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Abstract. This paper examines system dynamics (SD)
in the context of building digital twins (DTs),
particularly within circular economy systems. It begins
with an overview of SD. The strengths and limitations
of SD are analysed in comparison with complementary
simulation methods, including Agent-Based Modeling
(ABM), Petri Nets, and Discrete Event Simulation
(DES), to identify potential for integration. The
analysis focuses on how these methods can address
specific gaps in SD, such as individual-level behaviour,
discrete events, and operational workflows and
enhance the accuracy, detail, and flexibility of DT
development. The paper explores methodological
approach for combining SD with complementary
approaches and highlights the importance of selecting
modeling techniques based on system characteristics
and modeling goals. The feasibility of implementing
such models is further examined through the analysis
of relevant modeling tools, with particular attention to
hybrid platforms like AnyLogic that support SD, ABM,
DES, and vreal-time data integration in DT
applications. The paper discusses future directions for
simulation-based DT development in circular economy
contexts, emphasizing the potential for multi-method
modeling to support strategic and operational
decision-making.
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1 Introduction

In modern organizations, value chains and business
ecosystems there is a strong emphasis on increasing
agility and efficiency, optimizing operations, reducing
disruptions and other risks (Sabri & Sahri, 2010). This
requires  real-time analytical and predictive
capabilities. Increasingly and in various problem areas,
the solution is sought in building a DT of the system
being managed (Akhtar et al, 2022). A DT is a
simulation model of a physical system that reflects its
function, behavior, or other properties of interest with
sufficient accuracy, and is coupled to that system in
such a way that it receives data about the states and
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changes of its original in real time. A physical system
and its corresponding DT as a cyber representation
form a cyber-physical system (CPS) (Januario et al.,
2019).

The choice of the method and technique of
simulation modelling, which is the basis for building a
DT, is critical in its construction. The focus of this
paper is on the research of properties of SD in the
development of a simulation model, and later a DT in
the field of circular economy. SD is a method used to
understand the behavior of complex systems over time.
Its core strength lies in its ability to model interactions
among different system components and analyze how
changes in one part of the system affect others (Ding et
al., 2018; Gejo-Garcia et al., 2022). SD can be limited
in predicting unexpected behaviors and external
influences that can significantly affect the long-term
behavior of a system. Because of these limitations, the
combination of SD with other modeling methods is
becoming increasingly popular (Sterman, 2018). For
example, ABM allows for more detailed simulations of
individual behaviors within a system (Ding et al.,
2018), while DTs provide real-time data and updates
(Liu et al, 2021) that can improve the accuracy of the
model.

The aim of the research, the results of which are
presented in this paper, is to analyze the suitability of
SD, independently and in combination with other
methods, for simulation modeling and building DTs of
physical circular economy systems.

The circular economy, which is based on the
principles of waste reduction, reuse and recycling,
requires models to analyze the flows of materials and
energy through the system (Chenet al., 2021).
Modeling circular economy processes faces
challenges, like nonlinear flows of materials and
energy, uncertainties in supply chains, heterogeneity of
actors, and the need to integrate short-term operational
with long-term strategic decisions. Precisely because
of these challenges, it is important to combine multiple
modeling approaches. SD is suitable for this purpose
because of its ability to model complex
interrelationships and feedback loops. Optimizing
resource use is essential to achieving the goals of the
circular economy. SD can help analyze the
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effectiveness of different resource management
strategies, such as reducing energy or water
consumption, and assess their long-term effects on the
system. This method allows testing different scenarios
to identify the most effective measures to conserve
resources (Akhtar et al., 2022).

The paper is structured into five chapters. Chapter
2 discusses SD and the possibility of its
complementary application with other modeling
methods. SD has been a subject of scientific research
for decades, as well as the similarities, differences,
overlaps, complements and possibilities of integration
of different methods, such as ABM, Petri Nets and
DES. Advantages of separate application of SD and
other methods, and to use the complementarity of
methods and synergistic effects on accuracy, usability,
reliability and other properties of the simulation model
and DT in an integrated environment (Choi et al., 2023;
Ding et al., 2018; Garcia, 2020). Building a DT based
on a SD and complementary methods, including the
methodological framework and decision-making in the
requirements definition and system design phase, is the
subject of Chapter 3. After comparative analysis,
followed the process of selecting methods
complementary to SD in simulation modeling and
possibly creating a DT of the physical system in the
circular economy. Chapter 4 analyzes the possibility of
applying tools for the development of DTs based on SD
and complementary methods. Conclusion and future
research summarize the analysis and highlight future
directions for the study of DTs based on SD and
complementary methods.

