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Abstract. This paper discusses an adapted CRISP-DM
methodological  framework for an automated
comparison of the performance of dimensionality
reduction methods — PCA, LDA, Factor Analysis and
AE, t-SNE, Kernel PCA — in the context of multiclass
and binary classification tasks using different datasets.
The use of the adapted CRISP-DM methodology
ensures an automated and systematic analysis in all
phases of the CRISP-DM process, including data
preparation, modelling and  evaluation.  The
automation is achieved by dynamically determining the
number of components according to the dimensional
structure of the datasets by integrating dimensionality
reduction methods and machine learning classification
methods. The results within this study indicate that
PCA and Autoencoder are effective dimensionality
reduction techniques in linear and nonlinear space,
respectively. Furthermore, the results show that, on
average, PCA achieves higher classification accuracy
with significantly lower computational effort, while AE
shows advantages in higher classification accuracy of
the nonlinear domain with the trade-off in low
computational efficiency. The proposed approach
enables a replicable, modular and computationally
efficient evaluation of algorithms for analysing high-
dimensional data and thus contributes to the
improvement of automated systems in the field of
intelligent data analysis. A Python implementation of
the adapted CRISP-DM methodology for the
automated comparison of the performance of two
dimensionality reduction methods can be found at the
Jfollowing GitHub link:
https://github.com/smitroviefos/amf dim red paper2

025 .
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1 Introduction

Given the growing importance of data-intensive
intelligent systems in today’s environment, especially
in the field of analysing and processing big data, the
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high dimensionality of input features poses a
significant challenge to the efficiency and
interpretability of machine learning
algorithms.(Baratchi et al., 2024) Dimensionality
reduction as a key stage of data processing reduces
model complexity, speeds up execution and improves
the robustness of classification and regression systems.
The most common techniques include principal
component analysis (PCA)(Bartal et al., 2019; Cohen,
2017; Geron, 2019; Jolliffe, 2002; Van Der Maaten et
al., 2009) and autoencoders (AE)(Chandra, 2024;
Cohen, 2017; Goodfellow et al., 2016), which
approach the problem from two different perspectives
— linear and nonlinear.

The PCA method represents a projection of the data
into a space with lower dimensionality, preserving the
highest possible variance, while autoencoders, which
are based on multilayer neural networks, allow the
modelling of non-linear relationships between features,
thus ensuring greater informativeness, but require more
computational resources. Although there is scientific
literature comparing these approaches applied to
different tasks (Fournier & Aloise, 2019; Mayur
Prakashrao Gore, 2024), a systematic analysis
combining quantitative and qualitative metrics within
a single methodological framework is still relatively
limited in the SCOPUS database to the best of the
authors’ knowledge based on the literature review
presented below. Therefore, this paper aims to explore
the advantages and disadvantages of PCA and AE as
representative techniques of linear and nonlinear
dimensionality reduction, respectively, within the
context of common machine learning classification
methods. The primary objective is to analyse the
strengths, limitations, and applicability of these
methods across different data domains by embedding
them into a fully automated analytical pipeline based
on an adapted CRISP-DM (Cross-Industry Standard
Process for Data Mining) methodological framework.
Additionally, research paper compares linear methods
(PCA, Linear Discriminant Analysis — LDA, and
Factor Analysis) separately from nonlinear methods
(Autoencoders, t-Distributed Stochastic Neighbour
Embedding — t-SNE, and Kernel PCA), the study
incorporates an extended evaluation that organises
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dimensionality reduction algorithms into these two
conceptual categories — linear and nonlinear. While the
primary analytical emphasis remains on PCA and AE
due to their widespread use, business domain-
independent datasets and widely adopted classifiers are
utilised to evaluate model performance through
multiple quantitative metrics, including accuracy,
precision, recall, F1 score, and ROC/AUC. This
approach enables the assessment of generalisation
capability, information preservation, and execution
efficiency of each method, with the ultimate goal of
contributing to a more structured and comparative
understanding of dimensionality reduction techniques
in automated machine learning pipelines.

