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Abstract. The invention of Generative AI and Large 
Language Models has recently catalyzed “vibe 
coding” as a new paradigm of software development 
in which developers use natural language to state their 
intentions. However, there is currently a significant 
lack of empirical research comparing the fundamental 
behaviors of GenAI tools and their code quality. This 
paper presents such comparative study of GPT-4o and 
Gemini 2.5 Pro for front-end web development using 
everyday technologies HTML, CSS, and JavaScript. 
Using zero-shot and prompt-chaining strategies, we 
tasked the models to create three commonplace web 
applications of increasing complexity. The 
architecture and features of the generated code were 
evaluated using a mixed-method evaluation 
framework. The results show that GPT-4o and Gemini 
2.5 Pro represent two different development 
paradigms; GPT-4o functions as a tool that generates 
minimal, concise code that follows user instructions, 
but in more complex tasks it sometimes generates 
errors and unwanted changes in the codebase. In 
contrast, Gemini 2.5 Pro operates as a proactive-
enhancement agent that generates more complex, 
feature-rich code by anticipating the user's needs and 
adding advanced UI functionalities. Importantly, vibe 
coding is formally defined, explained, and compared to 
other AI-assisted programming approaches. The 
codebase created for this research is available at: 
https://github.com/mhorvat/vibecoding_frontend. 
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1 Introduction 

The field of software engineering is currently 
undergoing a massive paradigm shift, driven by the 
integration of Generative Artificial Intelligence 
(GenAI) and Large Language Models (LLMs) into the 
software development lifecycle (Coello, Alimam & 
Kouatly, 2024). These models are no longer confined 
to autocompletion but are emerging as proactive virtual 

partners in application design, code implementation, 
refactoring, and testing (Kotsiantis, Verykios & 
Tzagarakis, 2024). This evolution has very recently 
given rise to a term “vibe coding” coined by Andrej 
Karpathy, which describes a software development 
methodology centered on a developer's intuitive, 
natural language expression of intent to an LLM 
(Karpathy, 2025). This practice lowers the entry barrier 
for code developers, making possible for individuals 
with minimal formal programming knowledge to 
create software artifacts. As such, vibe coding signifies 
a fundamental transition from programming as a 
formal, syntactic, computer engineering task to a 
conversational, Human-Computer Interaction (HCI) 
challenge (Gunatilake et al., 2024).  

Despite the widespread adoption of LLM-based 
coding assistants (Porter & Zingaro, 2024), because of 
the fast pace of development there is currently a 
significant lack of rigorous, comparative studies 
analyzing their performance and technical 
characteristics from a software engineering perspective 
(Shakya, Vadiee & Khalil, 2025) (Liang, Yang, & 
Myers, 2024). It remains unclear whether these tools 
are interchangeable or if they embody different 
underlying design philosophies that profoundly affect 
the software development process and the final product 
(Sergeyuk et al., 2025). 

The presented research addresses this gap by 
evaluating the two most commonly used general-
purpose LLM models, OpenAI's GPT-4o and Google's 
Gemini 2.5 Pro, on vibe coding of three typical front-
end development tasks of increasing complexity. The 
trade-offs in vibe coding between the two models are 
analyzed and their implications discussed for novice 
developers, who are increasingly turning to these tools 
as their primary means of learning and building 
software, as well as senior developers who may turn to 
vibe coding for quick prototype building or assessment 
of new software technologies.  

The remainder of the paper is organized as follows: 
the next section defines the vibe coding paradigm and 
explains its advantages and disadvantages in the 
software development process, the third section details 
the experimental methodology, while the fourth section 
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presents the experimental results. The fifth section 
discusses the broader implications of our findings. 
Finally, the last section concludes with directions for 
future research and recommendations for academia. 

2 What is Vibe Coding? 

Vibe coding is a novel software development paradigm 
(as of June 2025) in which a developer expresses their 
intentions in creating a software product using natural 
language in a GenAI LLM. Instead of writing precise, 
line-by-line code, the developer acts as a “high-level 
coordinator”, guiding the AI agent through an iterative 
dialogic process of repeated code generating prompts 
and refinements. In vibe coding the key challenge is no 
longer mastering a programming language and writing 
software line-by-line but efficiently articulating the 
desired outcome, i.e., the “vibe”, and critically 
evaluating the results produced by the AI. 