2 System dynamics and
complementary modeling methods

As SD is a system modeling method based on stocks
and flows, feedback loops (positive and negative), time
delays, as well as variables and parameters that define
relationships and influence system behavior over time
(Bala et al., 2017; Garcia, 2020). SD is more of a set
of methods and tools than a single method (Bala et al.,
2017). It involves creating models that represent
systems as a set of interconnected components, using
simulations to predict the behavior of the system over
time, and analyzing the feedback loops that govern the
dynamics of the system. Data for SD models usually
come from actual measurements, historical data, expert
assessments, and scientific research. The process
involves identifying key variables and the relationships
between them and quantifying them in a way that
allows for simulation and analysis (Bala et al., 2017).
SD is used in modeling and simulation of short-
term and long-term dynamics. It helps to understand
how changes in a system act in the short and long term,
including identifying causes and effects that may not
manifest immediately (Garcia, 2020). It is suitable for
modelling linear and nonlinear relationships within a
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system, which is crucial for understanding complex
systems (Garcia, 2020). In addition to predictive
analytics at the operational and tactical levels, SD is
used to analyze and design policies and strategies for
managing loosely coupled systems, including value
chains and ecosystems in the circular economy, which
is a particular subject of interest in this paper (Malbon
& Parkhurst, 2023).

SD is chosen as the primary modeling approach in
this article due to its unique ability to capture the
structural foundations and long-term behavior of
complex systems such as those found in the circular
economy. Unlike other modeling paradigms that focus
primarily on events or individual entities, SD
emphasizes systemic structure, causal relationships,
and feedback loops that drive system evolution over
time. This makes it particularly suitable for identifying
leverage points, simulating policy interventions, and
understanding the accumulation and depletion of
resources across production and recovery cycles.
Moreover, its capacity to integrate both qualitative
insights and quantitative data allows for flexible and
transparent model construction, which is essential in
domains where uncertainty, delays, and indirect effects
are common (Bala et al, 2017). By using SD as the
foundation, the model ensures a coherent, system-wide
representation upon which more detailed methods like
ABM and DES can be layered when needed.

The foundation for building a DT of a physical
system is the creation of its simulation model (Biller et.
al., 2023). This chapter presents a comparison of SD
with some other simulation modeling methods, to fill
in the gaps that are missing from SD. The applicability
and choice of methods for simulation modeling in
general, and in the circular economy, depend on
fundamental properties and expected behaviors of the
physical system, such as predominantly static versus
dynamic behavior; deterministic versus stochastic
behavior; linearity versus nonlinearity; discrete versus
continuous state changes; and the presence or absence
of feedback. It should also be considered whether the
objective of modeling is to understand and analyze the
physical system, optimize individual aspects, predict
behavior, or construct a DT.

ABM is a simulation method used to model the
interactions of autonomous agents which can represent
individuals, organizations, or entities, within an
environment (Khazaii, 2016). It is based on bottom-up
modeling, where agents follow defined rules and make
decisions based on local information, often leading to
complex, emergent phenomena (Khazaii, 2016).. It
captures the evolving state of the system over time,
which is useful for studying how complex behaviors
emerge from simple agent interactions, making it
useful for modeling systems with non-linear dynamics.
It is flexible for a wide variety of different domains,
scenarios, from human behaviors social dynamics, and
decision-making processes in areas like economics,
sociology, and politics, through ecological modeling of
interactions between species, resource usage, and

Varazdin, Croatia




Proceedings of the Central European Conference on Information and Intelligent Systems 81

environmental changes, to simulating complex circular
economy and supply chain behaviors and interactions
of agents. In all these applications, ABM focuses on
individual agents, which allows for granular analysis of
specific behaviors, interactions and outcomes (Khazaii,
2016).

There are problems for which ABM is not a good
solution for simulation modelling:

e problems that are highly deterministic or
where interactions are simple and predictable

e detailed information about individual agents
or their behaviors is unavailable

e optimizing processes at the system level,
especially when interactions are not as
important as high-level parameters

e problems requiring high-volume data
processing or real-time decision-making
when modeling large numbers of agents or
complex environments

e change in agent behavior, which would
require to calibrate the models accurately,
especially when there is limited data on agent
behavior.

e overfitting and to specific agents leading to
reduced generalizability.

