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Abstract. This paper examines system dynamics (SD) 
in the context of building digital twins (DTs), 
particularly within circular economy systems. It begins 
with an overview of SD. The strengths and limitations 
of SD are analysed in comparison with complementary 
simulation methods, including Agent-Based Modeling 
(ABM), Petri Nets, and Discrete Event Simulation 
(DES), to identify potential for integration. The 
analysis focuses on how these methods can address 
specific gaps in SD, such as individual-level behaviour, 
discrete events, and operational workflows and 
enhance the accuracy, detail, and flexibility of DT 
development. The paper explores methodological 
approach for combining SD with complementary 
approaches and highlights the importance of selecting 
modeling techniques based on system characteristics 
and modeling goals. The feasibility of implementing 
such models is further examined through the analysis 
of relevant modeling tools, with particular attention to 
hybrid platforms like AnyLogic that support SD, ABM, 
DES, and real-time data integration in DT 
applications. The paper discusses future directions for 
simulation-based DT development in circular economy 
contexts, emphasizing the potential for multi-method 
modeling to support strategic and operational 
decision-making. 
 
Keywords. system dynamics, agent-based modeling, 
digital twin, petri nets, discrete-event simulation 

1 Introduction 

In modern organizations, value chains and business 
ecosystems there is a strong emphasis on increasing 
agility and efficiency, optimizing operations, reducing 
disruptions and other risks (Sabri & Sahri, 2010). This 
requires real-time analytical and predictive 
capabilities. Increasingly and in various problem areas, 
the solution is sought in building a DT of the system 
being managed (Akhtar et al., 2022). A DT is a 
simulation model of a physical system that reflects its 
function, behavior, or other properties of interest with 
sufficient accuracy, and is coupled to that system in 
such a way that it receives data about the states and 

changes of its original in real time. A physical system 
and its corresponding DT as a cyber representation 
form a cyber-physical system (CPS) (Januario et al., 
2019). 

The choice of the method and technique of 
simulation modelling, which is the basis for building a 
DT, is critical in its construction. The focus of this 
paper is on the research of properties of SD in the 
development of a simulation model, and later a DT in 
the field of circular economy. SD is a method used to 
understand the behavior of complex systems over time. 
Its core strength lies in its ability to model interactions 
among different system components and analyze how 
changes in one part of the system affect others (Ding et 
al., 2018; Gejo-García et al., 2022). SD can be limited 
in predicting unexpected behaviors and external 
influences that can significantly affect the long-term 
behavior of a system. Because of these limitations, the 
combination of SD with other modeling methods is 
becoming increasingly popular (Sterman, 2018).  For 
example, ABM allows for more detailed simulations of 
individual behaviors within a system (Ding et al., 
2018), while DTs provide real-time data and updates 
(Liu et al, 2021) that can improve the accuracy of the 
model. 

The aim of the research, the results of which are 
presented in this paper, is to analyze the suitability of 
SD, independently and in combination with other 
methods, for simulation modeling and building DTs of 
physical circular economy systems. 

The circular economy, which is based on the 
principles of waste reduction, reuse and recycling, 
requires models to analyze the flows of materials and 
energy through the system (Chenet al., 2021). 
Modeling circular economy processes faces 
challenges, like nonlinear flows of materials and 
energy, uncertainties in supply chains, heterogeneity of 
actors, and the need to integrate short-term operational 
with long-term strategic decisions. Precisely because 
of these challenges, it is important to combine multiple 
modeling approaches. SD is suitable for this purpose 
because of its ability to model complex 
interrelationships and feedback loops. Optimizing 
resource use is essential to achieving the goals of the 
circular economy. SD can help analyze the 
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effectiveness of different resource management 
strategies, such as reducing energy or water 
consumption, and assess their long-term effects on the 
system. This method allows testing different scenarios 
to identify the most effective measures to conserve 
resources (Akhtar et al., 2022). 