It is very important to distinguish vibe coding from 
any AI-assisted programming because vibe coding 
does not imply “using AI tools to help write code” 
(Sapkota, Roumeliotis & Karkee, 2025). Specifically, 
the term vibe coding can be defined as “generating 
code with AI without understanding the code that is 
produced”. As clearly stated by Andrej Karpathy: 
“vibe coding is a method of developing throwaway 
projects that is enjoyable, causing one to forget that the 
code exists” (Karpathy, 2025). This is not the same (in 
fact, it may be argued it is exactly the opposite) as 
incorporating LLM tools into a process for the 
documented and responsible development of 
production code. Table 1 lists and briefly describes the 
key features of vibe coding that differentiate it from 
AI-assisted coding and traditional programming 
paradigms. 
 

Table 1. Key differences between vibe coding, AI-
assisted coding, and traditional programming 

 
 Vibe Coding AI-assisted 

Coding 
Traditional 

programming 

Developer  
role 

Coordinator 
guiding the AI 

with natural 
language 

Coder using AI 
tools for 

assistance 

Only author, 
writing all 

code manually 

Developer 
core skills 

Prompting, 
evaluation, 

and iterative 
refinement 

Programming 
skills and AI 

tool proficiency 

Mastery of 
syntax, 

algorithms, 
and 

architecture 

Code 
understanding 

Not required; 
the code is a 
"black box" 

Required; the 
developer owns 

all code 

Absolute; the 
developer is 
the author 

Interaction 
method 

Natural 
language 
dialogue 

IDE with AI 
autocompletion 
and suggestions 

Directly 
writing code in 

an IDE 

Process 
type 

Probabilistic 
and non-

deterministic 

Hybrid 
(deterministic + 

probabilistic) 

Fully 
deterministic 

Intended  
use 

Rapid 
prototyping 

and non-
production 

projects 

Productivity 
boost for 

professional 
developers 

All 
development, 

including 
production 

systems 

Vibe coding offers an opportunity for most people 
to develop custom software, even though the majority 
does not know how or even will not learn to code in a 
particular programming language or software 
technology. 

2.1 Who Benefits from Vibe Coding? 
Given these special characteristics, it is important to 
define who the vibe coding is intended for. Although 
the paradigm seems especially appealing to junior 
developers, particularly those with minimal formal 
programming experience, it is equally valuable for 
senior developers who may lack the time or interest to 
thoroughly learn every emerging technology or 
framework. Vibe coding reduces the entry barrier by 
enabling users to express intent through natural 
language, rather than requiring them to master new 
syntax or APIs. This significantly accelerates 
development, reduces the cognitive load associated 
with traditional coding practices, and eliminates the 
“cold start” problem with personal productivity in new 
technologies by allowing developers to start 
programming immediately without having to consult 
manuals and technical documentation or acquiring 
sufficient experience with a new toolset. 

2.2 Who Should Not Use Vibe Coding? 
However, the simplicity that vibe coding offers can be 
misleading and potentially harmful particularly for 
inexperienced programmers. Junior developers often 
lack the theoretical foundations required to 
comprehend software architecture, detect hidden 
errors, and debug ineffectual components. In academic 
settings, schools and universities, particularly within 
computer engineering and computer science curricula, 
relying on vibe coding may cause students to produce 
suboptimal but sufficiently functional code without 
understanding the underlying logic, control flow, or 
data structures. Because vibe coding is inherently 
simple to use, students might disregard fundamental 
learning processes, acquiring the ability to prompt for 
solutions but lacking the underlying necessary 
analytical foundations that formal programming 
education provides. 

Senior developers, on the other hand, who have 
already mastered these fundamental skills and learned 
programming in a traditional, structured way, are better 
equipped to use vibe coding productively. For them, it 
is a tool for rapid prototyping, exploring new 
technologies, and reducing boilerplate overhead. 
Nonetheless, as the codebase generated by LLMs 
grows, experienced developers may find it increasingly 
difficult to trace, understand, and debug such projects. 
The maintenance challenges of large AI-generated 
projects could become a significant overhead. The non-
deterministic and verbose nature of LLM output may 
worsen the complexity, introducing inefficiencies and 
code maintainability issues in the long run.  

