Proceedings of the Central European Conference on Information and Intelligent Systems 201

Planning and Development Processes for the Information
System Based on the Command Query Responsibility
Segregation Design Pattern

KreSimir Kavran
InfoDom Ltd.
Andrije Zaje 61, 10000 Zagreb, Croatia

kresimir.kavran@infodom.hr

Abstract. The development of a complex information
system requires planning and the definition of all
business requirements. Business requirements can
change over time. Agile methodology enables
development teams to adapt to real-time changes and
the development of major features according to
customer requests. One such complex information
system is a platform for the electronic operations of
state administration bodies. It contains multiple
modules based on the Command Query Responsibility
Segregation design pattern. A Croatian software
development company created it for the Croatian state
administration bodies. This paper describes the
development process of creating this information
system and explains the maintenance process.

Keywords. Command Query Responsibility
Segregation, Agile, Scrum, Project planning

1 Introduction

When creating a new product or improving an existing
one, developers and designers must consider the end-
users, their needs, and how they want to use the
product. End users care about completing their tasks
and achieving their goals, not about how the product
was created or the company that created it (Saffer,
2010).

This also affects internal processes in software
development companies. Employees must adjust to
customer demands and requirements. To address this
obstacle, software development companies use
different methodologies to plan further development
and realize and maintain such plans.

Agile methods, such as Scrum, are currently the
most commonly used methodologies in software
development (Omonije, 2024). Scrum, in particular, is
a framework for developing complex projects and
organizing work based on values, principles, and
practices that provide a foundation for all members.

36th CECIIS, September 17-19, 2025

Maja Pusnik
University of Maribor

Faculty of Electrical Engineering and Computer
Science

Koroska cesta 46, 2000 Maribor, Slovenia

maja.pusnik@um.si

The Scrum framework offers excellent flexibility and
versatility when facing changing constraints (Andrei et
al., 2019).

This paper aims to describe the planning and
development processes in a Croatian Software
development company whose product is an
information system based on the Command Query
Responsibility Segregation (CQRS) design pattern.

This paper is structured as follows. Section 2
provides background information and related work
about Scrum and Command Query Responsibility
Segregation design pattern. Section 3 provides
information about the information system and its
components. Section 4 contains information about the
company’s planning and development processes.
Section 5 includes a discussion. Section 6 concludes
the paper.

2 Background and Related Work

This section presents general information about the
Command Query Responsibility Segregation design
pattern and Scrum. It consists of two parts. The first
part describes the Command Query Responsibility
Segregation (CQRS) design pattern, including its
advantages and disadvantages, while the second
provides information about Scrum.

2.1 Command Query Responsibility
Segregation

The primary objective of Command Query
Responsibility Separation is to distinguish between
actions that modify data in the database (referred to as
commands) and requests that retrieve data from the
database without altering it (referred to as queries)
(Overeem et al., 2021).

The benefits of this approach are best observed in
distributed environments. Because commands and

Varazdin, Croatia

202 Proceedings of the Central European Conference on Information and Intelligent Systems

queries are separated, it is possible to use different
models or define different execution paths for each
type. The separation of commands and queries makes
each component easier to develop because components
do not depend on each other (Kufner & Marik, 2019).

The separation of read and write operations allows
the choice of different databases for read and write
operations. Developers can select the most performant
alternative for queries without sacrificing the benefits
of the original (relational) database for state mutation
operations. Furthermore, each query can be optimized
separately by simultaneously maintaining several
different read models. These benefits come with a cost
associated with the synchronization of multiple data
models and the underlying storage (Debski et al.,
2017).

This separation makes each component easier to
develop and maintain. While the overall architecture
may appear more complex, the individual components
become simpler and more manageable, resulting in
easier application development (Kufner & Marik,
2019).

Research papers on CQRS are limited in number.
The reason for that is the area of application. The
CQRS design pattern is intended for use in high-load
distributed environments, and as such, it is interesting
only to a limited number of solution architects and
developers. All published research papers include
descriptions of CQRS and additional techniques used
in combination with it.

All research papers on CQRS-based information
systems include a basic description of the CQRS
design pattern and descriptions of other techniques
used.

Published research papers describe various
elements, implementations, advantages, and
disadvantages of CQRS.

The authors (Diakov et al., 2019) compare the
CQRS design pattern with traditional CRUD systems,
and (Weerakoon & Kumara, 2018) compare CQRS
with monolithic architecture, focusing on eventual
consistency and its effects.

Research papers (Debski et al., 2017) and
(Overeem et al., 2017) focus on event sourcing and
describe the benefits and challenges of using event
sourcing in CQRS applications. While (Lima et al.,
2021) propose improvements to event sourcing in
CQRS-based applications.

The authors (Erb & Kargl, 2014) describe how to
use the CQRS pattern in event-driven architectures,
while (Kufner & Marik, 2019) explain how to
implement the CQRS design pattern in REST APIs.

The research paper (Kabbedijk et al, 2012)
introduces techniques to enhance the CQRS design
pattern, such as aggregating roots and snapshotting to
increase variability.