The paper is structured into five chapters. Chapter 
2 discusses SD and the possibility of its 
complementary application with other modeling 
methods. SD has been a subject of scientific research 
for decades, as well as the similarities, differences, 
overlaps, complements and possibilities of integration 
of different methods, such as ABM, Petri Nets and 
DES.  Advantages of separate application of SD and 
other methods, and to use the complementarity of 
methods and synergistic effects on accuracy, usability, 
reliability and other properties of the simulation model 
and DT in an integrated environment (Choi et al., 2023; 
Ding et al., 2018; Garcia, 2020).  Building a DT based 
on a SD and complementary methods, including the 
methodological framework and decision-making in the 
requirements definition and system design phase, is the 
subject of Chapter 3. After comparative analysis, 
followed the process of selecting methods 
complementary to SD in simulation modeling and 
possibly creating a DT of the physical system in the 
circular economy. Chapter 4 analyzes the possibility of 
applying tools for the development of DTs based on SD 
and complementary methods. Conclusion and future 
research summarize the analysis and highlight future 
directions for the study of DTs based on SD and 
complementary methods. 

2 System dynamics and 
complementary modeling methods  

As SD is a system modeling method based on stocks 
and flows, feedback loops (positive and negative), time 
delays, as well as variables and parameters that define 
relationships and influence system behavior over time 
(Bala et al., 2017; Garcia, 2020).  SD is more of a set 
of methods and tools than a single method (Bala et al., 
2017). It involves creating models that represent 
systems as a set of interconnected components, using 
simulations to predict the behavior of the system over 
time, and analyzing the feedback loops that govern the 
dynamics of the system. Data for SD models usually 
come from actual measurements, historical data, expert 
assessments, and scientific research. The process 
involves identifying key variables and the relationships 
between them and quantifying them in a way that 
allows for simulation and analysis (Bala et al., 2017). 

SD is used in modeling and simulation of short-
term and long-term dynamics. It helps to understand 
how changes in a system act in the short and long term, 
including identifying causes and effects that may not 
manifest immediately (Garcia, 2020). It is suitable for 
modelling linear and nonlinear relationships within a 

system, which is crucial for understanding complex 
systems (Garcia, 2020). In addition to predictive 
analytics at the operational and tactical levels, SD is 
used to analyze and design policies and strategies for 
managing loosely coupled systems, including value 
chains and ecosystems in the circular economy, which 
is a particular subject of interest in this paper (Malbon 
& Parkhurst, 2023). 

SD is chosen as the primary modeling approach in 
this article due to its unique ability to capture the 
structural foundations and long-term behavior of 
complex systems such as those found in the circular 
economy. Unlike other modeling paradigms that focus 
primarily on events or individual entities, SD 
emphasizes systemic structure, causal relationships, 
and feedback loops that drive system evolution over 
time. This makes it particularly suitable for identifying 
leverage points, simulating policy interventions, and 
understanding the accumulation and depletion of 
resources across production and recovery cycles. 
Moreover, its capacity to integrate both qualitative 
insights and quantitative data allows for flexible and 
transparent model construction, which is essential in 
domains where uncertainty, delays, and indirect effects 
are common (Bala et al, 2017). By using SD as the 
foundation, the model ensures a coherent, system-wide 
representation upon which more detailed methods like 
ABM and DES can be layered when needed. 

The foundation for building a DT of a physical 
system is the creation of its simulation model (Biller et. 
al., 2023). This chapter presents a comparison of SD 
with some other simulation modeling methods, to fill 
in the gaps that are missing from SD. The applicability 
and choice of methods for simulation modeling in 
general, and in the circular economy, depend on 
fundamental properties and expected behaviors of the 
physical system, such as predominantly static versus 
dynamic behavior; deterministic versus stochastic 
behavior; linearity versus nonlinearity; discrete versus 
continuous state changes; and the presence or absence 
of feedback. It should also be considered whether the 
objective of modeling is to understand and analyze the 
physical system, optimize individual aspects, predict 
behavior, or construct a DT.  