ABM is useful in many areas, and research touches
on healthcare systems, smart cities, manufacturing, and
the like. Research (Ding et al., 2018) presented a
concrete example of SD implementation in the Vensim
tool and filled in the gaps that SD cannot fill with
ABM. In the area of complex systems, Cassidy et al.
conducted a systematic review of the application of SD
and ABM models (Cassidy et al., 2019). Their research
shows that SD can help in understanding complex
interaction. Agent-based models provide insight into
the behavior of individual entities within the system,
which can be complementary to the SD approach. SD
and ABM can be successfully used complementary in
simulation modeling. SD is used to study macro-level
system behavior such as the movement of resources or
quantities in the system over time. ABM models micro-
level system behavior through the behavior of
individual agents and their interactions. Examples are
people, their decisions and their interactions (Cassidy
etal.,2019). The combination of these methods allows
for a detailed understanding of micro-dynamics and its
impact on macro-dynamics. ABM is a bottom-up
approach, simulating changes in the state of individual
agents in the system, which can be aggregated in SD.
The combination of SD and AB can reduce
computational time, provide a strategic overview
characteristic of SD, while at the same time capturing
relevant elements of individual heterogeneity and
stochasticity of agents and interactions in processes
(Guerrero et al., 2016).

Petri Nets are a modeling method with a solid
mathematical foundation and graphic representation
used to represent and analyze discrete event systems,
particularly ~ for  systems  with  concurrent,
asynchronous, or parallel processes (Dai et al., 2020).
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Digital twins driving model based on Petri net in
industrial pipeline. They consist of places representing
conditions or resources, transitions representing events
or activities, tokens that reside in places and move
between places via transitions, representing the state of
the system (Dai et al., 2020). Petri nets are widely used
for modeling and simulating dynamic systems, with a
strong focus on the flow of information or resources
and how they evolve over time. Petri nets are
particularly effective at modeling systems with
multiple concurrent processes and synchronization
constraints. They are used for modeling various types
of systems, such as time or resource-dependent
processes in manufacturing, resource management and
scheduling, assembly and other workflow systems with
multiple interacting components. In the field of
communications, they are used for modeling
communication protocols, distributed systems, and
network flows, where concurrency and
synchronization are important, including concurrent
and parallel processing (Dai et al., 2020). Areas and
problems where Petri nets modeling is not a good
choice are:

e modeling continuous or analog systems, such
as fluid dynamics or electrical circuits, where
differential equations are used,

e very complex or large systems where Petri
nets are very large, computationally
expensive and difficult to analyze or simulate,
leading to state-space explosion problems,

e data-intensive systems that require detailed
and complex data modeling, because Petri
nets focus on control flow and resource
allocation, but they do not directly model
detailed data structures or system-level
behaviors,

e systems where decision-making is complex
and strategic, as they focus more on process
flow and less on high-level cognitive
behavior.

Petri Nets and SD can complement each other
effectively in simulation modeling (Duggan, 2006;
Viswanadham & Srinivasa Raghavan, 2000). Petri
Nets are excellent for capturing the detailed, event-
driven behaviors of specific processes (Viswanadham,
& Srinivasa Raghavan, 2000), such as material flows,
recycling processes, or product disassembly, where
concurrency, resource allocation, and synchronization
are important. SD, on the other hand, excels at
modeling feedback loops, stock-flow relationships,
and long-term behavior, such as the impact of recycling
rates on resource stocks or the effects of consumer
demand on product life cycles. By combining Petri
Nets with SD, detailed process flows and interactions
which are the result of events that occur and changes in
the state at certain points in time can be captured
alongside the broader, system-level dynamics. All of
the above is applicable to the circular economy because
it enables both operational insights and strategic,
policy-driven decision-making (Duggan, 2006).
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DES modeling method is used to represent systems
where changes occur at discrete points in time due to
specific events. In DES, the system's state is updated
only when an event occurs, and events trigger changes
in the system (Ragazzini et al. 2024). DES is
particularly useful for modeling and simulations of the
behavior of systems that are driven by discrete events,
providing a detailed and realistic simulation of how
systems operate over time. It can be used to model a
wide range of systems, from simple queuing systems to
complex manufacturing or healthcare systems and
transportation networks (Ragazzini et al. 2024). DES
can help in identifying bottlenecks, delays and
inefficiencies in system performance and resource
utilization. in a way that allows for experimentation
with different system configurations, resource
allocations, and process flows to test various scenarios
and outcomes (Ragazzini et al. 2024). DES has
limitations in modeling and simulations:

