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Abstract. We propose a real-time, cost-effective sys-
tem for implementing a virtual safety zone that en-
ables monitoring of a person’s position relative to user-
defined virtual boundaries. Our approach employs a
hybrid algorithm that combines depth mapping and
disparity calculation using deep learning models ap-
plied to stereo image pairs. Using a stereo camera
setup, the system estimates human keypoint positions,
which are then compared against the predefined zones.
When a zone is violated, a corresponding trigger is
generated. Although the system has shown its effective-
ness, it also faces challenges in achieving high accu-
racy, making it less suitable for applications requiring
precise localization.
Keywords. Virtual protective zone, deep learning,
stereo vision, human tracking.

1 Introduction
The rise of automation in industrial environments has
significantly improved production efficiency, product
quality, and workplace safety. Machines can now op-
erate 24/7, reduce human error, and perform tasks that
may be too dangerous for workers. Despite these ad-
vantages, automation presents serious challenges, par-
ticularly in ensuring safe interaction between humans
and machines (Rybski et al., 2012).

Many industrial systems still rely on older technolo-
gies that lack contextual awareness and dynamic safety
mechanisms. This means that even a minor mistake,
such as an operator unintentionally entering a haz-
ardous zone, can lead to serious accidents if machines
are not equipped to detect such situations. Although
newer industrial equipment may include built-in safety
logic, a large portion of existing systems continues to
rely on manual safety protocols (Mohammadi Amin et
al., 2020; Rybski et al., 2012).

This paper is motivated by the need for a flexible,
intelligent safety system that can automatically mon-
itor safety zones and identify when a person violates
them. The primary goal is to design and implement a
virtual safety zone system that uses 3D computer vi-
sion and deep learning techniques to detect people in

real time and assess their position relative to danger-
ous areas. Compared to traditional methods such as
light curtains or infrared sensors, 3D vision allows for
greater adaptability and accuracy, especially in com-
plex environments (Mosberger et al., 2014; Zhou et al.,
2022).

In this work, we created a working prototype capa-
ble of detecting individuals in a monitored 3D space
and determining whether they are within a customiz-
able danger zone. The system is also designed to pro-
vide visual feedback and alerts in real time to the oper-
ator.

We are utilizing stereo vision and deep learning
models to create a cost-effective system for human po-
sition monitoring. We developed our own stereo sys-
tem but also used an OAK-D-PRO commercial one.
We applied multiple depth estimation techniques and
also signal processing techniques such as smoothing
algorithms.

2 Related Work
Recently, there has been a growing interest in im-
proving safety within industrial environments using
advanced technologies such as computer vision and
sensor-based systems. Traditional solutions, such as
light curtains or mechanical interlocks, often lack the
flexibility and context awareness required to adapt to
dynamic workspaces. As a result, research has increas-
ingly focused on intelligent systems that can respond
in real-time to environmental changes and reduce the
risk of human error.

One significant approach involves the use of 3D
cameras to detect human presence near hazardous ma-
chinery. Cheng Zhou and his colleagues developed a
system that monitors the area surrounding robotic arms
using 3D visual data (Zhou et al., 2022). These sys-
tems enable cameras to be placed at a greater distance
compared to traditional light barriers, which must be
positioned close to the machine. This configuration re-
duces false positives caused by non-human objects and
improves overall reliability.

Sotiris Makris and his team introduced a more ad-
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vanced concept, which proposed dynamic safety zones
instead of static ones (Makris, 2021). These zones ad-
just in real-time on the basis of operational require-
ments and human-robot interaction. Such an approach
allows for closer, yet safe collaboration between hu-
mans and machines, thereby improving productivity
without compromising safety.

For mobile robotic platforms that navigate freely
throughout the facility, the safety challenge becomes
even more complex. Hyunjoong Cho et al. addressed
this problem by developing a system that detects ob-
jects of interest and generates protective zones around
them based on contextual factors, such as robot speed
(Cho et al., 2022). The faster the robot moves, the
larger the protective zone becomes, providing a dy-
namic buffer that minimizes the risks of collision.

Juraj Slovák et al. proposed a hybrid vision and
RTLS-based safety system that adapts robot behavior
according to the proximity and identity of nearby ob-
jects, including humans (Slovák et al., 2021). Their ap-
proach combines depth camera data with real-time lo-
cation systems to distinguish between authorized (e.g.,
supply trolleys) and unauthorized (e.g., human) en-
tries into safety zones, reducing unnecessary down-
times without compromising safety.