ABM is a simulation method used to model the 
interactions of autonomous agents which can represent 
individuals, organizations, or entities, within an 
environment (Khazaii, 2016). It is based on bottom-up 
modeling, where agents follow defined rules and make 
decisions based on local information, often leading to 
complex, emergent phenomena (Khazaii, 2016).. It 
captures the evolving state of the system over time, 
which is useful for studying how complex behaviors 
emerge from simple agent interactions, making it 
useful for modeling systems with non-linear dynamics. 
It is flexible for a wide variety of different domains, 
scenarios, from human behaviors social dynamics, and 
decision-making processes in areas like economics, 
sociology, and politics, through ecological modeling of 
interactions between species, resource usage, and 

80_____________________________________________________________________________________________________Proceedings of the Central European Conference on Information and Intelligent Systems

36th CECIIS, September 17-19, 2025_____________________________________________________________________________________________________ Varaždin, Croatia



environmental changes, to simulating complex circular 
economy and supply chain behaviors and interactions 
of agents. In all these applications, ABM focuses on 
individual agents, which allows for granular analysis of 
specific behaviors, interactions and outcomes (Khazaii, 
2016). 

There are problems for which ABM is not a good 
solution for simulation modelling: 

• problems that are highly deterministic or 
where interactions are simple and predictable 

• detailed information about individual agents 
or their behaviors is unavailable 

• optimizing processes at the system level, 
especially when interactions are not as 
important as high-level parameters 

• problems requiring high-volume data 
processing or real-time decision-making 
when modeling large numbers of agents or 
complex environments 

• change in agent behavior, which would 
require to calibrate the models accurately, 
especially when there is limited data on agent 
behavior. 

• overfitting and to specific agents leading to 
reduced generalizability. 

ABM is useful in many areas, and research touches 
on healthcare systems, smart cities, manufacturing, and 
the like. Research (Ding et al., 2018) presented a 
concrete example of SD implementation in the Vensim 
tool and filled in the gaps that SD cannot fill with 
ABM. In the area of complex systems, Cassidy et al. 
conducted a systematic review of the application of SD 
and ABM models (Cassidy et al., 2019). Their research 
shows that SD can help in understanding complex 
interaction. Agent-based models provide insight into 
the behavior of individual entities within the system, 
which can be complementary to the SD approach. SD 
and ABM can be successfully used complementary in 
simulation modeling. SD is used to study macro-level 
system behavior such as the movement of resources or 
quantities in the system over time. ABM models micro-
level system behavior through the behavior of 
individual agents and their interactions. Examples are 
people, their decisions and their interactions (Cassidy 
et al., 2019).  The combination of these methods allows 
for a detailed understanding of micro-dynamics and its 
impact on macro-dynamics. ABM is a bottom-up 
approach, simulating changes in the state of individual 
agents in the system, which can be aggregated in SD. 
The combination of SD and AB can reduce 
computational time, provide a strategic overview 
characteristic of SD, while at the same time capturing 
relevant elements of individual heterogeneity and 
stochasticity of agents and interactions in processes 
(Guerrero et al., 2016). 

Petri Nets are a modeling method with a solid 
mathematical foundation and graphic representation 
used to represent and analyze discrete event systems, 
particularly for systems with concurrent, 
asynchronous, or parallel processes (Dai et al., 2020). 