Finally, (Rajkovi¢ et al, 2013) present
improvements in the performance of existing
information systems by using two databases, each for

36th CECIIS, September 17-19, 2025

read and write operations, along with a method for data
synchronization between them.

2.2 Scrum

In 2001, seventeen software development
professionals published the Agile Manifesto. The Agile
Manifesto focuses development on four core values.

The Agile Manifesto also contains twelve additional

principles to ensure user satisfaction by continuously

delivering valuable, simple, high-quality software

(Itzik & Roy, 2023).

In Agile, teams are self-organized, allowing teams
to adjust to any problem and choose the best approach
for solving problems. The definition of roles in agile
software development depends on the development
method and the organization's size (Bomstrom et al.,
2023).

Scrum is a management and control process that
cuts through complexity to focus on building software
that meets business needs (Schwaber & Beedle, 2002).

The word "Scrum" originated from the sport of
rugby, where a Scrum is a formation that enables quick
adoption of strategies by team members, with every
player playing a specific role (Zayat & Senvar, 2020).

Key elements of Scrum are:

e Product Backlog is a prioritized list of all product
requirements. It describes everything the system
should include regarding functionality, features,
and technology.

e Product Owner is responsible for prioritization of
the backlog. The Product Owner decides the order
in which things are built (Schwaber & Beedle,
2002).

o Scrum Teams are small, cross-functional teams that
perform all development. They are also referred to
as development teams.

o Sprints are development iterations lasting between
one and four weeks. Every Sprint must finish with
an increment of the system and new product
functionality.

e Sprint Backlog is a collection of items taken at the
beginning of a Sprint by the development team that
can be completed during the Sprint and turned into
an increment of the system.

e Scrum Master is a management representative who
enforces Scrum practices and helps the
development team to make decisions or acquire
resources as needed (Schwaber & Beedle, 2002).

® Daily Scrum is a daily meeting held by the Scrum
Team to review progress and identify problems.

e Sprint Review Meeting is a meeting between the
Scrum Team and the management held at the end
of every Sprint. It is used to inspect the product
increment that has been built.

Varazdin, Croatia

Proceedings of the Central European Conference on Information and Intelligent Systems 203

3 The Information System

The chosen information system is used for the
electronic operations of state administration bodies. It
is intended for state administration bodies, local and
regional self-government units, public authority
bodies, and all enterprises that provide public services
to citizens and businesses. Croatian software company
created and maintains it, and Croatian state
administration bodies use it.

The information system is a modular microservice-
based information system, with its core components
built around the CQRS design pattern. It is composed
of many modules. The most used modules of the
information system are:

e primary web interface,

e secondary web interface,

e modules for integration with government services,
e plugin for e-mail clients,

e integration service.

Regardless of the modules used, all modules
employ the same core components, ensuring their basic
functioning is consistent, and they all utilize the CQRS
design pattern.

The primary user interface is intended for
employees of state administration bodies. This web
interface is what most end users use in everyday
business. It is the most complex module and offers
access to all functionalities of the information system.
It utilizes role-based access control, allowing
employees to access specific functionalities based on
their assigned roles.

The secondary web user interface is intended for
citizens and businesses to use. Its goal is to enable more
accessible communication with state administration
bodies, simplify communication, facilitate the
submission of requests to state administration bodies,
and allow citizens to monitor the progress of their
inquiries. A secondary user interface is not obligatory
for the correct work of the information system.

Modules for integration with government services
enable the retrieval of data, such as information about
citizens or companies, from government services.
Using these services, the information system can
always contain up-to-date information without
requiring employees to manually update the records.
Each government service has a separate module in the
information system. These modules are not standalone
solutions and must be incorporated with other modules.

An elective option for the information system is a
plugin for e-mail clients, which enables inputting data
directly from the e-mail client without using the
primary web interface. A plugin for e-mail clients was
created to allow employees to input citizens’ e-mails,
contact information, and data into the information
system and automatically generate and send
confirmation e-mails.

36th CECIIS, September 17-19, 2025

Depending on the employee’s work position, a
primary web interface may not be needed for the
employee to complete tasks. Some users are tasked
with communicating with citizens, and by using this
plugin, they can complete their tasks without needing
to use the primary web interface, thereby reducing the
load on the web interface.

Integration service is a module that enables the
exchange of data with other information systems. If a
customer has another application or information
system from a different manufacturer, they can utilize
this integration service to establish a connection
between the two solutions, thereby eliminating
potential data duplication across multiple information
systems. Integration service does not offer all the
functionalities of the primary web interface. It provides
most read-and-write operations. Operations that are not
supported include those that could affect the entire
information system's functionality, such as
configuration properties and limitations imposed by
legal regulations.

The information system was developed as a
modular microservice system. Fig. 1 shows the
simplified architecture of the information system for
end users (the central part of the information system).

All end users' requests, regardless of how they are
made, are sent to the Representational State Transfer
Application Programming Interface (REST API) for
data manipulation (data retrieval, inserting new data, or
updating existing data).