2 Literature review

In analysing the existing scientific literature, the
present paper focuses on the research gap identified by
a number of authors discussing dimensionality
reduction, PCA and AE methods. Specifically, Mendes
Junior et al. (2020) point out that in previous research
they found that the comparison of feature selection and
dimensionality reduction methods was not sufficiently
systematic and quantitatively sound. In particular,
Mendes Junior et al. (2020) found that the application
of dimensionality reduction techniques after feature
selection often did not lead to statistically significant
differences in the accuracy of machine learning
classification methods. Furthermore, Mendes Junior et
al. (2020) point out that the research gap also includes
a limited number of comparative analyses of
dimensionality reduction techniques and the lack of
comprehensive evaluations in different problem
domains, indicating the need for more
methodologically rigorous approaches that cover a
broader range of data, models and performance
metrics.(Mendes Junior et al., 2020) Vantuch et al.
(2016) point out that future research should focus on
the problem of reconstruction methods that
inadequately reconstruct the original datasets after
applying dimensionality reduction, which can lead to
information loss. Similarly, Vantuch et al. (2016)
emphasise that the analysis of information loss and
uncertainties that occur during transformation is
insufficiently discussed in the literature, although these
aspects can have a significant impact on the reliability
of the model. Vantuch et al. (2016) therefore point out
that there is a need for empirical comparisons that
quantitatively evaluate the advantages of different
dimensionality reduction algorithms in terms of
maintaining data  representativeness and the
interpretability of the results.(Vantuch et al., 2016) In
their research, Ghobadi et al. (2023) point out the need
to adjust hyperparameters in dimensionality reduction
methods to achieve optimal results in the unique data
domain contexts. Since different datasets can have
markedly heterogenous features — in terms of noise
levels, correlations between features or structural
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complexity — fixed and manual approaches without
automation of parameter adaptation often lead to
suboptimal transformations. Ghobadi et al. (2023)
therefore emphasise the importance of dynamic and
context-sensitive parameter adjustments to increase
model accuracy and maintain the semantic
representation of the data in low-dimensional
space.(Ghobadi et al., 2023)

In the present work, the above shortcoming is
addressed using a systematic and methodologically
structured approach that integrates a dynamic selection
of the number of components, automated model
evaluation and statistical validation of performance
differences, thus contributing to the understanding of
the effectiveness and applicability of modern
dimensionality reduction techniques in scientific and
applied contexts.

3 Methodology

In order to conduct a systematic analysis, the present
authors used an approach based on the adaptation of
the CRISP-DM methodology (Cross-Industry Standard
Process for Data Mining), which provides a
comprehensive framework for conducting data
analyses in six phases: problem understanding, data
understanding, = data  preparation, = modelling,
evaluation, and implementation.(Bratkovsky, 2024;
Chapman, 2000; Costa, 2022; Shearer, 2000)

3.1 Understanding the research problem

The main objective of this study is to compare two
dimensionality reduction methods: as a linear method
and autoencoders (AE) as a nonlinear, neural method.
Dimensionality reduction is a crucial step in the
processing and analysis of high-dimensional data, i.e.
in the context of this work for classification tasks
where the high complexity of the input space can
negatively affect the generalisation capability of
machine learning models. The comparison of PCA and
AE is made in terms of classification accuracy,
execution time, computational efficiency and
preservation of the semantic structure of the data in the
latent space. In addition, other dimensionality
reduction methods are used, structured into two
conceptual groups - linear and nonlinear. The linear
methods include PCA, Linear Discriminant Analysis
(LDA), and Factor Analysis (FA), all of which operate
under the assumption of linear transformations and rely
on variance maximisation or class separability criteria
(Pedregosa et al., 2011). In contrast, the nonlinear
methods comprise Autoencoders, t-Distributed
Stochastic Neighbor Embedding (t-SNE), and Kernel
PCA, each capable of modelling non-linear manifolds
and capturing more complex intrinsic data structures
through techniques such as deep representation
learning or kernel-based transformations(Chandra,
2024; Cohen, 2017; Scholkopf et al., 1997). While the
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core analytical focus remains on PCA and AE due to
their conceptual contrast and practical relevance in
both academic research papers and various business
domain settings, the inclusion of other methods enables
a more comprehensive and structured benchmarking
process. The comparison is made in terms of
classification accuracy, execution time, computational
efficiency and preservation of the semantic structure of
the data in the latent space.