Digital twins driving model based on Petri net in 
industrial pipeline. They consist of places representing 
conditions or resources, transitions representing events 
or activities, tokens that reside in places and move 
between places via transitions, representing the state of 
the system (Dai et al., 2020). Petri nets are widely used 
for modeling and simulating dynamic systems, with a 
strong focus on the flow of information or resources 
and how they evolve over time. Petri nets are 
particularly effective at modeling systems with 
multiple concurrent processes and synchronization 
constraints. They are used for modeling various types 
of systems, such as time or resource-dependent 
processes in manufacturing, resource management and 
scheduling, assembly and other workflow systems with 
multiple interacting components. In the field of 
communications, they are used for modeling 
communication protocols, distributed systems, and 
network flows, where concurrency and 
synchronization are important, including concurrent 
and parallel processing (Dai et al., 2020). Areas and 
problems where Petri nets modeling is not a good 
choice are: 

• modeling continuous or analog systems, such 
as fluid dynamics or electrical circuits, where 
differential equations are used, 

• very complex or large systems where Petri 
nets are very large, computationally 
expensive and difficult to analyze or simulate, 
leading to state-space explosion problems, 

• data-intensive systems that require detailed 
and complex data modeling, because Petri 
nets focus on control flow and resource 
allocation, but they do not directly model 
detailed data structures or system-level 
behaviors, 

• systems where decision-making is complex 
and strategic, as they focus more on process 
flow and less on high-level cognitive 
behavior. 

Petri Nets and SD can complement each other 
effectively in simulation modeling (Duggan, 2006;  
Viswanadham & Srinivasa Raghavan, 2000). Petri 
Nets are excellent for capturing the detailed, event-
driven behaviors of specific processes (Viswanadham, 
& Srinivasa Raghavan, 2000), such as material flows, 
recycling processes, or product disassembly, where 
concurrency, resource allocation, and synchronization 
are important. SD, on the other hand, excels at 
modeling feedback loops, stock-flow relationships, 
and long-term behavior, such as the impact of recycling 
rates on resource stocks or the effects of consumer 
demand on product life cycles. By combining Petri 
Nets with SD, detailed process flows and interactions 
which are the result of events that occur and changes in 
the state at certain points in time can be captured 
alongside the broader, system-level dynamics. All of 
the above is applicable to the circular economy because 
it enables both operational insights and strategic, 
policy-driven decision-making (Duggan, 2006). 
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DES modeling method is used to represent systems 
where changes occur at discrete points in time due to 
specific events. In DES, the system's state is updated 
only when an event occurs, and events trigger changes 
in the system (Ragazzini et al. 2024). DES is 
particularly useful for modeling and simulations of the 
behavior of systems that are driven by discrete events, 
providing a detailed and realistic simulation of how 
systems operate over time. It can be used to model a 
wide range of systems, from simple queuing systems to 
complex manufacturing or healthcare systems and 
transportation networks (Ragazzini et al. 2024). DES 
can help in identifying bottlenecks, delays and 
inefficiencies in system performance and resource 
utilization. in a way that allows for experimentation 
with different system configurations, resource 
allocations, and process flows to test various scenarios 
and outcomes (Ragazzini et al. 2024). DES has 
limitations in modeling and simulations: 

• useful only for systems where discrete 
events happen at distinct points in time 
and not for continuous or analog systems 
where time is a continuous variable 

• can be time-consuming and resource-
demanding, particularly for complex 
systems when accurate modeling of 
many events and interactions is required, 

• In large or complex systems, the number 
of possible states and events explodes 
exponentially, making it difficult to 
manage, analyze, or interpret the results. 

• may not be effective in environments 
requiring real-time decision-making, 
such as some emergency systems, where 
fast and dynamic adaptation to changes is 
crucial. 

DES and SD can be complementary in simulation 
modeling, especially in the context of the circular 
economy, by combining their strengths (Morgan, 
2011). While SD is excellent for modeling large-scale, 
long-term, and continuous feedback loops in systems 
like resource flows, waste recycling, and stock 
accumulation, DES can be used to model specific, 
time-dependent events like the processing of materials, 
product repairs, or resource transactions that occur at 
discrete points in time (Reed et al., 2021). When 
combined, SD can capture the overall dynamics and 
feedback mechanisms within a circular economy, 
while DES can model the detailed, event-driven 
activities (such as product disassembly or resource 
recovery) that drive those dynamics. Together, they 
provide a more comprehensive view, combining the 
holistic, feedback-rich system modeling of SD with the 
event-based, process-level detail of DES, making them 
effective in analyzing systems that require both high-
level strategic insights and detailed operational 
efficiency (Jovanovski  et al., 2012). Combining 
system dynamics and discrete event simulations-
Overview of hybrid simulation models. Journal of 
Applied Engineering Science, 10(3). . 