Web user interfaces use separate controllers from
other modules. Most controllers in the REST API are
generated at startup, depending on the available queries
and commands. This simplifies adding new queries and
commands because no configuration is needed to use
them. Some specific controllers are not generated but
are written by developers to enable the execution of
particular tasks. Due to this level of customization,
only web user interfaces created by the company can
utilize them.

E-mail client plugin and other modules use separate
controllers. These controllers are written by developers
and are not generated at the startup. These controllers
form an integration service that enables other
information systems to exchange data with this
information system.

This means that only actions permitted by the
company are allowed for use with other information
systems. Because other information system modules
perform specific tasks, unlike web user interfaces,
separate controllers were made. These modules do not
require all available operations, such as web user
interfaces.

Controllers are responsible for accepting user
requests and determining whether the request should be
forwarded to other components or if the controller can
process the request itself without needing to query the
database and send the response to the web interface.

Varazdin, Croatia

204 Proceedings of the Central European Conference on Information and Intelligent Systems

Primary web Secondary web

user inteface user inteface

REST API

Controllers

Query or command

Query Command
gate gate
Execution
L 4 layer ¥
Queries Commands

Database

Figure 1. Information system architecture overview

If access to the database is needed, whether for a
query or command, the request is forwarded to the
resolver. The resolver determines whether a query or
command needs to be executed to process the request.
The request is sent to the query gate if it is a query.
Otherwise, it is sent to the command gate.

Each gate executes a query or command in the
execution layer. Depending on what component was
called, the result can be a data set (the result of a query)
or information on whether modifications to the data
were successful (the result of a command). The list of

36th CECIIS, September 17-19, 2025

queries and commands is not static. It is automatically
generated at the start time, and no configuration is
needed to add a new query or command. This enables
a quick and easy way to add new queries and
commands or modify existing ones.

The execution layer executes queries and
commands on the given database. It can be configured
to use one or more databases. The default configuration
utilizes a single database, but it also supports multiple
databases. For example, it can be configured to use two
databases. In that case, one database can be used for
queries (read) and a second for commands (write). In
the case of multiple databases, it is necessary to ensure
data synchronization between databases.

4 Planning and Development
Processes

The company uses the Agile method Scrum for
planning and development. To simplify the entire
process, the company uses the tool Azure DevOps.
This section contains descriptions of Azure DevOps
and planning and development processes.

4.1 DevOps

The acronym DevOps comes from the concept of
development and operations. These are related to the
creation of software products. Its challenges include
the adequacy of applying techniques and software
development processes that align with all necessary
operations to deliver a quality product. In this sense, a
relationship between quality, costs, operations, time,
and activities is essential and must be related to the
participation of all software development team
members (Bento et al., 2023).

DevOps is a set of practices that integrate software
development and IT operation teams by working
together across the entire software development life
cycle (Dileepkumar & Mathew, 2021).

Azure DevOps is a professional tool used by
companies specializing in software development
(Bento et al., 2023). It is widespread worldwide and
has a large amount of documentation and working
methods. Azure DevOps enables organizations to
manage their end-to-end software development and
deployment processes effectively and efficiently
(Dileepkumar & Mathew, 2021).

Azure DevOps is composed of several key
components that form its backbone. These include
e Azure Repos, which manages source code

repositories, Azure Pipelines for continuous

integration and delivery,

e Azure Boards for agile project management,

e Azure Artifacts for package management.

Varazdin, Croatia

Proceedings of the Central European Conference on Information and Intelligent Systems 205

These components work together to streamline the
software development process, thereby enhancing
team collaboration and productivity (Borra, 2024).

Azure Boards is a versatile and adaptable tool for
organizing and overseeing work across teams. It
facilitates agile project management functions,
including backlog management, sprint planning, task
tracking, and visual boards. With customizable
features such as work item configuration, burndown
charts, and seamless integration with other Azure
DevOps services, Azure Boards ensures that teams
maintain visibility and transparency, which are crucial
for alignment and productivity (Borra, 2024).

Azure Repos provides Git repositories designed for
efficient code version control, enabling seamless
collaboration among teams. Regardless of project
scope, teams benefit from features such as branching,
pull requests, code reviews, and branch policies,
ensuring code quality, consistency, and collaboration
(Borra, 2024).

Azure Pipelines emerges as a robust continuous
integration and continuous delivery (CI/CD) service,
automating the build, test, and deployment processes.
It accommodates various programming languages,
platforms, and deployment targets, seamlessly
empowering teams to deploy applications to any cloud
or on-premises environment. With features such as
multi-stage pipelines, parallel execution, and
integration with third-party tools, Azure Pipelines
enables teams to deliver software updates confidently
and efficiently (Borra, 2024).

Azure DevOps is used in the selected company for
planning, development, building new versions, testing,
and deployment. The project is based on .NET
technology, and the logical choice was to use the most
compatible tool.

4.2 Planning process

The chosen information system is designed to support
state administration bodies in their operations. For this
reason, multiple sources influence the planning process
and future development. These sources offer ideas or
requests for improving the information system and
defining new functionalities. The source can be an
employee, a customer, a legal regulation, or a third
party (for integration services). This means that the
need for new functionalities rises during the year, and
because the company uses Scrum, that is not a problem.