788_____________________________________________________________________________________________________Proceedings of the Central European Conference on Information and Intelligent Systems

36th CECIIS, September 17-19, 2025_____________________________________________________________________________________________________ Varaždin, Croatia



Therefore, a clear recommendation emerges; vibe 
coding should be used as a productivity tool for 
experienced developers for rapid prototyping or 
exploring new domains. Vibe coding should not be 
used as a primary method for programming education, 
nor is it appropriate for developing large-scale or 
production-grade software systems. 

2.3 Essential skills for a Vibe Coder 
The essential skills for the new role of vibe coder or 
vibe programmer are no longer centered on the 
traditional computer engineering knowledge such as 
computer science theory, algorithms and methods, 
object-oriented programming, computer language 
syntax, programming patterns, or the actual 
programming language experience, but on the 
competence of the interaction with the LLM-based 
chatbot. Specifically, these new skills important for 
vibe coding include: 

Prompt Engineering: The ability to efficiently 
create precise, specific, and context-rich prompts is 
paramount to guiding the LLM toward a desired 
outcome. The methodology employed in this study, 
which breaks down complex application development 
into a sequence of iterative prompts, aligns with 
established prompt engineering best practices like 
iterative refinement and task decomposition.  

Critical Evaluation: The developer must possess 
the ability to critically assess the quality, correctness, 
and architectural soundness of the AI-generated code. 
LLMs frequently introduce subtle errors, security 
flaws, or inefficient patterns that may function 
correctly but are poorly designed or may not work at 
all although LLM is “confident” that the generated 
code is correct and bug-free. 

Iterative Refinement: Crucially, success in vibe 
coding depends on engaging in a conversational loop 
of generating code, testing its output, and providing 
targeted feedback and corrective prompts to the AI to 
fix deviations and hopefully, progressively converge 
towards a satisfactory solution. However, this iterative 
and interactive dialogue does not necessarily always 
lead to the ultimate goal, as the LLM can sometimes 
get “stuck” at a certain point in the development 
process, showing no further progress despite repeated 
corrections. In such cases it is often advisable to restart 
the vibe coding process from the beginning rather than 
continue an unproductive conversational thread. 

2.4 Vibe Coding as End-User Software 
Engineering in HCI research 

The user of a vibe coding paradigm, i.e., vibe coder, 
can be defined as a novice with minimum prior 
knowledge of the software development process, or 
even, person who is not a software developer. This 
context positions the vibe coding in the domain of End-
User Development (EUD) or End-User Software 
Engineering (EUSE) (Robinson et al., 2025) 

(Gunatilake et al., 2024), a HCI field where non-
professional developers create, modify, or extend 
software artifacts. In this context, LLMs represent a 
powerful new enabling technology for EUSE, allowing 
users to specify complex needs in natural language 
rather than relying on constrained graphical interfaces 
or simplified scripting languages.  

2.5 Vibe Coding is not completely novel: 
The “Zero-Code” Analogy 

The ambition to give software developers with little to 
no formal training an ability to create functional 
applications is not a recent phenomenon born from the 
GenAI LLM revolution. The core promise of “vibe 
coding” - enabling creation through high-level intent 
rather than low-level syntax - actually follows a long 
history of “zero-code” and Rapid Application 
Development (RAD) tools that began in the late 1980s 
(Beynon-Davies et al., 1999). 

Pioneering examples include Apple's HyperCard, a 
hypermedia system released in 1987 that allowed users 
to build interactive programs, presentations, and 
databases using a simple “stack of cards” metaphor. In 
the 1990s, the client-server era saw the rise of powerful 
RAD tools (Hirschberg, 1998). Sybase PowerBuilder, 
first released in 1991, became famous for its 
“DataWindow” technology, which enabled developers 
to create complex, data-driven forms, and reports with 
minimal coding. Similarly, Borland Delphi, launched 
in 1995, provided a visual design environment and a 
component-based architecture that dramatically 
accelerated the applications development. Other early 
tools already offered intuitive graphical interfaces for 
database creation and management, further lowering 
the barrier to entry for application development (Naz 
& Khan, 2015).  