Additionally, Kozamernik et al. introduced a visual
quality and safety monitoring system for human–robot
collaboration that combines stereo and depth cameras
with deep learning-based object and posture recogni-
tion (Kozamernik et al., 2023). Their system supports
both safety (e.g., hand detection and posture analysis)
and quality assurance (e.g., inspection of final assem-
blies), demonstrating that safety and performance feed-
back can be achieved with minimal hardware overhead.

All of these approaches share a common founda-
tion in leveraging 3D computer vision to detect hu-
mans and define intelligent safety mechanisms. They
demonstrate a shift toward autonomous systems capa-
ble of adapting to varied and evolving industrial envi-
ronments. These insights have informed the develop-
ment of our proposed solution, which aims to detect
breaches of safety zones in a cost-effective and highly
adaptable manner suitable for wide deployment.

3 System Architecture

The proposed virtual security zone system is made up
of three main modules: a stereo vision module, a pro-
cessing module, and a visualization module. These
components operate in real time to detect human pres-
ence, estimate 3D position using stereo cameras and
deep learning, and determine whether individuals are
within a predefined virtual safety zone. The system in-
cludes hardware-based depth estimation, keypoint de-
tection models, and a web-based visualization interface
for interactive zone management (see Fig. 1).

Figure 1. System architecture diagram

3.1 Stereo Vision Module
The stereo vision module is responsible for captur-
ing the real-world 3D scene and generating a depth
map. Using stereo vision technology, it emulates hu-
man depth perception by using two spatially separated
cameras (see Fig. 2). These cameras are offset by a
fixed baseline, a critical parameter that influences depth
accuracy. A wider baseline improves depth estimation
for distant objects by increasing disparity, whereas a
narrower baseline is preferable for nearby objects to
avoid excessive disparity and reduce matching errors.

Depth estimation is performed via triangulation, a
geometric method that calculates the 3D position of a
point based on its disparity in the horizontal shift be-
tween corresponding points in the left and right images.
Larger disparities indicate closer objects; smaller dis-
parities suggest objects are farther away. The accuracy
of the depth calculation depends on factors such as the
baseline length, image resolution, and stereo calibra-
tion quality.

For effective stereo vision, the camera pair must be
calibrated and the images corrected so that the corre-
sponding points lie on the same horizontal scan lines
(epipolar lines). This rectification step is essential for
robust disparity computation and is a fundamental part
of our stereo vision software implementation.

We used two different stereo vision camera imple-
mentations in our research. The first is our custom-
built system (see Fig. 3), also used in our previous

62_____________________________________________________________________________________________________Proceedings of the Central European Conference on Information and Intelligent Systems

36th CECIIS, September 17-19, 2025_____________________________________________________________________________________________________ Varaždin, Croatia



Figure 2. Abstraction of stereovision

work (Sládek et al., 2024). This setup consists of two
standard webcams mounted on a rigid fixed baseline.
Fixated positioning is essential to maintain consistent
calibration, which is handled by our software. This cal-
ibration process estimates both the intrinsic and the ex-
trinsic parameters of the stereo camera system, which
are crucial for accurate depth estimation.

Figure 3. Homemade stereo vision camera

The second implementation uses the commercially
available OAK-D Pro camera developed by Luxonis
(see Fig. 4). This device integrates both stereo vi-
sion sensors and an onboard processor, enabling on-
device depth estimation and neural inference. This
hardware acceleration allows us to offload computa-
tionally intensive tasks to the device, significantly im-
proving overall processing speed.

Figure 4. OAK-D-PRO camera

All algorithms were implemented and tested using

both stereo vision systems. However, in this paper,
we focus exclusively on the implementation using the
OAK-D Pro. This decision is based on the superior
performance of the OAK-D Pro, which benefits from
its own hardware-accelerated stereo matching pipeline
and optimized internal processing. In addition, the
advanced camera specifications contributed to its im-
proved results. For these reasons, we selected the
OAK-D Pro as the primary stereo vision device for our
system.

3.2 Processing Module
The processing module is the next component in our
system’s data flow. It receives images from the stereo
camera, along with the necessary camera parameters
for depth calculation. This module is responsible for
detecting person keypoints, computing depth informa-
tion, and forwarding the processed data to the Visual-
ization module.

The processing module incorporates two indepen-
dent processing algorithms that operate on stereo im-
ages acquired from a stereo vision module.

