim_red_paper2
025 . 
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1 Introduction 
 
Given the growing importance of data-intensive 
intelligent systems in today’s environment, especially 
in the field of analysing and processing big data, the 

high dimensionality of input features poses a 
significant challenge to the efficiency and 
interpretability of machine learning 
algorithms.(Baratchi et al., 2024) Dimensionality 
reduction as a key stage of data processing reduces 
model complexity, speeds up execution and improves 
the robustness of classification and regression systems. 
The most common techniques include principal 
component analysis (PCA)(Bartal et al., 2019; Cohen, 
2017; Geron, 2019; Jolliffe, 2002; Van Der Maaten et 
al., 2009) and autoencoders (AE)(Chandra, 2024; 
Cohen, 2017; Goodfellow et al., 2016), which 
approach the problem from two different perspectives 
— linear and nonlinear. 

The PCA method represents a projection of the data 
into a space with lower dimensionality, preserving the 
highest possible variance, while autoencoders, which 
are based on multilayer neural networks, allow the 
modelling of non-linear relationships between features, 
thus ensuring greater informativeness, but require more 
computational resources. Although there is scientific 
literature comparing these approaches applied to 
different tasks (Fournier & Aloise, 2019; Mayur 
Prakashrao Gore, 2024), a systematic analysis 
combining quantitative and qualitative metrics within 
a single methodological framework is still relatively 
limited in the SCOPUS database to the best of the 
authors’ knowledge based on the literature review 
presented below. Therefore, this paper aims to explore 
the advantages and disadvantages of PCA and AE as 
representative techniques of linear and nonlinear 
dimensionality reduction, respectively, within the 
context of common machine learning classification 
methods. The primary objective is to analyse the 
strengths, limitations, and applicability of these 
methods across different data domains by embedding 
them into a fully automated analytical pipeline based 
on an adapted CRISP-DM (Cross-Industry Standard 
Process for Data Mining) methodological framework. 
Additionally, research paper compares linear methods 
(PCA, Linear Discriminant Analysis – LDA, and 
Factor Analysis) separately from nonlinear methods 
(Autoencoders, t-Distributed Stochastic Neighbour 
Embedding – t-SNE, and Kernel PCA), the study 
incorporates an extended evaluation that organises 
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dimensionality reduction algorithms into these two 
conceptual categories – linear and nonlinear. While the 
primary analytical emphasis remains on PCA and AE 
due to their widespread use, business domain-
independent datasets and widely adopted classifiers are 
utilised to evaluate model performance through 
multiple quantitative metrics, including accuracy, 
precision, recall, F1 score, and ROC/AUC. This 
approach enables the assessment of generalisation 
capability, information preservation, and execution 
efficiency of each method, with the ultimate goal of 
contributing to a more structured and comparative 
understanding of dimensionality reduction techniques 
in automated machine learning pipelines. 

2 Literature review 

In analysing the existing scientific literature, the 
present paper focuses on the research gap identified by 
a number of authors discussing dimensionality 
reduction, PCA and AE methods. Specifically, Mendes 
Junior et al. (2020) point out that in previous research 
they found that the comparison of feature selection and 
dimensionality reduction methods was not sufficiently 
systematic and quantitatively sound. In particular, 
Mendes Junior et al. (2020) found that the application 
of dimensionality reduction techniques after feature 
selection often did not lead to statistically significant 
differences in the accuracy of machine learning 
classification methods. Furthermore, Mendes Junior et 
al. (2020) point out that the research gap also includes 
a limited number of comparative analyses of 
dimensionality reduction techniques and the lack of 
comprehensive evaluations in different problem 
domains, indicating the need for more 
methodologically rigorous approaches that cover a 
broader range of data, models and performance 
metrics.(Mendes Junior et al., 2020) Vantuch et al. 
(2016) point out that future research should focus on 
the problem of reconstruction methods that 
inadequately reconstruct the original datasets after 
applying dimensionality reduction, which can lead to 
information loss. Similarly, Vantuch et al. (2016) 
emphasise that the analysis of information loss and 
uncertainties that occur during transformation is 
insufficiently discussed in the literature, although these 
aspects can have a significant impact on the reliability 
of the model. Vantuch et al. (2016) therefore point out 
that there is a need for empirical comparisons that 
quantitatively evaluate the advantages of different 
dimensionality reduction algorithms in terms of 
maintaining data representativeness and the 
interpretability of the results.(Vantuch et al., 2016) In 
their research, Ghobadi et al. (2023) point out the need 
to adjust hyperparameters in dimensionality reduction 
methods to achieve optimal results in the unique data 
domain contexts. Since different datasets can have 
markedly heterogenous features — in terms of noise 
levels, correlations between features or structural 