Azure Board enables the definition of new
functionalities and agile ways of work management.
The company uses Azure Board to log incoming
requests or ideas as work items regardless of the
source. Also, it enables tracking completed work.

For this reason and planning, it is necessary to
group all related functionalities. As mentioned before,
the company uses Azure. The Azure Board enforces
grouping all work items into groups called Epics and
Features.

36th CECIIS, September 17-19, 2025

The company uses group Epic to group work items
per project or, in the case of complex projects, into
multiple Epic groups. In the case of the chosen
information system, the company uses the following
Epic groups:

e one epic group for main functionalities and minor
modules of the information system,

e one epic group for architectural improvements,

e three epic groups for the three most significant
modules and improvements to the information
system,

e one epic group for deployment and implementation
of solutions in the customer's environments for core
components and all modules except one module,

e one epic group for deployment and implementation
of the most complex module.

These groups were created to simplify the process
and enable easier tracking of completed work, rather
than placing everything in one group. Creating a new
epic group is allowed only for senior employees and
only for legitimate business reasons.

Some of the properties for epic groups are group
name, description, start date, and target (end) date.
Because this is a long-term project, these epic groups
do not have a defined target date. The information
system is constantly updated with new functionalities
and improvements.

Feature groups are part of an epic group,
representing specific information system features. A
feature group is a core component, a module
component, an improvement requested by the
customer, and other information system features.
When this paper was written, there were 141 feature
groups distributed in seven epic groups.

Feature groups have the same properties as epic
groups, like group name, description, start date, and
target (end) date. All feature groups have a target date
except those used for core components.

Azure Boards (a part of Azure DevOps) offers a
graphical representation called a feature timeline of all
feature groups for easier planning and prioritizing
work. It uses a Gantt chart for a graphical
representation of feature groups.

Feature groups contain User Stories and Bugs. A
User Story is a work item that includes a description of
a new feature or improvement of an existing feature of
the information system. A Bug describes a found or
reported bug in the information system. User Stories
and Bugs must include all relevant information for
developers to create new features, improve existing
features, or fix bugs in the information system. They
represent assignments for the developers.

Each user story and bug must contain a Task. A task
represents specific actions that a developer must do to
fulfill the assignment. A user story and a bug must
contain at least one task.

User stories and bugs can contain issues besides the
tasks. An issue is added later in the development if an
error is found in the solution during the testing, or if

Varazdin, Croatia

206 Proceedings of the Central European Conference on Information and Intelligent Systems

something is not done as described in the user story or
bug. The issue can be added to the user story or bug
only if the user story or bug is still in the sprint backlog.
A new Bug must be created if the original user story or
bug is not in the sprint backlog.

In the company, only senior employees can create
epic and feature items (groups). Everyone can create
user stories, bugs, tasks, and issues, regardless of their
position or role.

All employees are divided into two groups. These
groups are:

e business group (business analysts, project
managers, product owner, implementers, testers),

e technical group (developers, solution architects,
project technical managers, scrum master).

Business group members are responsible for
communicating with the customers, configuring the
features of the information system, and testing new
versions. The business group does not have permission
to modify the source code.

Technical group members are responsible for
developing new features or improving the existing
features of the information system. The technical group
has permissions to access and modify the source code.

The information system is not available to
everyone. It can only be obtained by directly contacting
the company and is available only for specific clients.
The information system is designed for use by state
administration bodies and state agencies. When buying
the information system, a contract is made between the
customer and the company. The contract lists all details
about the installation, maintenance, and deployment of
new versions. A dedicated contract is made if a
customer wants a specific new functionality.

The company assigns a project manager and a
project technical manager to every customer. A project
manager is tasked with communicating with the
customer's representative about the functionalities of
the information system and the deployment of new
versions (if deployment and maintenance are listed in
the contract).

The project technical manager is responsible for
assisting the project manager with technical issues and,
if necessary, communicating with the customer's
representative about maintenance and technical issues
(if that is listed in the contract).

Business group members are responsible for
creating new work items for the developers. Depending
on the source of the work item, a work item can have a
target date or not. If the source for the work item is a
customer, there is often a target date.

For new functionalities requested by the customer,
a new dedicated contract with the customer must be
created and signed. If the customer insists on a specific
deployment date for the new version with the new
functionality, and a target date is specified in the
contract, new work items will also have a target date.
Before the target date, a new version must be deployed.
On the target date, a new version must be given to the
customer for use.

36th CECIIS, September 17-19, 2025

There is no need for a separate contract if the
customer reports a bug. If it is a critical bug, a solution
will be deployed as soon as possible. If it is a minor
bug, the solution will be deployed on the scheduled
date (if continuous deployment of the new version is
specified in the contract).

The deployment of new versions varies per
customer. Some customers prefer monthly
deployments, while others opt for a new version
deployment once a year.