The two implemented algorithms are as follows: (i)
a depth map-based algorithm and (ii) a disparity-based
algorithm utilizing keypoint detections from stereo im-
age pairs. Both algorithms are designed to function in-
dependently and work differently within the processing
pipeline.

Depth Map-based Algorithm

This algorithm operates directly on the real-time depth
map computed by the stereo device’s onboard pro-
cessor. It follows the depth-lookup strategy demon-
strated in Luxonis’ OAK-D calc-spatials-on-host ref-
erence implementation (Luxonis Inc., 2023). The pri-
mary steps are:

1. The stereo camera computes a depth map directly
on the device using its onboard processor.

2. A deep learning model, specifically MediaPipe
Pose (Bazarevsky et al., 2020), is applied to de-
tect the human subject and extract keypoint coor-
dinates from a single image frame.

3. For each detected keypoint, the corresponding
depth value is retrieved from the depth map using
its pixel coordinates.

The depth map used in this algorithm is calculated
by the internal OAK-D-Pro processor, allowing faster
performance compared to a disparity-based algorithm.

Disparity-based Algorithm

We developed a disparity-based algorithm that runs en-
tirely on the system’s main processing unit. This al-
gorithm performs keypoint detection independently on
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both the left and right stereo images. The main steps of
our method are as follows:

1. Two independent instances of the MediaPipe Pose
model are applied, one for the left image and one
for the right image, due to the model’s internal
state management, which improves detection sta-
bility but prevents reusability across frames.

2. The key points are detected independently in both
images.

3. For each pair of corresponding key points, the dis-
parity is calculated as the horizontal difference of
pixels between their positions in the left and right
images (see Fig. 5).

4. The depth is then estimated on the basis of the
computed disparity using stereo vision geometry.

Figure 5. Disparity visualization

Although this approach requires running two models
in parallel, the computational load remains manage-
able, as MediaPipe Pose is optimized for low-latency
performance and can be executed efficiently even on
edge devices.

3.3 Visualization Module
The Visualization module is responsible for displaying
the detected 3D keypoints received from the process-
ing module, as well as the boundaries of user-defined
zones. It also allows users to define and modify zone
parameters interactively.

Implemented as a web-based application, the mod-
ule communicates with the processing module via
WebSockets to receive real-time data. Display 3D
keypoints using React for front-end development and
Three.js for 3D rendering (see Fig. 6).

In addition to visualization, the module includes
logic to determine whether detected keypoints fall

Figure 6. Frontend visualization

within predefined zones. If a person enters a defined
zone, an on-screen alarm is triggered. The alarm is de-
activated once the person exits the zone.

4 Experiments
Stereo vision systems often face two primary chal-
lenges that can degrade performance: poor lighting
conditions and low image contrast.

To evaluate the robustness of our algorithms under
these conditions, we conducted four experiments us-
ing two distinct environments: a residential room and
an office room. These settings were selected because
of their differing background contrasts; the residential
room featured higher contrast compared to the office
environment.

The experiments were conducted as follows:

• Low-light residential room.

• Normal-light residential room.

• Low-light office room.

• Normal-light office room.

Each algorithm was tested in all four scenarios, en-
abling us to isolate and analyze the impact of lighting
and contrast on stereo vision performance.

The Disparity-based Algorithm exhibited signifi-
cant performance degradation under low light condi-
tions. Poor lighting adversely affected the accuracy
of person detection by deep learning models, which in
turn caused higher errors in disparity estimation. These
errors manifested as incorrect or noisy depth values.
However, this algorithm performed comparably in both
residential and office settings, suggesting that it is rel-
atively robust to variations in image contrast.

The Depth Map-based Algorithm, on the other
hand, was sensitive to both low light and low contrast
environments. This method relies on stereo matching,
which attempts to find corresponding points between
the left and right camera images to compute depth.
Low contrast made this matching process more diffi-
cult, while low light further reduced the image quality.
However, the contrast issue was somewhat mitigated
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Table 1. Quantitative performance of the depth-map and disparity pipelines under four illumination/contrast sce-
narios.

Scenario Algorithm MAE (cm) RMSE (cm)

Normal-light – residential
Depth-map 2.9 ± 0.4 4.3 ± 0.6
Disparity 3.5 ± 0.5 5.1 ± 0.7

Normal-light – office
Depth-map 4.4 ± 0.5 6.5 ± 0.7
Disparity 4.1 ± 0.6 6.0 ± 0.8

Low-light – residential
Depth-map 7.0 ± 0.8 10.3 ± 1.2
Disparity 5.6 ± 0.7 8.2 ± 1.0

Low-light – office
Depth-map 8.6 ± 1.0 12.5 ± 1.4
Disparity 7.2 ± 0.9 10.9 ± 1.3

by using the OAK-D Pro built-in infrared (IR) projec-
tor, which projects an active pattern on the scene. This
projection enhances texture in otherwise low-contrast
regions, improving stereo correspondence and depth
estimation.