complexity — fixed and manual approaches without 
automation of parameter adaptation often lead to 
suboptimal transformations. Ghobadi et al. (2023)  
therefore emphasise the importance of dynamic and 
context-sensitive parameter adjustments to increase 
model accuracy and maintain the semantic 
representation of the data in low-dimensional 
space.(Ghobadi et al., 2023) 

In the present work, the above shortcoming is 
addressed using a systematic and methodologically 
structured approach that integrates a dynamic selection 
of the number of components, automated model 
evaluation and statistical validation of performance 
differences, thus contributing to the understanding of 
the effectiveness and applicability of modern 
dimensionality reduction techniques in scientific and 
applied contexts. 

3 Methodology 

In order to conduct a systematic analysis, the present 
authors used an approach  based on the adaptation of 
the CRISP-DM methodology (Cross-Industry Standard 
Process for Data Mining), which provides a 
comprehensive framework for conducting data 
analyses in six phases: problem understanding, data 
understanding, data preparation, modelling, 
evaluation, and implementation.(Bratkovsky, 2024; 
Chapman, 2000; Costa, 2022; Shearer, 2000) 

3.1 Understanding the research problem 
The main objective of this study is to compare two 
dimensionality reduction methods: as a linear method 
and autoencoders (AE) as a nonlinear, neural method. 
Dimensionality reduction is a crucial step in the 
processing and analysis of high-dimensional data, i.e. 
in the context of this work for classification tasks 
where the high complexity of the input space can 
negatively affect the generalisation capability of 
machine learning models. The comparison of PCA and 
AE is made in terms of classification accuracy, 
execution time, computational efficiency and 
preservation of the semantic structure of the data in the 
latent space. In addition, other dimensionality 
reduction methods are used, structured into two 
conceptual groups - linear and nonlinear. The linear 
methods include PCA, Linear Discriminant Analysis 
(LDA), and Factor Analysis (FA), all of which operate 
under the assumption of linear transformations and rely 
on variance maximisation or class separability criteria 
(Pedregosa et al., 2011). In contrast, the nonlinear 
methods comprise Autoencoders, t-Distributed 
Stochastic Neighbor Embedding (t-SNE), and Kernel 
PCA, each capable of modelling non-linear manifolds 
and capturing more complex intrinsic data structures 
through techniques such as deep representation 
learning or kernel-based transformations(Chandra, 
2024; Cohen, 2017; Schölkopf et al., 1997). While the 
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core analytical focus remains on PCA and AE due to 
their conceptual contrast and practical relevance in 
both academic research papers and various business 
domain settings, the inclusion of other methods enables 
a more comprehensive and structured benchmarking 
process. The comparison is made in terms of 
classification accuracy, execution time, computational 
efficiency and preservation of the semantic structure of 
the data in the latent space. 