Business group members must decide if existing
feature groups can be used for new work items when
planning future work. If the existing feature group fits
the purpose for new work items, the employee creates
new user stories and bugs inside that feature group.

If existing feature groups are not suited, senior
members must create a new feature group and decide
on the group name and its properties. One of the
important properties is the target date because this
property influences the feature timeline and
deployments. Also, it influences the prioritization of
work items.

Depending on the complexity of the new
functionality, an employee creates one or more user
stories. A user story must be completed within a sprint.
If that requirement can not be fulfilled, multiple user
stories are made.

Feature groups that do not have a target date are
dedicated to user stories for functionalities that are nice
to have but are not requested by the customer, or for
functionalities for which a release date has not been
decided. Also, feature groups in the epic item from
architectural improvements do not have a target date.
These groups are dedicated to technical group
members and user stories with tasks for optimizing or
improving core components that affect the entire
information system.

Business group members have meetings every two
weeks to prioritize work items (user stories and bugs).
These meetings occur before sprint planning for the
upcoming sprint. The prioritization is done according
to the feature timeline (current contracts) and by the
significance to the information system.

When a work item (user story or bug) enters a
sprint, responsible business group members must be
available to the developers for additional information
regarding the work item (if necessary).

After a new version of the information system is
built and deployed on the company servers, testers
conduct tests on the information system. If an issue is
found and a user story or bug is still present in the
sprint, the tester creates an issue and notifies the
responsible developer, whose task is to resolve the
issue as soon as possible. If a tester finds an issue
whose related user story or bug is not in the sprint,
he/she must create a new work item (bug).

If a new version does not have critical bugs, it
becomes a release candidate. The project manager's
task is to decide if the new version will be deployed on

Varazdin, Croatia

Proceedings of the Central European Conference on Information and Intelligent Systems 207

the customer's servers. This also depends on the signed
contract and deployment plan listed in the contract.

Project managers must contact customer
representatives if a new version needs to be deployed.
After agreeing on the time and date of the deployment,
project managers must communicate the date and time
to the project technical manager. The project technical
manager is responsible for the deployment of the new
version. If the project technical manager is unavailable
to perform the deployment, senior members of the
technical group must decide who will perform the
deployment instead.

Deployments can be automated or manual.
Deployments on the company test servers are
automated. The deployment method varies per
customer due to infrastructure, business, and security
restrictions. An example of manual deployment is the
use of an information system within the customer's
local network, without internet access.

4.3 Development process

The technical group is responsible for development.
The group consists of developers and solution
architects, some of whom hold the role of project
technical manager. The group is also referred to as the
development team.

At the time of writing this paper, the technical
group consisted of
e three junior .NET developers,

e three mid .NET developers,

e two senior .NET developers,

e three SQL developers,

e two solution architects,

e scrum master/solution architect.

Developers are responsible for developing new
features, improving existing features, and fixing bugs.
Solution architects are responsible for the architecture
of the entire information system and deciding on the
best approach for implementing new features or
improving core components. The development team
has three solution architects, but not all three are in
charge simultaneously. One solution architect, who
also serves as a Scrum Master, is the lead solution
architect. The remaining two solution architects
support the lead solution architect, and each is
responsible for a different area. One is dedicated to
databases, while the other is dedicated to
programming. In the absence of a lead solution
architect, one of the remaining two solution architects
assumes the role of lead solution architect.

Technical group members are shielded from
outside influence and are a self-organizing team. The
exceptions are project technical managers who only
communicate with the customer representative if
necessary.

The development teams’ work is organized into
sprints. One sprint lasts two weeks. The exception is

36th CECIIS, September 17-19, 2025

the month of August, when the sprint lasts the entire
month because most developers are on vacation. In
August, the development team works at half capacity
due to vacations and the shift of developers returning
from vacation and those just going on vacation.

Before every sprint, the development team
organizes a meeting called sprint planning. That
meeting is held a day or a couple of days before the
start of a new sprint, depending on the available time
of the development team members. All development
team members are required to participate in the
meeting. Also, the product owner is obligated to be
present at the meeting. Sprint planning is led by the
lead solution architect or, in the case of absence, one of
the two remaining solution architects.

At the beginning of sprint planning, all unfinished
items from the previous sprint are transferred to the
new sprint. After that, new items from the product
backlog are added to the new sprint according to the
priority established by the business group members.
New items are added until 70% of sprint capacity is
achieved.

In Azure DevOps, every developer has an assigned
daily capacity from which a total capacity for the sprint
is calculated. Developers’ daily capacity depends on
their knowledge and experience. It varies from three
hours (for junior developers) to six hours (for senior
developers). The remaining working hours are
allocated for breaks, code reviews, learning, and
knowledge transfer.

The 70% limit was chosen based on previous
experiences. During the sprint, unforeseen
circumstances could result in the absence of one or
more developers or solution architects. The reason for
absence could be illness, family problems, or specific
emergency problems. Also, a critical bug could be
found during the sprint, which requires immediate
action. These bugs are added later during the sprint in
the sprint backlog and also affect the team’s capacity.