3.2 Data understanding

The Phoneme (OpenML ID: 1489), Vehicle
Silhouettes (OpenML ID: 54), Blood Transfusion
Service Center (OpenML ID: 1464) and the HighDim
(Gina agnostic, OpenML ID: 40978) datasets from the
OpenML repository were used in this study as they
represent different application domains and different
feature structures, thus enabling an evaluation of the
generalisation capability of dimensionality reduction
algorithms. The Phoneme dataset consists of 5,404
instances and 5 acoustic features, containing the sound
features of speech phonemes and is primarily used for
speech recognition tasks; Vehicle dataset includes 846
instances with 18 geometrical features, containing
geometric attributes of vehicles classified by type;
Blood Transfusion Service Center dataset consists of
748 instances and 4 features containing demographic
and behavioural data of blood donors with the aim of
predicting their propensity to re-donate, while
HighDim dataset is a high-dimensional binary
classification handwritten digit as image recognition
dataset with 1,400 instances and 970 features,
constructed to evaluate algorithmic scalability and
behaviour in high-dimensional spaces. This diversity
provides a relevant experimental context to test the
effectiveness of the methods within an automated,
adapted CRISP-DM methodological framework.

3.3 Data preparation

The data were first normalised to the interval 0 to 1 to
reduce numerical differences between features and
ensure model stability. The data were stratified to
divide them into training and test datasets in a ratio of
80:20. As dimensionality reduction methods can be
sensitive to the size and distribution of the data, special
care is taken to maintain class balance when splitting a
dataset with an extremely high-class imbalance. In all
cases - PCA, LDA, Factor Analysis and AE, t-SNE,
Kernel PCA - the number of components and the
dimension of the layer are dynamically determined as
a minimum between the preset threshold (in the Python
code the threshold is set to 10), the number of features
and the number of instances in the dataset. Such an
approach ensures the methodological validity and
flexibility of the algorithms when applied to
heterogenous datasets, while maintaining the structural
consistency of the model. This enables the automated
application of dimensionality reduction techniques in
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the CRISP-DM modelling and evaluation phase,
regardless of the unique data domain context.

3.4 Modelling

Following dimensionality reduction methods were
used in the modelling phase: (1) PCA, LDA, and Factor
Analysis are the linear techniques methods. Methods
were implemented from the scikit-learn library
(Pedregosa et al., 2011).(Bartal et al., 2019; Cohen,
2017; Geron, 2019; Jolliffe, 2002; Van Der Maaten et
al., 2009) (2) The autoencoder is an neural network
with a hidden layer of dimension 64 implemented in
the TensorFlow (Abadi et al., 2016) environment. The
mean squared error (MSE)(Santosh et al., 2022), is
used for the error function, while the Adam algorithm
with an initial learning parameter of 0.001 is used for
optimisation.(Chandra, 2024; Cohen, 2017,
Goodfellow et al., 2016). Other nonlinear techniques
such as t-SNE(van der Maaten & Hinton, 2008) and
Kernel PCA (Scholkopf et al., 1997) are also used in

the modelling phase.
After reduction, identical machine learning
classification methods LogisticRegression (s.-1.

developers, 2024a), RandomForest(s.-l. developers,
2024b), SVM(s.-1. developers, 2024¢) and XGBoost(x.
developers, 2024), are trained on the obtained latent
representations to isolate the effects of the reduction
method on the classification performance.