3.2 Data understanding 
The Phoneme (OpenML ID: 1489), Vehicle 
Silhouettes  (OpenML ID: 54), Blood Transfusion 
Service Center (OpenML ID: 1464) and the HighDim 
(Gina agnostic, OpenML ID: 40978) datasets from the 
OpenML repository were used in this study as they 
represent different application domains and different 
feature structures, thus enabling an evaluation of the 
generalisation capability of dimensionality reduction 
algorithms. The Phoneme dataset consists of 5,404 
instances and 5 acoustic features, containing the sound 
features of speech phonemes and is primarily used for 
speech recognition tasks; Vehicle dataset includes 846 
instances with 18 geometrical features, containing 
geometric attributes of vehicles classified by type; 
Blood Transfusion Service Center dataset consists of 
748 instances and 4 features containing demographic 
and behavioural data of blood donors with the aim of 
predicting their propensity to re-donate, while 
HighDim dataset is a high-dimensional binary 
classification handwritten digit as image recognition 
dataset with 1,400 instances and 970 features, 
constructed to evaluate algorithmic scalability and 
behaviour in high-dimensional spaces. This diversity 
provides a relevant experimental context to test the 
effectiveness of the methods within an automated, 
adapted CRISP-DM methodological framework. 

3.3 Data preparation 
The data were first normalised to the interval 0 to 1 to 
reduce numerical differences between features and 
ensure model stability. The data were stratified to 
divide them into training and test datasets in a ratio of 
80:20. As dimensionality reduction methods can be 
sensitive to the size and distribution of the data, special 
care is taken to maintain class balance when splitting a 
dataset with an extremely high-class imbalance. In all 
cases - PCA, LDA, Factor Analysis and AE, t-SNE, 
Kernel PCA - the number of components and the 
dimension of the layer are dynamically determined as 
a minimum between the preset threshold (in the Python 
code the threshold is set to 10), the number of features 
and the number of instances in the dataset. Such an 
approach ensures the methodological validity and 
flexibility of the algorithms when applied to 
heterogenous datasets, while maintaining the structural 
consistency of the model. This enables the automated 
application of dimensionality reduction techniques in 

the CRISP-DM modelling and evaluation phase, 
regardless of the  unique data domain context. 

3.4 Modelling 
Following dimensionality reduction methods were 
used in the modelling phase: (1) PCA, LDA, and Factor 
Analysis are the linear techniques methods. Methods 
were implemented from the scikit-learn library 
(Pedregosa et al., 2011).(Bartal et al., 2019; Cohen, 
2017; Geron, 2019; Jolliffe, 2002; Van Der Maaten et 
al., 2009) (2) The autoencoder is an  neural network 
with a hidden layer of dimension 64 implemented in 
the TensorFlow (Abadi et al., 2016) environment. The 
mean squared error (MSE)(Santosh et al., 2022), is 
used for the error function, while the Adam algorithm 
with an initial learning parameter of 0.001 is used for 
optimisation.(Chandra, 2024; Cohen, 2017; 
Goodfellow et al., 2016). Other nonlinear techniques 
such as t-SNE(van der Maaten & Hinton, 2008) and 
Kernel PCA (Schölkopf et al., 1997) are also used in 
the modelling phase. 

After reduction, identical machine learning 
classification methods LogisticRegression (s.-l. 
developers, 2024a), RandomForest(s.-l. developers, 
2024b), SVM(s.-l. developers, 2024c) and XGBoost(x. 
developers, 2024), are trained on the obtained latent 
representations to isolate the effects of the reduction 
method on the classification performance. 

3.5 Evaluation 
The evaluation of the model was based on several 
criteria: classification accuracy, execution time and 
visualisation of the reduced dimensionality using bar 
charts. The qualitative analysis of the visual 
representations provides information about the 
separability of the classes in the latent space. The 
quantitative results were analysed using McNemar's 
statistical test for dependent samples of binary 
classification to determine the significance of the 
differences between the accuracies of the machine 
learning methods (Perktold et al., 2025b). The 
quantitative results for dependent samples of 
multiclassification were analysed using Cochran's Q 
test (Perktold et al., 2025a). In addition, the data 
reconstruction ability of the autoencoder was 
compared to evaluate the information loss. 