The installation of the information system on the
servers of the new customer or the installation of new
modules on the servers of existing customers are user
stories (work items) that can be added to the sprint
backlog during sprint planning. Reasons for this are
contracts that specify fixed dates for installation and
delivery, and because the initial installation or
installation of additional modules requires the
installation of support software on customer servers.

Deployments of new versions are not user stories
(work items) because the deployment process is
simplified, and the date for deployment is agreed upon
when a new stable version is created (unless the date is
also listed in the contract or if a version contains a
feature request by the customer). For deployment of
upgrades, it is unnecessary to install any additional
support software (it is already installed on the servers).
This is also one of the reasons for the limit of 70%
capacity.

Work items are not immediately assigned to each
developer during sprint planning. Instead, each

Varazdin, Croatia

208 Proceedings of the Central European Conference on Information and Intelligent Systems

developer takes over a new work item once the
previous one is completed. Junior developers can
choose which work item they want to work on next.
This is permitted due to their limited experience and
knowledge. Junior developers take tasks they already
know how to complete or tasks for learning purposes.
All other developers and solution architects must take
work items according to priority. The exceptions are
sensitive tasks (modification of core components or
task complexity). These work items are immediately
assigned to the senior developer or solution architect.

A daily meeting is held during the sprint at the
beginning of each work day. Members of both groups
are present at the daily meetings. At these meetings,
technical group members must report on their activities
from the previous working day and announce their
tasks for the current day. At the end of the meeting,
business group members are allowed to announce any
new information they have obtained during the
previous day (if necessary for the development). Daily
meetings can last between five and twenty minutes,
depending on the number of present technical group
members.

The development team holds weekly meetings
called development backlog meetings, during which
technical topics are discussed. The topics of these
meetings include the presentation of changes to core
components, discussion on the best way to implement
a specific new feature, assisting another developer in
solving a particular problem they encountered during
development, and other related topics. The duration of
this meeting is approximately one hour. Development
backlog meetings are not always held every week. It
depends on the number of available developer team
members and if there is a suitable topic for the meeting.

A sprint review and retrospective are held at the end
of the sprint. Members of both groups are present at
these meetings. The purpose of a sprint review and
retrospective is to present new features or significant
improvements to existing features (if any have been
introduced) to all employees working on the project,
and to discuss problems encountered during the sprint
and possible solutions to improve future sprints.

Additionally, during these meetings, a discussion
on metrics is held. The most used metrics are velocity,
sprint progress, burndown chart, pipeline pass rate, and
deployment pass rate. Metric results are discussed at
the meeting to determine possible problems and
bottlenecks. Especially if a negative trend is identified,
this discussion enables every member to express their
opinion and fosters open communication. It also
creates an opportunity for every member to propose a
solution for improving planning and development
processes.

5 Discussion

The previous section describes planning and
development processes separately, but it is necessary

36th CECIIS, September 17-19, 2025

to view these processes as a whole. Members of both
groups must work together to improve and maintain the
information system. Fig. 2 illustrates a simplified flow
diagram for both processes, along with the
corresponding links between them.

o

Business team

Create / modify
user stories and
bugs

Send to solution
architects for
approval and

estimation

Solution architect
approved

Add user story or
bug to product
backlog

:

Business team
weekly meeting

i

Development team

Sprint planning

:

Resolve user stories|
and bugs

:

: Development team
Yes H weekly meeting

No

User story or bug
in sprint 7

3

Create new version

:

Deploy new version
to test environment

Yes IS —

Found errors

Testing

Sprint review /
retrospective

Figure 2. Planning and development processes

Varazdin, Croatia

Proceedings of the Central European Conference on Information and Intelligent Systems 209

The company's solution architects, project
managers, and product owner cooperate when defining
new work items (user stories and bugs). After the
business team member creates a work item, the
solution architect reads what was written and leaves a
comment. These comments are helpful because they
enable the business team member to correct any
mistakes or provide additional information before a
work item is sent to the developer. It also helps
developers to better understand what is asked of them.

The entire process begins with a discussion
between business team members about new
functionalities or improvements, regardless of whether
the customer has requested it or the idea originated
from an employee. Anyone can propose ideas for
improving the information system. Sometimes,
changes to the information system are necessary due to
updates in legal regulations.

After creating a work item, if the employee is
satisfied with the content, it is sent to the solution
architects for review. The original author of the work
item becomes the owner of the user story or bug. If the
work item is well-written and contains all the necessary
information, a solution architect assesses the effort
required for the developer to complete all tasks
associated with that work item.

If the solution architect is not satisfied with the
description in the work item or if relevant information
is missing, the solution architect leaves a comment and
asks for an amendment or makes modifications to the
work item. Regardless of what a solution architect
does, a work item is returned to the owner.

If changes were made to the work item, the owner's
task is to assess the changes and send a review to the
solution architect. If a comment (review of the solution
architect) was left, the owner must decide whether and
what changes will be made to the work item and send
the modified work item to the solution architect. This
process repeats until the owner and solution architects
are satisfied with the contents of a work item.