We also identified two additional faults that are not
related to environmental conditions, but stem from
system-level issues.

The first issue was detected in the depth map–based
algorithm, which occasionally produced incomplete
depth maps. Specifically, some regions within the map
contained anomalous values or failed to compute depth
altogether (see Fig. 7). These inaccuracies pose a sig-
nificant problem during depth extraction, as the result-
ing data is unreliable.

Figure 7. Depth map before postprocessing

To address this issue, we first applied an outlier re-
moval step using local statistics. For each pixel, we
computed the mean and standard deviation within a
neighborhood n × n and zeroed any pixel values that
significantly deviated from the local mean, based on a
predefined threshold. We then used the Telea inpaint-
ing algorithm (Telea, 2004) to reconstruct the missing
(zero) values by interpolating from nearby valid pix-
els. Finally, a bilateral filter was applied to smooth the
depth map while preserving important edge details (see
Fig. 8).

Figure 8. Depth map after postprocessing

These steps improved the overall smoothness and
continuity of the depth map. However, they did not
fully resolve the underlying issue and, in some cases,
introduced new artifacts.

The second fault was observed in the disparity-based
algorithm. This issue was traced to the deep learn-
ing–based object detectors. Since these detectors do
not operate with 100% accuracy, occasional misdetec-
tions led to unstable disparity estimations. As a re-
sult, the depth calculated would sometimes fluctuate
dramatically, jumping to abnormally low or high val-
ues, which in turn caused false activations of the safety
zone (see Fig. 9).

Figure 9. Temporal variation in depth due to detection
anomalies
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To mitigate this, we experimented with both Kalman
filtering and exponential smoothing to suppress sud-
den peaks and stabilize the depth output. After testing,
we found that exponential smoothing yielded better re-
sults. Although Kalman filtering effectively reduced
noise, it also overly smoothed rapid intentional move-
ments, such as a person walking quickly, causing a loss
of responsiveness. In contrast, exponential smoothing
maintained stability while adapting more gracefully to
fast motion (see Fig. 10).

Figure 10. Depth stabilized using exponential smooth-
ing

As before, this approach improved performance but
did not completely resolve the problem. Therefore,
we implemented a final hybrid solution that combines
both depth map-based and disparity-based algorithms,
leveraging the strengths of each to enhance robustness
and reliability.

5 Hybrid approach

Based on the experiments conducted with our system,
we developed a final solution that combines two algo-
rithms into a hybrid approach. This methodology lever-
ages the strengths of each algorithm while mitigating
their respective weaknesses. The proposed approach is
divided into two main stages. Depth Calculation and
Post-processing.

Depth Calculation

Our depth calculation process integrates both algo-
rithms. Initially, we perform person detection inde-
pendently in both left and right images captured by the
stereo camera. This detection yields the correspond-
ing coordinates for keypoints in each image, enabling
depth computation through a triangulation based on
disparity.

A crucial improvement in our method is the con-
straint applied during the matching phase: we only
accept corresponding points that lie within a 10-pixel
threshold of their respective epipolar lines. This con-
straint significantly reduces the number of erroneous
detections.

Subsequently, we employ a depth-map-based algo-
rithm with specific enhancements. Instead of directly
using the depth value from a single pixel, we extract a

5×5 pixel neighborhood surrounding the detected key-
point and calculate the average depth within this win-
dow. As a result, we obtain two distinct depth measure-
ments:

1. Depth derived from triangulation (dtri)

2. Depth derived from the depth map average (dmap)

The final depth is computed using a weighted com-
bination of these measurements:

wtri = min

(
1.0,

disparity
disparity_threshold

)
(1)

wdepth = 1.0− wtri (2)
Dfinal = dtri · wtri + dmap · wdepth (3)

Where:

• wtri: weight for triangulation depth (increases with
disparity)

• wdepth: complementary weight from depth map

• dtri: depth from stereo triangulation

• dmap: average depth around keypoint in depth map

• Dfinal: final depth estimate

The disparity threshold defines the point at which
the system begins relying solely on depth calculated
from disparity-based algorithm. In our implementa-
tion, we used a threshold value of 30 pixels. However,
we did not conduct a systematic evaluation of alterna-
tive threshold values, so there may be opportunities for
further accuracy improvements through parameter tun-
ing.