Several modeling methods can complement SD in 
circular economy contexts. DTs support real-time 
model validation and system monitoring, though they 
require substantial data and resources. ABM enhances 
SD by simulating individual behaviors and 
interactions, offering detailed system insights, but is 
complex to define and implement. Petri Nets are 
effective for modeling discrete events and system 
synchronization, though limited to event-driven 
systems. DES excels at modeling time-specific 
processes like material flows and repairs, but is less 
suited for continuous dynamics. Each method 
addresses specific system characteristics, enabling a 
more comprehensive simulation when combined with 
SD. 
The method selection matrix is presented in Table 1. 
 

Table 1. Method selection matrix for combination 
with SD 

 

3 Building a DT based on a SD and 
complementary methods 

DTs enable the creation of virtual replicas of physical 
systems that are continuously updated with real-world 
data. The combination of DTs and SD enables the 
modeling and simulation of phycsical  system in near 
real-time. They help to identify and analyze changes in 
the system in real time, which can improve system 
prediction and management (Ganguli & Adhikari, 
2020). According to Stojanovic et al. (2021) the 
modern approach to DTs considers them as software 
entities that follow the entire life cycle of their physical 
counterparts, including the engineering, operations, 
and disposal phases.  A DT becomes a replica of reality 
by implementing the real world as closely as possible 
and calibrating it with data. It was originally proposed 

Meth
od 

System-
level 
understandin
g and 
analysis 

Implemen
tation 
complexit
y 

Application 
in circular 
economy 

Real-
time 
analy
sis 

Big 
data 
integrat
ion 

Process 
managem
ent and 
optimizati
on 

DT + (Liu et 
al, 2021) 

– + (Rocca, 
et al., 
2005) 

+ 
(Cho
i et 
al., 
2023
) 

+ 
(Stojan
ovic et 
al, 
2021) 

+ (Liu et 
al, 2021) 

AB
M 

+ 
(Guerrero 
et al., 
2016) 

+ (Ding 
et al., 
2018) 

+ (Lange 
et al., 
2021) 

– – + (Ding et 
al., 2018) 

Petr
i 
Net
s 

+ 
(Viswana
dham, & 
Srinivasa 
Raghavan, 
2000) 

– + 
(Viswana
dham, & 
Srinivasa 
Raghavan, 
2000) 

– – + 
(Viswana
dham, & 
Srinivasa 
Raghavan, 
2000) 

DE
S 

+ (Ganguli 
& 
Adhikari, 
2020) 

+ 
(Ganguli 
& 
Adhikari
, 2020) 

+ 
(Charnley 
et al., 
2019) 

– – +  
(Ganguli 
& 
Adhikari, 
2020) 
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as a concept to support decision-making in the product 
design and manufacturing, but is used as an analysis 
tool throughout the entire life cycle. (Choi et al., 2023).  

Regarding the application of SD as a 
methodological foundation of DTns, Gejo-García et al. 
applied the concept of DT to manufacturing systems to 
assess the long-term effects of different manufacturing 
strategies. Their research shows how SD can simulate 
and optimize manufacturing processes by considering 
the dynamic interactions between different 
components of the system (Gejo-García et al., 2022). 
A similar approach is used by Choi et al. in simulating 
naval ship operations using DTs, which shows how SD 
can be used to optimize operational strategies and 
improve ship performance (Choi et al., 2023). Both 
studies explore the importance of SD in creating DTs 
for the simulation and analysis of complex systems. In 
the context of the importance of DTs, it is also 
discussed in Ganguli & Adhikari article (2020) 
regarding the development of the framework of the 
virtual model of the physical system in which the DT 
plays a role, but it is still necessary to create and 
validate the simulation model, which is from the field 
of SD. 