This has been shown to be a best practice for
creating new work items, as it helps both employees
understand each other's positions better and shortens
development time when necessary information is
provided in the work item. The disadvantage is that it
takes longer to write work items and creates additional
assignments for solution architects. However,
compared to previous practices where only business
team members wrote work items, it demonstrates better
communication between employees and increased user
satisfaction. It is easier for a developer to program
something when the description and all resources are
in the work item. This means fewer bugs in the newly
added feature, which results in a better user experience.

After an estimate is given, the work item enters the
product backlog at the end (the last item in the product
backlog). It stays at the end of the product backlog until
the prioritization meeting. At this meeting, all members
of the business teams discuss all new work items and
decide on a priority. The priority of work items is

36th CECIIS, September 17-19, 2025

determined based on the feature timeline (Gantt chart),
the agreed-upon deployment dates, and members’
options. At that time, work items can change position
in the product backlog.

At that point, business team members are done with
their work on the discussed work item, and the
technical team members (development team) consider
these work items during the next sprint planning. At
sprint planning, new work items are added to the new
sprint until the capacity reaches the 70% limit of the
maximum capacity. New items are added according to
the previously determined priority.

Most work items are discussed during sprint
planning before being added to a new sprint backlog.
Some work items are not addressed because they are
simple and have straightforward solutions. This
discussion is the final point at which work items can be
discussed before proceeding to development.

In practice, this discussion has proven beneficial
because it allows other development team members to
point out possible mistakes or business rule violations.
Additionally, it is beneficial for junior developers to
observe the thought process of evaluating work items
and develop an understanding of what is essential for
effective work items. It enables junior developers to
advance their knowledge and learn how to estimate the
effort needed to resolve work items.

During sprint planning, the development team can
reject a work item after discussion if they determine
possible mistakes, limitations, or conflicts with other
work items. The rejected work items are returned to the
business team and are not added to the sprint backlog.
The rejected work items can be returned to the
development team for the next sprint planning after
modification of the description, depending resources or
additional clarification.

After sprint planning, when a new sprint begins, the
development team starts working on work items in the
sprint backlog. During this time, business team
members are available to answer any questions that
may arise during development.

During the sprint, the business team works on work
items for the next sprint and tests and evaluates work
items that have already been completed from the
previous or current sprint (if a new version is built
during the sprint). Additionally, the business team must
maintain contact with customers to understand their
needs and assist them in resolving any issues that arise
during the use of the information system. The task of
the business team is to shield developers from outside
influence and enable them to focus on solving assigned
work items.

The business team also holds daily meetings to
discuss its plans. The development team does not
participate in these meetings. At these meetings,
members discuss feature groups, deadlines, and future
deployment dates per customer.

The development team holds daily meetings where
every member is required to report on their previous
workday and outline their plan for the current workday.

Varazdin, Croatia

210 Proceedings of the Central European Conference on Information and Intelligent Systems

It is beneficial for senior developers and solution
architects to know what the junior developers are
working on because it enables them to predict if or
when they would need assistance. It helps senior
developers and solution architects plan their daily
obligations.

For junior developers, daily meetings are important
to see what could be achieved if they choose to stay in
the IT business domain and invest time in learning and
code analysis of solutions made by the senior
developers.

Every week, the development team has a
development backlog meeting. These meetings are
used to present significant changes to the core
components, address questions and problems for junior
developers, and discuss future changes to the
information system's architecture. As mentioned
before, there is one epic group for architectural
improvements. This group 1is reserved for the
development team for features and work items related
to the information system's architecture. In this group,
developers create work items for themself. These work
items address problems that are not known to the
business team. The business team lacks insight into the
information system's background process and core
components.

Developers are responsible for creating work items
and further improving core components. Senior
developers and solution architects propose ideas at
development backlog meetings, and the entire team
discusses them. If the proposed changes to the
information system would provide benefits, a selected
senior developer or solution architect creates a work
item. Also, the development team proposes a priority
for the work items.

Work items created by developers follow the same
procedure as all other work items. Work items are sent
to the business team. The business team discusses the
work items and sends feedback to the development
team. The business team assigns priority to these work
items based on the development team's proposition,
and most of the time, it is the same as proposed.

At sprint planning, at least one work item created
by the development team is added to the sprint backlog,
and a senior developer is immediately assigned. The
assigned developer is usually the same developer who
created the work item. When a new version is built,
testing completed work is done by other senior
developers or solution architects. Testers do not test
these solutions.

During the sprint, one or more new versions of the
information system are built. At least one version of the
information system must be built at the end of the
sprint.

When a new version is created, it is immediately
deployed on company servers, and the business team is
notified. Testers and project managers are responsible
for testing the latest version and analyzing completed
work. Completed work items can be returned to the
development team for necessary changes. These

36th CECIIS, September 17-19, 2025

requests for changes can be made in the form of an
issue, a completely new user story, or a bug.

New versions should be presented at the end of the
sprint at the sprint review and retrospective meeting,
but in practice, that is not the case. Depending on the
impact of the changes, that part of the entire process is
sometimes skipped.