3.5 Evaluation

The evaluation of the model was based on several
criteria: classification accuracy, execution time and
visualisation of the reduced dimensionality using bar
charts. The qualitative analysis of the visual
representations provides information about the
separability of the classes in the latent space. The
quantitative results were analysed using McNemar's
statistical test for dependent samples of binary
classification to determine the significance of the
differences between the accuracies of the machine
learning methods (Perktold et al., 2025b). The
quantitative results for dependent samples of
multiclassification were analysed using Cochran's Q
test (Perktold et al., 2025a). In addition, the data
reconstruction ability of the autoencoder was
compared to evaluate the information loss.

3.6 Implementation

The entire experiment was implemented in the Python
programming language. The code is available at the
GitHub link and uses the externally referenced libraries
scikit-learn [17], tensorflow (Abadi et al., 2016),
matplotlib(Barrett et al., 2005) and numpy(Harris et al.,
2020). The programme code is modular and
reproducible, and it is possible to extend the analysis to
additional datasets and dimensionality reduction
methods such as UMAP (Healy & Mclnnes, 2024).
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The results show that PCA retains its advantage in
terms of computational efficiency, while AE shows
superiority in preserving complex structures and higher
classification accuracy at lower dimensions. The
conclusions obtained make a scientific contribution to
the understanding of the trade-off between linearity
and non-linearity in dimensionality reduction in the
context of application to different domains of business
data.

4 Results and discussion

The experiment uses an adapted CRISP-DM
methodology to automate the process of intelligent data
analysis and compares the effects of linear and
nonlinear dimensionality reduction methods — PCA,
LDA, Factor Analysis and AE, t-SNE, Kernel PCA —
in combination with four -classification methods
LogisticRegression  (s.-l.  developers, 2024a),
RandomForest(s.-l. developers, 2024b), SVM(s.-1.
developers, 2024c) and XGBoost(x. developers, 2024)
in the modelling phase. The evaluation was carried out
with heterogenous datasets that differ in the number of
classes, the distribution of features and the semantic
domain. The aim was to assess how the choice of
dimensionality  reduction method affects the
classification efficiency and computational complexity
of the model.

Table 1. Accuracy per Datasets

DR
Metho | LogReg | RF SVM | XGBoost
d
Dataset Blood
AE 0.7467 | 0.7667 | 0.7667 0.74
FA 0.7467 | 0.7533 0.76 0.7333
KPCA 0.76 0.72 | 0.7667 0.7333
LDA 0.7533 | 0.6533 | 0.7467 0.74
PCA 0.7467 | 0.7467 | 0.7667 0.7267
t-SNE 0.7667 | 0.7333 | 0.7733 0.6867
Dataset HighDim
AE 0.7522 | 0.7594 | 0.7695 0.7392
FA 0.7954 | 0.7896 | 0.8112 0.7954
KPCA 0.7896 | 0.7997 | 0.8228 0.7925
LDA 0.8228 | 0.8069 | 0.8228 0.8156
PCA 0.8055 | 0.8228 | 0.8228 0.8084
t-SNE 0.6643 | 0.7752 | 0.745 0.7233
Dataset Phoneme
AE 0.7336 | 0.8705 | 0.8437 0.8751
FA 0.741 | 0.8668 | 0.7974 0.8548
KPCA 0.7512 | 0.8742 | 0.8039 0.8511
LDA 0.7373 | 0.7391 | 0.7623 0.7586
PCA 0.7364 | 0.8788 | 0.8326 0.864
t-SNE 0.7188 | 0.8696 | 0.778 0.8686
Dataset Vehicle
AE 0.6588 | 0.6059 | 0.6765 0.7059
FA 0.7765 | 0.7588 | 0.7882 0.7765
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KPCA 0.6412 | 0.6647 | 0.6765 0.6706
LDA 0.5941 | 0.5118 | 0.5882 0.5529
PCA 0.6765 | 0.7353 | 0.7176 0.7059
t-SNE 0.4882 | 0.6882 0.6 0.6353