3.6 Implementation 
The entire experiment was implemented in the Python 
programming language. The code is available at the 
GitHub link and uses the externally referenced libraries 
scikit-learn [17], tensorflow (Abadi et al., 2016), 
matplotlib(Barrett et al., 2005) and numpy(Harris et al., 
2020). The programme code is modular and 
reproducible, and it is possible to extend the analysis to 
additional datasets and dimensionality reduction 
methods such as UMAP (Healy & McInnes, 2024). 
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The results show that PCA retains its advantage in 
terms of computational efficiency, while AE shows 
superiority in preserving complex structures and higher 
classification accuracy at lower dimensions. The 
conclusions obtained make a scientific contribution to 
the understanding of the trade-off between linearity 
and non-linearity in dimensionality reduction in the 
context of application to different domains of business 
data. 

4 Results and discussion 

The experiment uses an adapted CRISP-DM 
methodology to automate the process of intelligent data 
analysis and compares the effects of linear and 
nonlinear dimensionality reduction methods – PCA, 
LDA, Factor Analysis and AE, t-SNE, Kernel PCA – 
in combination with four classification methods 
LogisticRegression (s.-l. developers, 2024a), 
RandomForest(s.-l. developers, 2024b), SVM(s.-l. 
developers, 2024c) and XGBoost(x. developers, 2024) 
in the modelling phase. The evaluation was carried out 
with heterogenous datasets that differ in the number of 
classes, the distribution of features and the semantic 
domain. The aim was to assess how the choice of 
dimensionality reduction method affects the 
classification efficiency and computational complexity 
of the model. 
 

Table 1. Accuracy per Datasets 
 

DR 
Metho

d 
LogReg RF SVM XGBoost 

Dataset Blood 
AE 0.7467 0.7667 0.7667 0.74 
FA 0.7467 0.7533 0.76 0.7333 
KPCA 0.76 0.72 0.7667 0.7333 
LDA 0.7533 0.6533 0.7467 0.74 
PCA 0.7467 0.7467 0.7667 0.7267 
t-SNE 0.7667 0.7333 0.7733 0.6867 

Dataset HighDim 
AE 0.7522 0.7594 0.7695 0.7392 
FA 0.7954 0.7896 0.8112 0.7954 
KPCA 0.7896 0.7997 0.8228 0.7925 
LDA 0.8228 0.8069 0.8228 0.8156 
PCA 0.8055 0.8228 0.8228 0.8084 
t-SNE 0.6643 0.7752 0.745 0.7233 

Dataset Phoneme 
AE 0.7336 0.8705 0.8437 0.8751 
FA 0.741 0.8668 0.7974 0.8548 
KPCA 0.7512 0.8742 0.8039 0.8511 
LDA 0.7373 0.7391 0.7623 0.7586 
PCA 0.7364 0.8788 0.8326 0.864 
t-SNE 0.7188 0.8696 0.778 0.8686 

Dataset Vehicle 
AE 0.6588 0.6059 0.6765 0.7059 
FA 0.7765 0.7588 0.7882 0.7765 

KPCA 0.6412 0.6647 0.6765 0.6706 
LDA 0.5941 0.5118 0.5882 0.5529 
PCA 0.6765 0.7353 0.7176 0.7059 
t-SNE 0.4882 0.6882 0.6 0.6353 

 
The results, as shown in Table 1, show several 

important findings. Within the group of linear 
dimensionality reduction methods, accuracy results 
have shown that Principal Component Analysis (PCA) 
is the most consistent and effective dimensionality 
reduction technique. In datasets Phoneme and 
HighDim, PCA yielded very high classification 
accuracy, particularly when used in combination with 
RandomForest and XGBoost classifiers. Furthermore, 
PCA demonstrated extremely low computational 
complexity, making it highly suitable for integration 
into automated analytical pipelines within the CRISP-
DM methodological framework. In contrast, Linear 
Discriminant Analysis (LDA) and Factor Analysis 
(FA) exhibited lower robustness across most 
experimental scenarios. Although they achieved 
satisfactory results on the HighDim dataset, their 
average classification accuracy was inferior to that 
achieved by PCA. Method LDA has limitations due to 
its restrictions in handling multiclass problems and the 
requirement for class labels during the reduction phase, 
which constrains its flexibility of application in 
automated systems aligned with the CRISP-DM 
methodology. 