e useful only for systems where discrete
events happen at distinct points in time
and not for continuous or analog systems
where time is a continuous variable

e can be time-consuming and resource-
demanding, particularly for complex
systems when accurate modeling of
many events and interactions is required,

e In large or complex systems, the number
of possible states and events explodes
exponentially, making it difficult to
manage, analyze, or interpret the results.

e may not be effective in environments
requiring real-time decision-making,
such as some emergency systems, where
fast and dynamic adaptation to changes is
crucial.

DES and SD can be complementary in simulation
modeling, especially in the context of the circular
economy, by combining their strengths (Morgan,
2011). While SD is excellent for modeling large-scale,
long-term, and continuous feedback loops in systems
like resource flows, waste recycling, and stock
accumulation, DES can be used to model specific,
time-dependent events like the processing of materials,
product repairs, or resource transactions that occur at
discrete points in time (Reed et al., 2021). When
combined, SD can capture the overall dynamics and
feedback mechanisms within a circular economy,
while DES can model the detailed, event-driven
activities (such as product disassembly or resource
recovery) that drive those dynamics. Together, they
provide a more comprehensive view, combining the
holistic, feedback-rich system modeling of SD with the
event-based, process-level detail of DES, making them
effective in analyzing systems that require both high-
level strategic insights and detailed operational
efficiency (Jovanovski et al, 2012). Combining
system dynamics and discrete event simulations-
Overview of hybrid simulation models. Journal of
Applied Engineering Science, 10(3). .
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Several modeling methods can complement SD in
circular economy contexts. DTs support real-time
model validation and system monitoring, though they
require substantial data and resources. ABM enhances
SD by simulating individual behaviors and
interactions, offering detailed system insights, but is
complex to define and implement. Petri Nets are
effective for modeling discrete events and system
synchronization, though limited to event-driven
systems. DES excels at modeling time-specific
processes like material flows and repairs, but is less
suited for continuous dynamics. Each method
addresses specific system characteristics, enabling a
more comprehensive simulation when combined with
SD.

The method selection matrix is presented in Table 1.

Table 1. Method selection matrix for combination

with SD
Meth System- Implemen Application Real- Big Process
od level tation in  circular time data managem
understandin complexit economy .
N and | y a.naly ¥ntegrat ent. .an.d
analysis sis ion optimizati
on
DT + (Liu et - + (Rocca, + + + (Liu et
al, 2021) et al., (Cho (Stojan al, 2021)
2005) i et ovic et
al., al,
2023 2021)
)
AB + + (Ding | + (Lange | — - + (Ding et
M (Guerrero et al., et al., al., 2018)
et al., | 2018) 2021)
2016)
Petr + - + - - +
i (Viswana (Viswana (Viswana
Net dham, & dham, & dham, &
s Srinivasa Srinivasa Srinivasa
Raghavan, Raghavan, Raghavan,
2000) 2000) 2000)
DE + (Ganguli + + - - +
S & (Ganguli (Charnley (Ganguli
Adbhikari, & et al., &
2020) Adhikari 2019) Adhikari,
,2020) 2020)

3 Building a DT based on a SD and
complementary methods

DTs enable the creation of virtual replicas of physical
systems that are continuously updated with real-world
data. The combination of DTs and SD enables the
modeling and simulation of phycsical system in near
real-time. They help to identify and analyze changes in
the system in real time, which can improve system
prediction and management (Ganguli & Adhikari,
2020). According to Stojanovic et al. (2021) the
modern approach to DTs considers them as software
entities that follow the entire life cycle of their physical
counterparts, including the engineering, operations,
and disposal phases. A DT becomes a replica of reality
by implementing the real world as closely as possible
and calibrating it with data. It was originally proposed
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as a concept to support decision-making in the product
design and manufacturing, but is used as an analysis
tool throughout the entire life cycle. (Choi et al., 2023).