However, a crucial distinction separates these 
historical precursors from modern vibe coding: the past 
tools were deterministic systems. Their behavior was 
predictable; a given set of inputs and actions would 
always and reliably produce the same output. In 
contrast, LLM-based vibe coding is inherently 
probabilistic (Taulli, 2024). The output from an AI 
prompt is not guaranteed to be identical across repeated 
attempts, and the models themselves are often “black 
boxes”. Furthermore, just as their predecessors often 
struggled when faced with requirements for complex 
or unusual functionality, LLMs can also fail to produce 
viable solutions for novel or highly specialized tasks 
(Jing et al., 2024).  

Vibe coding, therefore, can be seen not as a 
complete breakthrough. It is only the latest incarnation 
in a multi-decade quest to make software development 
simpler and more accessible. Vibe coding is 
distinguished from AI-assisted programming tools and 
traditional programming paradigm by several distinct 
features, as listed in Table 1, but the most by its natural 
language conversational interface and non-
deterministic and stochastic behavior. 
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3 Experimental Setup 

The objective of the conducted experiment was to 
empirically compare the performance, generated 
software components, and interactive behavior of 
OpenAI's GPT‑4o and Google's Gemini 2.5 Pro models 
as would be used by a novice developer for frontend 
web development tasks. 

The experiment was intentionally constrained to 
foundational web technologies to isolate the LLMs' 
core generative capabilities without the potentially 
many confounding variables of newer, complex, or less 
popular frameworks which might have less represented 
in the LLMs’ training set. The chosen stack included:  

• HTML: For web document structure. 
• CSS with Bootstrap: For frontend styling and 

responsive layout. 
• Plain (“vanilla”) JavaScript: For client-side 

dynamic logic, deliberately avoiding 
frameworks like React, Node.js or Vue.js to 
better assess the models' basic coding 
abilities. 

We tasked the models to create three characteristic 
web frontends of increasing complexity: 1) simple 
paraphrasing and spellchecking tool, 2) moderately 
complex messenger client, and 3) complex e-
commerce web shop. The first two applications 
required only basic HTML, CSS, and JavaScript 
without external graphical assets, and we provided the 
models with a predefined set of images and icons to be 
incorporated into the web shop interface. Additionally, 
a reference picture was provided to the models as a 
visual template to illustrate the intended appearance of 
the web shop frontend layout. 

A zero-shot prompt chaining approach was used to 
instruct the models through the code development 
process. Specifically, for each application, a predefined 
set of sequential prompts defining web features and 
frontend layout was given to each model. After each 
prompt, the generated code was analyzed, and 
corrective follow-up prompts were issued as needed to 
fix errors or address misinterpretations. This process 
simulates a realistic, conversational development 

workflow in the vibe coding paradigm. All interactions 
were conducted in English, the de facto language for 
software development and the primary language for 
LLM training data. In the final step of the experiment, 
the generated code for the web shop was exchanged 
between the two models, with each model tasked with 
refactoring the other’s output. A long and detailed 
zero-shot prompt was used for the final refactoring. 

The sequence of prompts for each interface, the 
paraphrasing tool, the messenger client, and the web 
shop, is shown in Fig. 1. A custom metrics was defined 
containing a comprehensive set of various vibe coding 
features to evaluate each model's performance. The 
metrics is explained in Table 2. 
 

Table 2. Model evaluation metrics used in the 
experiment. 

 
Category Feature Description 

In
te

ra
ct

io
n 

ef
fo

rt
 

Number of 
instructional 

prompts 

The number of initial prompts 
required to define a specific 

frontend task. 
Number of 
corrective 
prompts 

The number of follow-up 
prompts needed to fix errors or 

deviations. 
Total number of 

prompts 
The sum of all interactions 

with the model. 

C
od

e 
qu

al
ity

 
an

d 
siz

e 

Total Lines of 
Code (LOC) 

The total volume of generated 
HTML, CSS, JS code 

(excluding comments). 

Number of 
unrequested 

features 

Functionalities generated by 
the LLM that were not 

explicitly asked for in the 
prompts. Model proactivity. 

R
el

ia
bi

lit
y Number of 

errors 

The number of functional or 
syntactic errors in the 

generated code. 
Number of 

misinterpreted 
prompts 

Instances where the model 
significantly misunderstood a 

core requirement. 

U
se

r 
pe

rc
ep

tio
n 

Subjective 
rating (1-5) 

User rating of the final 
solution's quality, 

functionality, and adherence to 
the initial "vibe." 