Within the group of nonlinear methods, accuracy 
results have shown that Autoencoder is the most 
consistent and effective technique to dimensionality 
reduction, achieving high classification accuracy and 
consistent performance across all datasets. While the 
Autoencoder provides high predictive accuracy, such 
performance is accompanied by longer reduction times 
compared to linear methods. This trade-off is justified 
by its ability to preserve nonlinear relationships in the 
data, thus enabling a better representation of complex 
structures in the latent space (Chandra, 2024). Given 
its accuracy, the Autoencoder positions itself as an 
exceptional tool for automating data processing 
pipeline within the CRISP-DM cycle, particularly 
when dealing with datasets exhibiting nonlinear 
distributions. The t-SNE method showed acceptable 
accuracy on the Phoneme dataset but also 
demonstrated high variability and substantial 
computational overhead. It is important to emphasize 
that t-SNE was limited to three components due to 
scalability constraints, attempts with higher 
dimensions failed to complete even after several hours 
of execution. Despite its usefulness for visualization, 
the application of t-SNE in classification-oriented 
workflows, such as those structured by CRISP-DM, 
remains methodologically limited. KernelPCA, as a 
nonlinear extension of PCA, produced solid results, 
particularly on the HighDim dataset. Its capacity to 
preserve complex relationships in the data without 
excessive computational burden makes it a 
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methodologically balanced choice, although it does not 
surpass the Autoencoder in overall effectiveness.  

The accuracy results within this study indicate that 
PCA and Autoencoder are effective strategies for 
dimensionality reduction in linear and nonlinear space, 
respectively. Method PCA offers an efficient and fast 
linear transformation suitable for a wide range of 
problems, while the Autoencoder provides superior 
quality for complex and nonlinear datasets. Based on 
the experimental findings and within the context of 
developing automated systems aligned with the 
CRISP-DM methodology, the authors of this study 
recommend the combined use of PCA and 
Autoencoders, taking into consideration the trade-off 
between computational efficiency and the quality of 
data representation in lower-dimensional space. 

 
Table 2. Reduction execution time per Datasets 
 
DR 

Metho
d 

LogReg RF SVM XGBoost 

Dataset Blood 
AE 4.4284 4.4284 4.4284 4.4284 
FA 0.004 0.004 0.004 0.004 
KPCA 0.0198 0.0198 0.0198 0.0198 
LDA 0.001 0.001 0.001 0.001 
PCA 0.0011 0.0011 0.0011 0.0011 
t-SNE 5.8834 5.8834 5.8834 5.8834 

Dataset HighDim 
AE 9.1207 9.1207 9.1207 9.1207 
FA 0.1198 0.1198 0.1198 0.1198 
KPCA 0.9979 0.9979 0.9979 0.9979 
LDA 0.1953 0.1953 0.1953 0.1953 
PCA 0.0346 0.0346 0.0346 0.0346 
t-SNE 58.4865 58.487 58.487 58.4865 

Dataset Phoneme 
AE 10.0798 10.08 10.08 10.0798 
FA 0.0057 0.0057 0.0057 0.0057 
KPCA 1.1999 1.1999 1.1999 1.1999 
LDA 0.002 0.002 0.002 0.002 
PCA 0.0303 0.0303 0.0303 0.0303 
t-SNE 67.0619 67.062 67.062 67.0619 

Dataset Vehicle 
AE 4.6146 4.6146 4.6146 4.6146 
FA 0.2431 0.2431 0.2431 0.2431 
KPCA 0.0439 0.0439 0.0439 0.0439 
LDA 0.002 0.002 0.002 0.002 
PCA 0.002 0.002 0.002 0.002 
t-SNE 9.3425 9.3425 9.3425 9.3425 