SD enables the simulation of the wide world with 
high fidelity, and the DT is not a term referring to a 
specific technology, but an idea that simulates the 
fusion of many existing state-of-the-art technologies. 
Researches on combining DTs based on SD with other 
methods, such as Gejo-García et al., (2022) for 
manufacturing systems, make it possible to draw 
conclusions about why combining these methods has 
advantages. DTs based on SD simulations provide a 
platform for CPS in which the DT well reflects the state 
of the physical system in real time. By enabling 
simulations of states and changes in states in the near 
future, the DT can serve: 

1. Process management and real-time 
optimization, and indirectly improving 
flexibility and resilience in unexpected 
conditions Goodwin et al., 2024). 

2. Decision support based on data and 
predictions, and indirectly proactive 
identification of disruptions within physical 
systems, optimizing resource utilization, 
increasing efficiency, etc. (Vetrivel et al. 
2024). 

3. Continuous Optimization and Lifecycle 
Management by leveraging real-time data and 
simulations, and indirectly improving 
planning capabilities, process stability, and 
resource optimization (Zhou, 2024). 

4. More comprehensive approach to model 
building that includes different levels of 
models, different relevant areas, flows, and 
decision options within the domains of single 
entity, value chains or ecosystems (Biller et. 
al., 2023). 

The methodological framework for the 
development of DTs necessarily unites the theoretical 

structure, approaches and methods of two areas: 
Simulation modeling methodology and Model 
Technology - DTs are executable models that embody 
the features, behaviors, and properties of physical 
systems. To construct such executable, efficient, 
reusable, and interoperable models, an appropriate 
modeling technology is essential (Liu et al., 2019); 
Systems Engineering methodology, as used for the 
development of SCADA (Supervisory Control and 
Data Acquisition) systems and software for automatic 
process control. 

4 Practical aspects of developing DT 
based on SD 

This chapter focuses on the practical aspects of 
developing DTs based on SD and complementary 
modeling methods. It outlines the most relevant 
modeling tools and discusses the structural elements 
and application considerations essential for creating 
effective SD-based DTs in circular economy contexts. 

4.1 Tools for modeling and simulation 
Various software tools support the implementation of 
SD and its complementary methods in the development 
of DTs. Vensim, Stella, and AnyLogic are commonly 
used for SD modeling, based on concepts such as 
stocks, flows, feedback loops, and time delays (Sapiri 
et al., 2017). AnyLogic, in particular, enables hybrid 
modeling, combining SD, ABM, and DT functionality, 
including real-time data validation (Farhan et al, 2020;  
Chakraborti et al., 2020). Tools such as NetLogo and 
Repast specialize in ABM, supporting simulation of 
heterogeneous agents with adaptive behaviors and 
local interactions, which is especially useful for 
studying micro-level dynamics and emergent 
phenomena (Robertson, 2005;Antelmi et al., 2022). 
Petri nets are implemented through tools like CPN 
Tools and PIPE, providing precise modeling of discrete 
transitions, parallel processes, and resource flows 
within systems characterized by concurrency and 
synchronization (Dworzański & Lomazova, 2013; 
Llado, 2022). In the context of DES, tools such as 
Simul8, Arena, or even AnyLogic support modeling of 
event-driven systems where state changes occur at 
specific points in time. DES is particularly effective for 
analyzing queueing systems, resource scheduling, and 
operational workflows, offering time-based precision 
and performance optimization capabilities (Ganguli & 
Adhikari, 2020). 