Regarding the application of SD as a
methodological foundation of DTns, Gejo-Garcia et al.
applied the concept of DT to manufacturing systems to
assess the long-term effects of different manufacturing
strategies. Their research shows how SD can simulate
and optimize manufacturing processes by considering
the dynamic interactions between  different
components of the system (Gejo-Garcia et al., 2022).
A similar approach is used by Choi et al. in simulating
naval ship operations using DTs, which shows how SD
can be used to optimize operational strategies and
improve ship performance (Choi et al., 2023). Both
studies explore the importance of SD in creating DTs
for the simulation and analysis of complex systems. In
the context of the importance of DTs, it is also
discussed in Ganguli & Adhikari article (2020)
regarding the development of the framework of the
virtual model of the physical system in which the DT
plays a role, but it is still necessary to create and
validate the simulation model, which is from the field
of SD.

SD enables the simulation of the wide world with
high fidelity, and the DT is not a term referring to a
specific technology, but an idea that simulates the
fusion of many existing state-of-the-art technologies.
Researches on combining DTs based on SD with other
methods, such as Gejo-Garcia et al., (2022) for
manufacturing systems, make it possible to draw
conclusions about why combining these methods has
advantages. DTs based on SD simulations provide a
platform for CPS in which the DT well reflects the state
of the physical system in real time. By enabling
simulations of states and changes in states in the near
future, the DT can serve:

I. Process management and  real-time
optimization, and indirectly improving
flexibility and resilience in unexpected
conditions Goodwin et al., 2024).

2. Decision support based on data and
predictions, and indirectly  proactive
identification of disruptions within physical
systems, optimizing resource utilization,
increasing efficiency, etc. (Vetrivel et al.
2024).

3. Continuous Optimization and Lifecycle
Management by leveraging real-time data and
simulations, and indirectly improving
planning capabilities, process stability, and
resource optimization (Zhou, 2024).

4. More comprehensive approach to model
building that includes different levels of
models, different relevant areas, flows, and
decision options within the domains of single
entity, value chains or ecosystems (Biller et.
al., 2023).

The methodological framework for the
development of DTs necessarily unites the theoretical
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structure, approaches and methods of two areas:
Simulation modeling methodology and Model
Technology - DTs are executable models that embody
the features, behaviors, and properties of physical
systems. To construct such executable, efficient,
reusable, and interoperable models, an appropriate
modeling technology is essential (Liu et al., 2019);
Systems Engineering methodology, as used for the
development of SCADA (Supervisory Control and
Data Acquisition) systems and software for automatic
process control.

4 Practical aspects of developing DT
based on SD

This chapter focuses on the practical aspects of
developing DTs based on SD and complementary
modeling methods. It outlines the most relevant
modeling tools and discusses the structural elements
and application considerations essential for creating
effective SD-based DTs in circular economy contexts.

4.1 Tools for modeling and simulation

Various software tools support the implementation of
SD and its complementary methods in the development
of DTs. Vensim, Stella, and AnyLogic are commonly
used for SD modeling, based on concepts such as
stocks, flows, feedback loops, and time delays (Sapiri
et al., 2017). AnyLogic, in particular, enables hybrid
modeling, combining SD, ABM, and DT functionality,
including real-time data validation (Farhan et al, 2020;
Chakraborti et al., 2020). Tools such as NetLogo and
Repast specialize in ABM, supporting simulation of
heterogeneous agents with adaptive behaviors and
local interactions, which is especially useful for
studying micro-level dynamics and emergent
phenomena (Robertson, 2005;Antelmi et al., 2022).
Petri nets are implemented through tools like CPN
Tools and PIPE, providing precise modeling of discrete
transitions, parallel processes, and resource flows
within systems characterized by concurrency and
synchronization (Dworzanski & Lomazova, 2013;
Llado, 2022). In the context of DES, tools such as
Simul8, Arena, or even AnyLogic support modeling of
event-driven systems where state changes occur at
specific points in time. DES is particularly effective for
analyzing queueing systems, resource scheduling, and
operational workflows, offering time-based precision
and performance optimization capabilities (Ganguli &
Adhikari, 2020).

Among the available tools, AnyLogic stands out as
the most versatile and comprehensive platform for
developing DTs based on SD and complementary
methods. Its support for hybrid modeling, which
integrates SD, ABM, and DES within a single
environment, allows researchers and practitioners to
simulate systems at multiple abstraction levels — from
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aggregate feedback-driven dynamics to individual
agent behavior and discrete event flows (Farhan et al,
2020; Chakraborti et al., 2020). Moreover, AnyLogic
supports real-time data integration, enabling dynamic
model calibration and validation, which is essential for
implementing operational DTs.