 
The reduction execution time results, as shown in 

Table 2, for various dimensionality reduction 
techniques across four experimental datasets (Blood, 
HighDim, Phoneme, and Vehicle) provide insight into 
the computational complexity of each method, which 
is a crucial consideration when designing automated 
systems based on the CRISP-DM methodological 
framework. The linear method PCA (Principal 

Component Analysis) demonstrates consistently low 
computational complexity across all datasets (with 
execution times ranging from approximately 0.001 to 
0.03 seconds), making it a methodologically and 
computationally optimal option for dimensionality 
reduction in scenarios involving large data volumes 
and the need for rapid processing. Similarly as PCA, 
LDA (Linear Discriminant Analysis) and FA (Factor 
Analysis) also achieve very low reduction execution 
times, however, it should be noted that their 
applicability depends on the characteristics of the 
dataset, such as the classification type problem number 
of classes and the linearity of relationships among 
features. 

Within the group of nonlinear methods the method 
Kernel PCA (KPCA) requires slightly more 
computational time (from 0.04 seconds on the Vehicle 
dataset to 1.20 seconds on the Phoneme dataset), but 
still remains within acceptable thresholds for 
integration into automated data pipelines, particularly 
when there is a need to preserve nonlinear relationships 
without excessive computational cost. 

The Autoencoder (AE) method consistently shows 
slower execution times across all datasets, ranging 
from approximately 4.4 seconds (Blood and Vehicle) 
to over 10 seconds (Phoneme), and nearly 9.1 seconds 
on the high-dimensional HighDim dataset. This level 
of low computational efficiency reflects the fact that 
AE involves multiple data passes during training, 
including parameter optimization and input 
reconstruction, making it more suitable for scenarios 
where latency is not the primary constraint, but where 
preserving complex nonlinear data structures is critical. 

The most computationally inefficient method is t-
SNE (t-distributed Stochastic Neighbor Embedding) 
with only three components, with reduction times 
exceeding several seconds in all datasets, and reaching 
up to 67 and 58 seconds in the Phoneme and HighDim 
datasets, respectively. 

The reduction execution runtime per Datasets 
results emphasizes linear methods (PCA, LDA, FA) as 
computationally efficient dimensionality reduction 
methods and nonlinear methods (AE, KPCA, t-SNE) 
as more resource-intensive dimensionality reduction 
methods. Autoencoders are better in preserving the 
semantic structure of the data, with the cost in their 
execution time since it is considerably longer 
compared to PCA. This implies the need to balance 
accuracy and computational cost, preferably with 
objective function, when designing an optimal 
automated machine learning CRISP-DM-based 
process. Method PCA should be applied in time-
sensitive applications, while AE and KPCA may be 
more suitable for applications involving complex 
nonlinearities and sufficient computational resources. 

The results comparing linear and nonlinear 
methods by analysing the average values of 
performance metrics—accuracy, precision, recall, F1 
score, and the area under the ROC curve 
(ROC/AUC)—it is observed that linear methods (PCA, 
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LDA, and FA) consistently outperform nonlinear 
approaches (Autoencoder, t-SNE, and KernelPCA) 
across all evaluated metrics. 

 
Table 3. Group Averages: Linear and Nonlinear 

methods 
 

Metrics 
Group 

Linea
r Nonlinear 

Accuracy 0.7572 0.7426 
Precision 0.747 0.7296 
Recall 0.7572 0.7426 
F1 Score 0.7467 0.73 
ROC/AUC 0.8909 0.8755 

 
Linear methods achieved an average accuracy of 

0.7572, whereas nonlinear methods yielded a slightly 
lower value of 0.7426. This pattern is consistent across 
other metrics as well: precision (0.747 vs. 0.7296), 
recall (0.7572 vs. 0.7426), F1 score (0.7467 vs. 0.73), 
and ROC/AUC (0.8909 vs. 0.8755). These results 
indicate a higher level of consistency and robustness of 
the linear approach, especially in structured 
classification tasks where relationships among features 
are predominantly linear or can be effectively 
approximated through linear transformations. 