 

 

 
 

Figure 1. The sequence of prompts used to vibe code the three web frontends (paraphrasing tool, messenger 
client and web shop) of different complexity, the simplest on the left, and the most complex on the right. 
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4 Results and analysis 

The final appearance of the paraphrasing frontends for 
both evaluated models is shown in Fig. 2. 
 

 
 

Figure 2. Comparison of paraphrasing tool frontends 
generated by GPT-4o (top) and Gemini 2.5 Pro 

(bottom). 
 
As can be seen in Fig. 2, both versions share a 

similar minimalist design but there are notable 
differences in usability and visual clarity. Gemini’s 
interface includes explicit field labels (“Original Text” 
and “Paraphrased Text”), which improve clarity and 
usability. Also, it incorporates a copy-to-clipboard 
button in the output field, providing a functional 
enhancement missing in the GPT-4o code. Overall, 
although similar Gemini’s layout provides a more 
structured visual design with slightly better user 
experience (UX) and web interface quality. 
 

 
 

Figure 3. Comparison of messenger tool frontends 
generated by GPT-4o (top) and Gemini 2.5 Pro 

(bottom). 
 

As with the first frontend task, in the second task 
Gemini 2.5 Pro’s messenger frontend shows more UX 
maturity by including profile images, timestamped 
messages, and chat previews in the sidebar (Fig. 3). 
These features improve user orientation and make the 
interface feel more like a modern messaging platform. 
The GPT-4o version, on the other hand, offers a 
minimalist layout with functional but less engaging 
visual elements, without avatars, time context and 
preview content. Although both designs include quick 
reply buttons, and functional input areas, Gemini’s user 
interface is richer, more intuitive to modern users. 

In the last task, generating a web shop, the models 
were given a prompt and an image with a template for 
the layout of the user interface (see Fig. 4). 

 

 
 

Figure 4. The webshop frontend layout template 
given to the models together with the prompts. 
 
The output of the webshop vide coding task is 

presented in two parts. In addition to generating the 
homepage of the webshop homepage, both models also 
produced a shopping cart layout. The main layout of 
the front end is shown in Fig. 5, while the shopping cart 
is presented separately in Fig. 6. 

The webshop frontend generated by Gemini 
appears more complete. It contains additional features 
such as product discount display, a sales label, a 
structured footer, and a more extensive product 
catalogue. The GPT-4o model provides a more colorful 
and well-rounded aesthetic with simpler product 
labelling and fewer UI enhancements. The Gemini vibe 
code for the shopping cart interface has a higher level 
of design maturity and functional completeness 
compared to GPT-4o. Gemini includes important 
usability improvements such as product thumbnail 
images, clearly defined quantity indicators, intuitive 
delete icons, and a prominently placed checkout button 
that allows for better e-commerce experience. The 
GPT-4o is functionally appropriate and sufficient, but 
lacks visual context and transactional cues, making it 
more suitable for early prototyping than for a user-
ready deployment. 

 

Proceedings of the Central European Conference on Information and Intelligent Systems_____________________________________________________________________________________________________791

36th CECIIS, September 17-19, 2025_____________________________________________________________________________________________________ Varaždin, Croatia



 
 

Figure 5. Comparison of webshop frontends created 
by GPT-4o (top) and Gemini 2.5 Pro (bottom). 

 

 
 

Figure 6. The shopping cart layout in webshop 
frontends from GPT-4o (top) and Gemini 2.5 Pro 

(bottom). 
 
Regarding the webshop task, similarly to previous 

tasks, it can be concluded that while GPT-4o version is 
functional and visually appealing for a prototype, 
Gemini’s design is more in line with modern e-
commerce standards, and supports scalability, visual 
elements hierarchy, and distinctive marketing 
elements. 