4.2 Conceptual and system architecture
for digital twin development

Fig. 1 illustrates the logical relationship between SD
and other modeling methods within a DT development
context.

final aim

Digital twin

powered by
System core
i modeling
dynamlcs foundation
complements complements
Petri nets /
Agent-based !
modeling Discrete-event
simulation

Figure 1. Conceptual modeling structure of a DT
based on SD and complementary methods

SD serves as the core modeling foundation for the
development of DTs, providing insight into long-term
system behavior through feedback loops, stock-flow
relationships, and continuous dynamics. SD has
limitations when it comes to representing discrete
events or individual-level behavior. To address these
gaps, complementary methods are integrated: ABM
enables simulation of autonomous agents and their
interactions, capturing emergent and heterogeneous
behaviors at the micro level; while Petri Nets and DES
allow modeling of discrete, time-specific events,
resource flows, and synchronization in operational
processes. Petri Nets and DES are grouped together
due to their shared focus on event-driven systems and
process-level precision. Together, these methods
complement SD by adding granularity, stochasticity,
and temporal accuracy, enabling the development of
DTs that are both systemic and detailed, strategic and
operational, predictive and responsive.

After establishing the conceptual modeling logic in
Fig. 1, which highlights the integration of SD with
complementary methods such as ABM and DES, Fig.
2 presents a layered architecture that shows how such
a model can be implemented within a CPS. It connects
the physical environment to the modeling logic through
communication infrastructure and real-time data
integration, ultimately supporting applications such as
monitoring, control, and decision-making.
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CYBER PHYSICAL SYSTEM

APPLICATION & USER INTERFACE
Visualization dashboards
Confrol panels (manual/automated)
Decision support

T

MODELING AND ANALY SIS LAYER
System Dynamics: core simulation logic
Agent-Based Modeling: micro-level behavior

Discrete Event Simulation / Petri Nets: events

T

DATA INTEGRATION LAYER
Real-time data ingestion
Historical data storage

AP connectors

T

COMMUNICATION INFRASTRUCTURE
Protocols: e.g. MQTT, OPC-UA TCP/IP

Gateways, edge devices

T

PHYSICAL SYSTEM / ENVIRONMENT
Sensors

Production lines, logistics infrastructure

Figure 2. Layered architecture of a CPS for DT
development (modified from Januario et al., 2019)

Architecture (Fig. 2) illustrates how DTs based on
SD, ABM, and DES are operationalized. It spans from
physical infrastructure and sensors, through
communication and data integration layers, up to the
simulation and application interface layers. This
structure can enable real-time simulation, monitoring,
and decision support in complex systems.

4 Conclusion and future research

This research analyzes SD and the need to complement
it with other simulation modeling methods, such as
ABM, and Petri Nets, especially in building DTs.
Although SD has many advantages, such as the ability
to model interactions within complex systems and
analyze feedback loops, its shortcomings include
limited ability to predict unexpected behaviors and
external influences. By combining SD with other
methods, these shortcomings can be compensated for
and the accuracy and reliability of modeling can be
improved, as demonstrated in this paper.

The research proposes the application of a
methodological approach in building simulation
models and DTs. Layered architecture is introduced to
integrate various modeling methods with data
infrastructure and application layers, enabling
simulation models to evolve into real-time, decision-
supporting DTs. This approach is particularly suited to
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circular economy systems, where feedback, flow
dynamics, and emergent behavior all play central roles.

Connecting different modeling paradigms like
system dynamics, agent-based modeling, and discrete-
event simulation enhances the representational fidelity
of circular systems. This integration allows
simultaneous representation of long-term trends,
operational process flows, and individual behavior
dynamics. In circular economy applications, such as
product lifecycle extension, waste reduction, and
material recovery, this multiscale perspective is
essential for designing more resilient and resource-
efficient systems.

Future research will focus on operationalizing the
proposed conceptual framework within the textile
industry. Using the architectural foundation presented
in this work, a DT will be developed for a production-
recycling flow with the objective of reducing generated
waste. The model will incorporate real-time data
streams, dynamic stock-flow structures, and event-
based control, enabling scenario analysis and
optimization of material reuse and resource efficiency
strategies in line with circular economy goals.
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