The results, as shown in Table 1, show several
important findings. Within the group of linear
dimensionality reduction methods, accuracy results
have shown that Principal Component Analysis (PCA)
is the most consistent and effective dimensionality
reduction technique. In datasets Phoneme and
HighDim, PCA yielded very high -classification
accuracy, particularly when used in combination with
RandomForest and XGBoost classifiers. Furthermore,
PCA demonstrated extremely low computational
complexity, making it highly suitable for integration
into automated analytical pipelines within the CRISP-
DM methodological framework. In contrast, Linear
Discriminant Analysis (LDA) and Factor Analysis
(FA) exhibited lower robustness across most
experimental scenarios. Although they achieved
satisfactory results on the HighDim dataset, their
average classification accuracy was inferior to that
achieved by PCA. Method LDA has limitations due to
its restrictions in handling multiclass problems and the
requirement for class labels during the reduction phase,
which constrains its flexibility of application in
automated systems aligned with the CRISP-DM
methodology.

Within the group of nonlinear methods, accuracy
results have shown that Autoencoder is the most
consistent and effective technique to dimensionality
reduction, achieving high classification accuracy and
consistent performance across all datasets. While the
Autoencoder provides high predictive accuracy, such
performance is accompanied by longer reduction times
compared to linear methods. This trade-off is justified
by its ability to preserve nonlinear relationships in the
data, thus enabling a better representation of complex
structures in the latent space (Chandra, 2024). Given
its accuracy, the Autoencoder positions itself as an
exceptional tool for automating data processing
pipeline within the CRISP-DM cycle, particularly
when dealing with datasets exhibiting nonlinear
distributions. The t-SNE method showed acceptable
accuracy on the Phoneme dataset but also
demonstrated high variability and substantial
computational overhead. It is important to emphasize
that t-SNE was limited to three components due to
scalability  constraints, attempts with  higher
dimensions failed to complete even after several hours
of execution. Despite its usefulness for visualization,
the application of t-SNE in classification-oriented
workflows, such as those structured by CRISP-DM,
remains methodologically limited. KernelPCA, as a
nonlinear extension of PCA, produced solid results,
particularly on the HighDim dataset. Its capacity to
preserve complex relationships in the data without
excessive computational burden makes it a
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methodologically balanced choice, although it does not
surpass the Autoencoder in overall effectiveness.

The accuracy results within this study indicate that
PCA and Autoencoder are effective strategies for
dimensionality reduction in linear and nonlinear space,
respectively. Method PCA offers an efficient and fast
linear transformation suitable for a wide range of
problems, while the Autoencoder provides superior
quality for complex and nonlinear datasets. Based on
the experimental findings and within the context of
developing automated systems aligned with the
CRISP-DM methodology, the authors of this study
recommend the combined use of PCA and
Autoencoders, taking into consideration the trade-off
between computational efficiency and the quality of
data representation in lower-dimensional space.

Table 2. Reduction execution time per Datasets

DR
Metho | LogReg | RF SVM | XGBoost
d
Dataset Blood
AE 44284 | 44284 | 4.4284 4.4284
FA 0.004 | 0.004 | 0.004 0.004
KPCA 0.0198 | 0.0198 | 0.0198 0.0198
LDA 0.001 | 0.001 | 0.001 0.001
PCA 0.0011 | 0.0011 | 0.0011 0.0011
t-SNE 5.8834 | 5.8834 | 5.8834 5.8834
Dataset HighDim
AE 9.1207 | 9.1207 | 9.1207 9.1207
FA 0.1198 | 0.1198 | 0.1198 0.1198
KPCA 0.9979 | 0.9979 | 0.9979 0.9979
LDA 0.1953 | 0.1953 | 0.1953 0.1953
PCA 0.0346 | 0.0346 | 0.0346 0.0346
t-SNE 58.4865 | 58.487 | 58.487 | 58.4865
Dataset Phoneme
AE 10.0798 | 10.08 | 10.08 10.0798
FA 0.0057 | 0.0057 | 0.0057 0.0057
KPCA 1.1999 | 1.1999 | 1.1999 1.1999
LDA 0.002 | 0.002 | 0.002 0.002
PCA 0.0303 | 0.0303 | 0.0303 0.0303
t-SNE 67.0619 | 67.062 | 67.062 | 67.0619
Dataset Vehicle
AE 4.6146 | 4.6146 | 4.6146 4.6146
FA 0.2431 | 0.2431 | 0.2431 0.2431
KPCA 0.0439 | 0.0439 | 0.0439 0.0439
LDA 0.002 | 0.002 | 0.002 0.002
PCA 0.002 | 0.002 | 0.002 0.002
t-SNE 9.3425 | 9.3425 | 9.3425 9.3425