The analysis of the generated code revealed that the 
aggregated quantitative results of all three applications 
exhibited consistent variations in the behavior of the 
employed  models. First, Gemini 2.5 Pro consistently 
produces significantly more code than GPT‑4o. This 
gap becomes larger as task complexity increases, from 
a 61% larger codebase for the simple paraphrasing tool 
to an 89% larger one for the most complex webshop. 
Second, Gemini consistently generates unrequested but 

useful UI features (e.g., loading spinners, checkout 
buttons), whereas GPT-4o does not generate extra 
features and strictly follows the user's prompts. Third, 
GPT-4o makes errors that require re-entering prompts 
that have already been entered in the prompt sequence, 
sometimes several steps before. Fourth, Gemini 
consistently received higher subjective satisfaction 
ratings from the standpoint of a novice user. Finally, 
Gemini's proactive nature sometimes allows it to 
anticipate future steps, reducing the number of 
instructional prompts needed, as seen in the Messenger 
frontend task. The aggregated quantitative results are 
shown in Table 3. 
 

Table 3. Quantitative performance metrics results. 
 

Metric Task ChatGPT Gemini 

Number of 
instructional 

prompts 

Paraphrase 5 5 

Messenger 7 4 

Web Shop 7 7 

Total 
number of 
prompts 

Paraphrase 14 10 

Messenger 21 13 

Web Shop 14 17 

Number of 
corrective 
prompts 

Paraphrase 9 5 

Messenger 14 9 

Web Shop 7 10 

Total Lines 
of Code 
(LoC) 

Paraphrase 84 135 (+61%) 

Messenger 120 147 (+23%) 

Web Shop 193 365 (+89%) 

Unrequested 
Features 

Paraphrase 0 2 

Messenger 0 2 

Web Shop 0 4 

Avg. 
Subjective 

Rating (1-5) 

Paraphrase 3.6 3.8 

Messenger 4.0 4.5 

Web Shop 3.7 4.1 

 
Interestingly, there were no syntax errors in code 

from either model, in either language – HTML, CSS or 
JavaScript. The total number of misinterpreted prompts 
was 1 for GPT-4o, and 0 for Gemini 2.5 Pro. The 
subjective rating of the quality of the produced final 
output is given in Table 1. 

A qualitative analysis of the code confirms already 
noticed differences in the architectural and stylistic 
decisions of each model. While Gemini's proactive 
approach resulted in a better and more dynamic 
architecture for the medium-complexity Messenger 
task, the same tendency proved negative in the high-
complexity case webshop. Gemini 2.5 Pro hardcoded a 
large number of product entries directly into HTML, 
creating a rigid and unscalable codebase. In contrast, 
GPT-4o model used a more robust and traditional 
software engineering pattern: separating data (a 
JavaScript array of products) from presentation 
(dynamically rendered HTML). This approach is by 
design more manageable and scalable. 
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Because of the space constraints it is not possible to 
present the entire generated code in full detail; 
however, several representative elements can be 
highlighted. 

For example, in the first scenario for the 
paraphrasing tool, the overall code quality produced by 
both agents is high. The generated code includes all 
requested components, is well-structured, and uses 
intuitive variable naming. GPT-4o implementation 
relies on a single main container (paraphrase-
container) (Fig. 7) for element layout, whereas 
Gemini 2.5 Pro introduces additional components such 
as card and box-shadow, giving the application a more 
professional appearance (Fig. 7).  

 

 
 

Figure 7. The main HTML container for element 
layout in paraphrasing tool generated by GPT-4o 

(above) and Gemini 2.5 Pro (below). 
 
In JavaScript, GPT-4o provides a minimal 

implementation with only the basic onClick action 
(Fig. 8), while Gemini delivers a more extensive and 
detailed implementation (Fig. 8). Notably, Gemini 
disables the “Paraphrase” button during text processing 
and adds a loading spinner, further improving usability. 
Finally, the layout in the ChatGPT-generated interface 
is static, whereas Gemini’s interface exhibits greater 
flexibility and adaptability. A similar pattern emerges 
in the Messenger client task and the web shop task: 
GPT-4o versions are minimal, displaying only the 
necessary, while Gemini enriched the implementation 
with additional usability features improving both 
aesthetics and functionality. 

The final step of the experiment was a refactoring 
scenario with the webshop code previously generated 
by the two agents. Specifically, the ChatGPT agent was 
assigned the code originally generated by the Gemini 
agent and, conversely, the Gemini agent received the 
code generated by ChatGPT. Along with the code, both 
agents were provided with a clearly defined prompt 
outlining how to approach the refactoring task. Upon 
receiving the instructions, both agents identified issues 
in the code and presented concise summaries of the 

problems, followed by detailed implementation steps 
for the refactoring process and best practice 
recommendations for future development. 