This weighting scheme ensures that when a person is
located further from the camera (where disparity cal-
culations tend to be more error-prone), we rely more
heavily on the depth map-based measurement. In con-
trast, closer objects benefit from more accurate dispar-
ity calculations.

Post-processing
The post-processing stage is designed to further refine
the calculated depth and is divided into two steps:

1. Outlier Removal: We utilize the Z-score method
to identify and discard anomalous depth points,
significantly improving the reliability of our mea-
surements.

2. Smoothing: Depth coordinates are accumulated
within a temporal window. If a stationary state is
identified across five consecutive windows, robust
smoothing is applied:

position = 0.98 · last_stable + 0.02 · current

In dynamic scenarios, median filtering followed
by exponential smoothing is applied to effectively
minimize noise.
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Post-processing Hyperparameters. The following
hyperparameters are used during the post-processing
stage:

• Z-score threshold: A threshold of 2.5 is applied
to detect outliers.

• Depth window: A 5× 5 pixel mean filter is com-
puted around each landmark.

• Epipolar tolerance: Vertical mismatches are tol-
erated up to 10 pixels.

• Temporal median: A history of N = 7 frames is
used for temporal median filtering.

• Stationary lock: Activated after 5 consecutive
“stable” detection windows.

• Locked smoothing: When locked, smoothing is
applied as 0.98× previous +0.02× current value.

• Dynamic smoothing: An exponential smoothing
factor α in the range [0.80, 0.90] is used.

This dual-step smoothing strategy considerably re-
duces anomalies in the measured depth of human key-
points, thereby minimizing false activations of the
safety zone.

6 Conclusion and Future Work

In this work, we addressed the challenge of implement-
ing virtual safety zones using 3D computer vision. Our
main objective was to design and develop a system ca-
pable of detecting individuals in a monitored physical
space and determining whether they have entered a pre-
defined virtual boundary. Upon zone violation, the sys-
tem generates a real-time alert.

We proposed a stereo vision–based system inte-
grated with deep learning for human detection. Two
primary depth estimation approaches were evaluated:
a triangulation-based method using independent key-
point detections from stereo image pairs, and a depth
map–based method relying on a single-image keypoint
detection with depth values retrieved from a stereo gen-
erated map. Each approach demonstrated strengths and
weaknesses. The triangulation method provided accu-
rate results for nearby objects, but suffered from occa-
sional detection anomalies. The depth map approach
was more stable in keypoint detection, but less reliable
in poorly lit or low-texture environments, with incom-
plete depth maps.

To address these limitations, we implemented sev-
eral post-processing techniques, including outlier re-
moval, image inpainting, and smoothing using Kalman
filtering and exponential smoothing. Although these
techniques improved overall stability, they also intro-
duced trade-offs such as delayed system response and
increased computational load.

Ultimately, we proposed a hybrid approach that
combines both triangulation and depth map–based es-
timates. This solution balances the strengths of each
method, producing more accurate and reliable results at
the cost of higher computational demands. In parallel,
we developed an interactive visualization interface for
defining and monitoring virtual safety zones, detecting
zone violations, and visualizing detected keypoints.

Despite the system meeting its core objectives, sev-
eral limitations remain, most notably in depth estima-
tion accuracy and the stability of stereo keypoint corre-
spondence. Therefore, we propose several avenues for
future work:

• Improved Neural Architectures: Develop or inte-
grate deep learning models that leverage both stereo
image inputs while respecting epipolar constraints to
improve correspondence matching and keypoint con-
sistency.

• Multi-camera Integration: Extend the system to
support multiple stereo camera setups for increased
spatial coverage and accuracy, especially in larger or
occluded environments.

• Multi-person Tracking: Implement advanced
tracking mechanisms to enable simultaneous moni-
toring of multiple individuals and reduce false zone
violations.

Our findings indicate that combining stereo vision
and deep learning offers a viable path toward intel-
ligent safety zone monitoring. However, due to its
current limitations, we do not yet recommend this ap-
proach for safety-critical environments requiring high-
precision tracking, until the proposed enhancements
are implemented and validated.

Privacy and ethics
The proposed system is currently in the proof-of-
concept stage. In its current version, it is not deployed
in an industrial environment. When processing data,
the source data is deleted after the camera data has been
read. The system does not archive any data that could
be attributed to a specific person.
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