From a methodological perspective, linear methods 
benefit from low computational complexity, stable 
behavior across datasets of varying sizes, and 
transparent interpretability of the transformations. 
Although nonlinear methods are better in preserving 
complex relationships in the data, their higher 
variability and computational inefficiency efficiency 
may limit their applicability in automated machine 
learning systems. Therefore, the authors findings 
suggest that linear methods—particularly PCA—may 
be considered both methodologically and operationally 
optimal for most conventional classification problems 
within the CRISP-DM framework, whereas nonlinear 
methods are more suitable in scenarios where nonlinear 
structures are known to exist or where representation 
quality outweighs computational efficiency 
constraints. 

The results of the statistical significance tests 
performed provide additional information on the 
differences between the classification models in 
connection with the different methods of 
dimensionality reduction. McNemar's test for binary 
classification tasks and Cochran's Q test for multiclass 
datasets are applied. Particularly when the PCA 
method was used with RandomForest, SVM, and 
XGBoost classifiers, a sizable number of statistically 
significant differences (p < 0.05) were found within the 
Phoneme dataset between models based on logistic 
regression (LogReg) and other classifiers. With a p-
value of 0.0000 from the comparison between LogReg 
PCA and RandomForest PCA, the distribution of 

predictions was clearly highly significantly changed. 
Conversely, the matching p-values were 1.0000 and 
0.9011 respectively when LogReg PCA was compared 
with LogReg LDA or RandomForest LDA. This 
suggests that models using different dimensionality 
reduction methods yet belonging to the same classifier 
family have not much variation. These findings imply 
that rather than the single impact of any one of these 
components, the combination of the classifier and the 
reduction technique determines the classification 
performance in major importance. 
Methodologically, these results validate the need of 
formal statistical validation inside the evaluation stage 
of the CRISP-DM framework. In this regard, 
McNemar's test helps to identify consistent prediction 
variations at the level of individual instances, so 
improving the dependability of choosing the most 
suitable combination of classifier and dimensionality 
reduction technique for application in automated 
analytical pipelines. Finally, the author’s findings 
imply that combinations like RandomForest PCA and 
XGBoost PCA differ greatly from simpler models like 
LogReg PCA, which methodologically supports their 
usage in more difficult classification tasks. All results, 
together with the Python code, are also available at the 
GitHub link. 

5 Conclusion 

This paper provides a comparative analysis of 
methodologically different dimensionality reduction 
techniques — PCA, LDA, Factor Analysis and AE, t-
SNE, Kernel PCA — for multiclass and binary 
classification tasks on different datasets. The use of the 
adapted CRISP-DM methodology ensured a 
transparent implementation of all phases of the data 
processing and analysis process, from problem 
understanding to model implementation. 

The results obtained confirm that the choice of 
dimensionality reduction method significantly 
influences the classification efficiency and 
computational feasibility of the model. The PCA 
method proves to be robust, stable and computationally 
efficient and is particularly suitable for classification 
tasks, while the AE method may have advantages in 
certain cases, e.g. for non-linear data structures. The 
combination of metrics and execution time provides a 
multidimensional evaluation of the model and thus 
contributes to a more comprehensive understanding of 
the application of dimensionality reduction methods in 
a production environment. The proposed automated 
approach, based on the CRISP-DM methodology, has 
been shown to be suitable and extensible for complex 
evaluations of machine learning models related to 
dimensionality reduction. Future research could aim to 
extend the analysis to other dimensionality reduction 
methods such as UMAP, as well as to develop and 
integrate new dimensionality reduction approaches and 
methods into the AutoML system to further extend the 
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applicability and scientific contribution of the 
proposed methodology.  
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