 

 
 

Figure 8. JavaScript implementation of the button 
click handler in GPT-4o (above) and Gemini 2.5 Pro 

(below). 
 
In the refactoring both agents reorganized the 

original code base into multiple files and directories to 
improve readability and make it easier to find 
components, as shown in Fig. 9. All business logic was 
moved to JavaScript files: 5 different files in GPT-4o 
refactoring, and only one JavaScript file (main.js) 
with Gemini 2.5 Pro. In addition, both agents 
introduced standardized conventions for naming 
components, adhering to the BEM (Block Element 
Modifier) method. 

 

 
 

Figure 9. The file structure of the refactored code for 
the web shop task from GPT-4o (left) and Gemini 2.5 

Pro (right). 
 
However, despite providing informative comments 

and useful suggestions, the code refactored by GPT-4o 
performed worse than the original implementations. 
Moreover, the webshop refactored by GPT-4o was not 
functional because important elements such as the 
product display and the top navigation bar were 
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missing. The GPT-4o model assumed that the products 
would be located in a data directory within a 
products.json file, but failed to specify this 
requirement or provide an example of the expected 
JSON structure. 

On the other hand, Gemini 2.5 Pro successfully 
refactored the code from GPT-4o and created an almost 
identical version of the original page. Despite minor 
shortcomings, such as the placement of the “Sale” 
button in the top right corner and oversized product 
images, the Gemini agent performed a more effective 
refactoring than GPT-4o. It preserved all the original 
functionalities and introduced subtle improvements. 

The complete codebase developed for this research, 
consisting of HTML, JavaScript, and CSS files for all 
four tasks or scenarios (paraphrasing, messenger, 
webshop and refactoring), is freely accessible at: 
https://github.com/mhorvat/vibecoding_frontend. 

5 Discussion 

The key finding of the conducted experiment in front-
end web development is that GPT-4o and Gemini 2.5 
Pro are not simply interchangeable tools for vibe 
coding. They embody two different philosophies of AI-
powered support that represent different levels of 
support for a developer. 

OpenAI’s ChatGPT with GPT-4o model acts as a 
direct and literal tool. Its behavior is predictable and 
controllable. It produces lean code that strictly adheres 
to the user's explicit instructions. This paradigm places 
the entire cognitive burden of design, functional 
specification, and architectural planning on the user. 

Google Gemini 2.5 Pro works as a proactive and 
collaborative agent. It attempts to derive higher-level 
goals, anticipate the user's needs, and enrich the output 
with features and subtleties that go beyond 
specifications stated in the prompt. It shares the burden 
of design and makes decisions to deliver a more 
complete product. 

For a junior developer, the choice between these 
two paradigms is crucial, and our results show that 
Gemini's approach is generally superior. The data show 
that Gemini consistently achieves higher subjective 
satisfaction ratings across all three front-end scenarios. 
This is because its proactive enhancements provide a 
more complete and professional looking application 
that is ready to use immediately. For a beginner, it is 
very motivating to see how quickly an application with 
many functions can be created. 

The literalness of GPT-4o leads to simpler code, 
but it is also a significant disadvantage for junior users. 
Beginner developers must behave like experts, specify 
every design detail and anticipate web front-end 
features they may not even know are possible. This 
may be difficult for junior users and can lead to a 
frustrating development experience. Gemini's ability to 
“fill in the gaps” in the prompt, i.e., the software 

specification, makes it a far more effective assistant, 
guiding the novice to a better result. 

However, Gemini's proactive nature, while 
beneficial, is not without risks. The “complexity-
architecture inversion” observed in the webshop task, 
where Gemini's hard-coded HTML was architecturally 
inferior to dynamic data array generated by GPT-4o is 
a clear example of this feature. But for a developer who 
is more interested in rapid prototyping rather than 
building a large-scale enterprise-level application this 
is a worthwhile trade-off.  

The primary goal of any developer using vibe 
coding should be to quickly turn an idea into a working 
software prototype. In this context, Gemini's delivery 
of a feature-rich, visually polished application, and 
more rapid development and validation is more 
valuable than the architectural simplicity of GPT-4o 
code. 