The described process works best for these teams
and their project. This is evident in the company's
overall income and customer satisfaction.

6 Conclusion

This paper presented the planning and development
process for one of the projects in the Croatian software
development company. The paper also describes the
chosen information system to provide full context.

The aim of this paper is to describe how the Scrum
framework was adopted for the selected project, the
impact on the team, and the best practices that
emerged, highlighting how this implementation
enabled agility in response to quick changes. This
implementation demonstrates how the Scrum
framework can be applied in practice and customized
for each company, project, and team.

The presented processes show the current state of
the project. This project is an ongoing project and will
continue to be until a new iteration of the information
system is started (the new information system started
from scratch in the newer technologies) or the
customers find a better product.

The processes have possibilities for improvement.
However, whether the improvement will be accepted
or not will be shown if further analysis and follow-up
research are conducted.

Varazdin, Croatia

Proceedings of the Central European Conference on Information and Intelligent Systems 211

References

Andrei, B.-A., Casu-Pop, A.-C., Gheorghe, S.-C., &
Boianggiu, C.-A. (2019). A study on using
waterfall and agile methods in software project
management. Journal of Information Systems &
Operations Management, 13(1), 125-135

Bento, A. C., Delgado D. A. C., & Camacho-Leon, S.
(2023). Experimental Survey Results on
Azure.DevOps Application for Management
Student’s Projects. 2023 Future of Educational
Innovation-Workshop Series Data in Action, 1-5

Bomstrom, H., Kelanti, M., Annanper, E.,
Liukkunen, K., Kilamo, T., Sievi-Korte, O., &
Systé, K. (2023). Information needs and
presentation in agile software development.
Information and Software Technology, 162,
107265

Borra, P. (2024). Maximizing Efficiency and
Collaboration with Microsoft Azure DevOps.
International Journal of Advanced Research in
Science, Communication and Technology, 4(2),
556-562

Debski, A., Szczepanik B., Malawski, M., Spahr S., &
Muthig, D. (2017). A Scalable, Reactive
Architecture for Cloud Applications. [EEE
Software, 35(2), 62-71

Diakov, S. O., Zubrei, T. E., & Samoidiuk, A. S.
(2019). Application of Event Sourcing and CQRS
Patterns in Distributed Systems. Adaptive Systems
of Automatic Control, 1(34), 16-22

Dileepkumar, S. R., & Mathew, J. (2021). Optimize
Continuous Integration and Continuous
Deployment in Azure DevOps for a controlled
Microsoft .NET environment using different
techniques and practices. /[OP Conference Series:
Materials Science and Engineering, 1085(1),
012027

Erb, B., & Kargl, F. (2014). Combining Discrete
Event Simulations and Event Sourcing. Seventh
International Conference on Simulation Tools and
Techniques, 51-55

Itzik, D., & Roy, G. (2023). Does agile methodology
fit all characteristics of software projects? Review
and analysis. Empirical Sofiware Engineering, 28,
105

Kabbedijk, J., Jansen, S., & Brinkkemper, S. (2012).
A Case Study of the Variability Consequences of
the CQRS Pattern in Online Business Software.
17th European Conference on Pattern Languages
of Programs (EuroPLoP '12),2,1-10

Kufner, J., & Marik, R. (2019). Restful State
Machines and SQL Database. IEEE Access, 7,
144603-144617

36th CECIIS, September 17-19, 2025

Lima, S., Correia, J., Araujo, F., & Cardoso, J. (2021).
Improving observability in Event Sourcing
Systems. Journal of Systems and Software, 181,
111015

Omonije, A. (2024). Agile Methodology: A
Comprehensive Impact on Modern Business
Operations. International Journal of Science and
Research (IJSR), 13(2), 132-138

Overeem, M., Spoor, M., & Jansen, S. (2017). The
Dark Side of Event Sourcing: Managing Data
Conversion. [EEE 24th International Conference
on Software Analysis, Evolution and
Reengineering (SANER), 193-204

Overeem, M., Spoor, M., Jansen, S., & Brinkkemper,
S. (2021). An empirical characterization of event
sourced systems and their schema evolution -
Lessons from industry. Journal of Systems and
Software, 178, 110970

Rajkovi¢, P., Jankovi¢, D., & Milenkovi¢, A. (2013).
Using CQRS Pattern for Improving Performances
in Medical Information Systems. 6th Balkan
Conference in Informatics (BCI 2013), 86-91

Saffer, D. (2010). Designing for Interaction: Creating
Innovative Applications and Devices, Second
Edition. New Riders.

Schwaber, K., & Beedle, M. (2002). Agile Software
Development with Scrum. Prentice Hall

Weerakoon, W., & Kumara, B. T. G. S. (2018). Data
Handling and Maintaining Data Consistency in
Scalable Replicated Micro-Services. /1th
International Research Conference General Sir
John Kotelawala Defence University, 281-286

Zayat, W., & Senvar, O. (2020). Framework Study for
Agile Software Development Via Scrum and
Kanban. International Journal of Innovation and
Technology Management, 17(04), 2030002

Varazdin, Croatia