The reduction execution time results, as shown in
Table 2, for wvarious dimensionality reduction
techniques across four experimental datasets (Blood,
HighDim, Phoneme, and Vehicle) provide insight into
the computational complexity of each method, which
is a crucial consideration when designing automated
systems based on the CRISP-DM methodological
framework. The linear method PCA (Principal
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Component Analysis) demonstrates consistently low
computational complexity across all datasets (with
execution times ranging from approximately 0.001 to
0.03 seconds), making it a methodologically and
computationally optimal option for dimensionality
reduction in scenarios involving large data volumes
and the need for rapid processing. Similarly as PCA,
LDA (Linear Discriminant Analysis) and FA (Factor
Analysis) also achieve very low reduction execution
times, however, it should be noted that their
applicability depends on the characteristics of the
dataset, such as the classification type problem number
of classes and the linearity of relationships among
features.

Within the group of nonlinear methods the method
Kernel PCA (KPCA) requires slightly more
computational time (from 0.04 seconds on the Vehicle
dataset to 1.20 seconds on the Phoneme dataset), but
still remains within acceptable thresholds for
integration into automated data pipelines, particularly
when there is a need to preserve nonlinear relationships
without excessive computational cost.

The Autoencoder (AE) method consistently shows
slower execution times across all datasets, ranging
from approximately 4.4 seconds (Blood and Vehicle)
to over 10 seconds (Phoneme), and nearly 9.1 seconds
on the high-dimensional HighDim dataset. This level
of low computational efficiency reflects the fact that
AE involves multiple data passes during training,
including parameter optimization and input
reconstruction, making it more suitable for scenarios
where latency is not the primary constraint, but where
preserving complex nonlinear data structures is critical.

The most computationally inefficient method is t-
SNE (t-distributed Stochastic Neighbor Embedding)
with only three components, with reduction times
exceeding several seconds in all datasets, and reaching
up to 67 and 58 seconds in the Phoneme and HighDim
datasets, respectively.

The reduction execution runtime per Datasets
results emphasizes linear methods (PCA, LDA, FA) as
computationally efficient dimensionality reduction
methods and nonlinear methods (AE, KPCA, t-SNE)
as more resource-intensive dimensionality reduction
methods. Autoencoders are better in preserving the
semantic structure of the data, with the cost in their
execution time since it is considerably longer
compared to PCA. This implies the need to balance
accuracy and computational cost, preferably with
objective function, when designing an optimal
automated machine learning CRISP-DM-based
process. Method PCA should be applied in time-
sensitive applications, while AE and KPCA may be
more suitable for applications involving complex
nonlinearities and sufficient computational resources.

The results comparing linear and nonlinear
methods by analysing the average values of
performance metrics—accuracy, precision, recall, F1
score, and the area under the ROC curve
(ROC/AUC)—it is observed that linear methods (PCA,
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LDA, and FA) consistently outperform nonlinear
approaches (Autoencoder, t-SNE, and KernelPCA)
across all evaluated metrics.