Finally, the presented study has several limitations 
that must be acknowledged. First, the experiment did 
not include many other popular coding AI tools. An 
expanded experiment including even more LLMs, and 
frontend types is planned for future research and a 
more comprehensive publication. Second, the 
experiment was conducted with ratings from a single 
user which limits the generalizability of the obtained 
results. A formal verification should be undertaken in 
the future to assess the quality of the generated code 
more clearly. Third, the study was limited to vanilla 
HTML, CSS, and JavaScript. The observed paradigms 
may differ significantly for more complex frameworks 
such as Node.js, Vue.js or React. Finally, the 
experiment was focused solely on front-end UI 
development. The reported results may not apply to 
other application architecture components such as 
backend logic, database management or middleware, 
and should be investigated separately in the future. 

6 Conclusion 

The presented research provides a direct empirical 
comparison of OpenAI GPT-4o and Google Gemini 
2.5 Pro LLMs in a vibe coding context of web frontend, 
showing that for junior and senior developers alike, the 
models are not only different, but one is demonstrably 
superior. Google Gemini acts as a proactive and 
augmenting agent, proving to be the more effective tool 
for both user groups. Its ability to anticipate user 
requirements, incorporate beneficial unsolicited 
features, and create more refined and comprehensive 
web frontend components is perfectly aligned with the 
goals of an inexperienced developer looking to convert 
a high-level “vibe” quickly and efficiently into a 
functional product. Also, for senior developers a 
proactive model such as Gemini 2.5 Pro will be more 
beneficial to develop "quick and dirty” code, but with 
a caveat of a larger codebase than with using GPT-4o. 
Such larger code will be more difficult to trace and 
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debug. However, this is a trade-off that a senior 
developer must contend with. 

In the academic setting, vibe coding certainly has 
the potential to transform the educational process. Its 
integration into university-level programming 
instruction has an opportunity to increase engagement, 
accelerate learning, and improve overall teaching 
quality (Šarčević et al., 2024), especially when 
integrated into one of the many digital game-based 
learning models that support formal student assessment 
(Horvat et al., 2022). However, the increasing ease of 
automatic code generation also introduces new 
pedagogical challenges, particularly in academic 
integrity, plagiarism detection, and assessment design 
(Hartley, Hayak & Ko, 2024) (Mekterović, Brkić & 
Horvat, 2023). GenAI tools can help students with 
coding assignments by suggesting, hinting, and 
generating code snippets, encouraging better coding 
practices. However, using GenAI in programming 
education can lead to students becoming too dependent 
on AI-generated code and failing to understand 
fundamental concepts, which may negatively impact 
the long-term sustainability of computer engineering in 
higher education (Silva, 2024). 

Developing robust solutions for detecting vibe-
coded laboratory assignments, seminar papers, and 
student projects is an urgent issue that the academic 
community must address (Adnin et al., 2025). From an 
application design standpoint, vibe coding encourages 
the creation of responsive, mobile-friendly, and 
platform-consistent interfaces, allowing students and 
professionals to create modern frontends with 
minimum technical overhead (Smolić et al., 2024). 

In addition to limitations of the experiment, as 
outlined in the previous section, which should be 
corrected with future investigations, this research 
opens several interesting avenues for further research. 
First, including other models such as Anthropic 
Claude 1, GitHub Copilot2 or Cursor AI 3. Second, by 

0F 1F 2F

expanding the scope by replicating the study with more 
complex JavaScript frameworks and software 
technologies to determine if the observed paradigms 
remain consistent across the technology stack. Third, 
by using professional tools and formal code analysis 
techniques to determine the quality of the generated 
code. Fourth, the robustness of the vibe coding 
paradigm should be tested on different programming 
assignments, such as backend, databases, 
microservices, etc. Finally, in the future it would be 
interesting to investigate the impact of different 
prompting strategies and measure the impact of prompt 
structure on code quality, architectural choices, and 
model behavior more systematically. 

Universities and curriculum designers must 
formulate explicit standards for the ethical and 
successful integration of vibe coding into coursework, 
ensuring that AI-assisted coding and vibe 
coding 

1 https://www.anthropic.com/claude. 
2 https://github.com/copilot 

enhance rather than undermine the development of 
fundamental programming skills. 

We hope our findings will have significant positive 
implications for tool selection and software developer 
education in vibe coding. 
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