Among the available tools, AnyLogic stands out as 
the most versatile and comprehensive platform for 
developing DTs based on SD and complementary 
methods. Its support for hybrid modeling, which 
integrates SD, ABM, and DES within a single 
environment, allows researchers and practitioners to 
simulate systems at multiple abstraction levels — from 
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aggregate feedback-driven dynamics to individual 
agent behavior and discrete event flows (Farhan et al, 
2020; Chakraborti et al., 2020). Moreover, AnyLogic 
supports real-time data integration, enabling dynamic 
model calibration and validation, which is essential for 
implementing operational DTs. 

4.2 Conceptual and system architecture 
for digital twin development 

Fig. 1 illustrates the logical relationship between SD 
and other modeling methods within a DT development 
context.  
 

 
 

Figure 1. Conceptual modeling structure of a DT 
based on SD and complementary methods 

 
SD serves as the core modeling foundation for the 
development of DTs, providing insight into long-term 
system behavior through feedback loops, stock-flow 
relationships, and continuous dynamics. SD has 
limitations when it comes to representing discrete 
events or individual-level behavior. To address these 
gaps, complementary methods are integrated: ABM 
enables simulation of autonomous agents and their 
interactions, capturing emergent and heterogeneous 
behaviors at the micro level; while Petri Nets and DES 
allow modeling of discrete, time-specific events, 
resource flows, and synchronization in operational 
processes. Petri Nets and DES are grouped together 
due to their shared focus on event-driven systems and 
process-level precision. Together, these methods 
complement SD by adding granularity, stochasticity, 
and temporal accuracy, enabling the development of 
DTs that are both systemic and detailed, strategic and 
operational, predictive and responsive. 

After establishing the conceptual modeling logic in 
Fig. 1, which highlights the integration of SD with 
complementary methods such as ABM and DES,  Fig. 
2 presents a layered architecture that shows how such 
a model can be implemented within a CPS. It connects 
the physical environment to the modeling logic through 
communication infrastructure and real-time data 
integration, ultimately supporting applications such as 
monitoring, control, and decision-making. 

 

 
 

Figure 2. Layered architecture of a CPS for DT 
development (modified from Januario et al., 2019) 

 
Architecture (Fig. 2) illustrates how DTs based on 

SD, ABM, and DES are operationalized. It spans from 
physical infrastructure and sensors, through 
communication and data integration layers, up to the 
simulation and application interface layers. This 
structure can enable real-time simulation, monitoring, 
and decision support in complex systems. 

4 Conclusion and future research 

This research analyzes SD and the need to complement 
it with other simulation modeling methods, such as 
ABM, and Petri Nets, especially in building DTs. 
Although SD has many advantages, such as the ability 
to model interactions within complex systems and 
analyze feedback loops, its shortcomings include 
limited ability to predict unexpected behaviors and 
external influences. By combining SD with other 
methods, these shortcomings can be compensated for 
and the accuracy and reliability of modeling can be 
improved, as demonstrated in this paper. 

The research proposes the application of a 
methodological approach in building simulation 
models and DTs. Layered architecture is introduced to 
integrate various modeling methods with data 
infrastructure and application layers, enabling 
simulation models to evolve into real-time, decision-
supporting DTs. This approach is particularly suited to 
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circular economy systems, where feedback, flow 
dynamics, and emergent behavior all play central roles. 

Connecting different modeling paradigms like 
system dynamics, agent-based modeling, and discrete-
event simulation enhances the representational fidelity 
of circular systems. This integration allows 
simultaneous representation of long-term trends, 
operational process flows, and individual behavior 
dynamics. In circular economy applications, such as 
product lifecycle extension, waste reduction, and 
material recovery, this multiscale perspective is 
essential for designing more resilient and resource-
efficient systems. 

Future research will focus on operationalizing the 
proposed conceptual framework within the textile 
industry. Using the architectural foundation presented 
in this work, a DT will be developed for a production-
recycling flow with the objective of reducing generated 
waste. The model will incorporate real-time data 
streams, dynamic stock-flow structures, and event-
based control, enabling scenario analysis and 
optimization of material reuse and resource efficiency 
strategies in line with circular economy goals.  
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