Table 3. Group Averages: Linear and Nonlinear

methods
Group
Metrics i
Ln;ea Nonlinear
Accuracy 0.7572 0.7426
Precision 0.747 0.7296
Recall 0.7572 0.7426
F1 Score 0.7467 0.73
ROC/AUC 0.8909 0.8755

Linear methods achieved an average accuracy of
0.7572, whereas nonlinear methods yielded a slightly
lower value of 0.7426. This pattern is consistent across
other metrics as well: precision (0.747 vs. 0.7296),
recall (0.7572 vs. 0.7426), F1 score (0.7467 vs. 0.73),
and ROC/AUC (0.8909 vs. 0.8755). These results
indicate a higher level of consistency and robustness of
the linear approach, especially in structured
classification tasks where relationships among features
are predominantly linear or can be effectively
approximated through linear transformations.

From a methodological perspective, linear methods
benefit from low computational complexity, stable
behavior across datasets of wvarying sizes, and
transparent interpretability of the transformations.
Although nonlinear methods are better in preserving
complex relationships in the data, their higher
variability and computational inefficiency efficiency
may limit their applicability in automated machine
learning systems. Therefore, the authors findings
suggest that linear methods—particularly PCA—may
be considered both methodologically and operationally
optimal for most conventional classification problems
within the CRISP-DM framework, whereas nonlinear
methods are more suitable in scenarios where nonlinear
structures are known to exist or where representation
quality  outweighs computational efficiency
constraints.

The results of the statistical significance tests
performed provide additional information on the
differences between the classification models in
connection with the different methods of
dimensionality reduction. McNemar's test for binary
classification tasks and Cochran's Q test for multiclass
datasets are applied. Particularly when the PCA
method was used with RandomForest, SVM, and
XGBoost classifiers, a sizable number of statistically
significant differences (p < 0.05) were found within the
Phoneme dataset between models based on logistic
regression (LogReg) and other classifiers. With a p-
value of 0.0000 from the comparison between LogReg
PCA and RandomForest PCA, the distribution of
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predictions was clearly highly significantly changed.
Conversely, the matching p-values were 1.0000 and
0.9011 respectively when LogReg PCA was compared
with LogReg LDA or RandomForest LDA. This
suggests that models using different dimensionality
reduction methods yet belonging to the same classifier
family have not much variation. These findings imply
that rather than the single impact of any one of these
components, the combination of the classifier and the
reduction technique determines the classification
performance in major importance.
Methodologically, these results validate the need of
formal statistical validation inside the evaluation stage
of the CRISP-DM framework. In this regard,
McNemar's test helps to identify consistent prediction
variations at the level of individual instances, so
improving the dependability of choosing the most
suitable combination of classifier and dimensionality
reduction technique for application in automated
analytical pipelines. Finally, the author’s findings
imply that combinations like RandomForest PCA and
XGBoost PCA differ greatly from simpler models like
LogReg PCA, which methodologically supports their
usage in more difficult classification tasks. All results,
together with the Python code, are also available at the

5 Conclusion

This paper provides a comparative analysis of
methodologically different dimensionality reduction
techniques — PCA, LDA, Factor Analysis and AE, t-
SNE, Kernel PCA — for multiclass and binary
classification tasks on different datasets. The use of the
adapted CRISP-DM  methodology ensured a
transparent implementation of all phases of the data
processing and analysis process, from problem
understanding to model implementation.

The results obtained confirm that the choice of
dimensionality  reduction method significantly
influences  the classification efficiency and
computational feasibility of the model. The PCA
method proves to be robust, stable and computationally
efficient and is particularly suitable for classification
tasks, while the AE method may have advantages in
certain cases, e.g. for non-linear data structures. The
combination of metrics and execution time provides a
multidimensional evaluation of the model and thus
contributes to a more comprehensive understanding of
the application of dimensionality reduction methods in
a production environment. The proposed automated
approach, based on the CRISP-DM methodology, has
been shown to be suitable and extensible for complex
evaluations of machine learning models related to
dimensionality reduction. Future research could aim to
extend the analysis to other dimensionality reduction
methods such as UMAP, as well as to develop and
integrate new dimensionality reduction approaches and
methods into the AutoML system to further extend the
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applicability and scientific contribution of the
proposed methodology.
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