Proceedings of the Central European Conference on Information and Intelligent Systems 787

A Comparative Study of Vibe Coding with ChatGPT and
Gemini in Front-end Web Development

Marko Horvat, Barbara Kralj, Gordan Gledec
University of Zagreb, Faculty of Electrical Engineering and Computing

Department of Applied Computing
Unska 3, HR-10000 Zagreb, Croatia

{Marko.Horvat3, Barbara.Kralj, Gordan.Gledec}@fer.unizg.hr

Abstract. The invention of Generative Al and Large
Language Models has recently catalyzed “vibe
coding” as a new paradigm of sofiware development
in which developers use natural language to state their
intentions. However, there is currently a significant
lack of empirical research comparing the fundamental
behaviors of GenAl tools and their code quality. This
paper presents such comparative study of GPT-40 and
Gemini 2.5 Pro for front-end web development using
everyday technologies HTML, CSS, and JavaScript.
Using zero-shot and prompt-chaining strategies, we
tasked the models to create three commonplace web
applications of increasing complexity. The
architecture and features of the generated code were
evaluated using a mixed-method evaluation
framework. The results show that GPT-40 and Gemini
2.5 Pro vrepresent two different development
paradigms; GPT-4o functions as a tool that generates
minimal, concise code that follows user instructions,
but in more complex tasks it sometimes generates
errors and unwanted changes in the codebase. In
contrast, Gemini 2.5 Pro operates as a proactive-
enhancement agent that generates more complex,
feature-rich code by anticipating the user's needs and
adding advanced Ul functionalities. Importantly, vibe
coding is formally defined, explained, and compared to
other Al-assisted programming approaches. The
codebase created for this research is available at:
https://github.com/mhorvat/vibecoding frontend.

Keywords. Software engineering, Automatic
programming, Human-computer interaction,
Generative Al, Large Language Models

1 Introduction

The field of software engineering is currently
undergoing a massive paradigm shift, driven by the
integration of Generative Artificial Intelligence
(GenAl) and Large Language Models (LLMs) into the
software development lifecycle (Coello, Alimam &
Kouatly, 2024). These models are no longer confined
to autocompletion but are emerging as proactive virtual

36th CECIIS, September 17-19, 2025

partners in application design, code implementation,
refactoring, and testing (Kotsiantis, Verykios &
Tzagarakis, 2024). This evolution has very recently
given rise to a term “vibe coding” coined by Andrej
Karpathy, which describes a software development
methodology centered on a developer's intuitive,
natural language expression of intent to an LLM
(Karpathy, 2025). This practice lowers the entry barrier
for code developers, making possible for individuals
with minimal formal programming knowledge to
create software artifacts. As such, vibe coding signifies
a fundamental transition from programming as a
formal, syntactic, computer engineering task to a
conversational, Human-Computer Interaction (HCI)
challenge (Gunatilake et al., 2024).

Despite the widespread adoption of LLM-based
coding assistants (Porter & Zingaro, 2024), because of
the fast pace of development there is currently a
significant lack of rigorous, comparative studies
analyzing their performance and technical
characteristics from a software engineering perspective
(Shakya, Vadiee & Khalil, 2025) (Liang, Yang, &
Myers, 2024). It remains unclear whether these tools
are interchangeable or if they embody different
underlying design philosophies that profoundly affect
the software development process and the final product
(Sergeyuk et al., 2025).

The presented research addresses this gap by
evaluating the two most commonly used general-
purpose LLM models, OpenAl's GPT-40 and Google's
Gemini 2.5 Pro, on vibe coding of three typical front-
end development tasks of increasing complexity. The
trade-offs in vibe coding between the two models are
analyzed and their implications discussed for novice
developers, who are increasingly turning to these tools
as their primary means of learning and building
software, as well as senior developers who may turn to
vibe coding for quick prototype building or assessment
of new software technologies.

The remainder of the paper is organized as follows:
the next section defines the vibe coding paradigm and
explains its advantages and disadvantages in the
software development process, the third section details
the experimental methodology, while the fourth section

Varazdin, Croatia

788 Proceedings of the Central European Conference on Information and Intelligent Systems

presents the experimental results. The fifth section
discusses the broader implications of our findings.
Finally, the last section concludes with directions for
future research and recommendations for academia.

2 What is Vibe Coding?

Vibe coding is a novel software development paradigm
(as of June 2025) in which a developer expresses their
intentions in creating a software product using natural
language in a GenAl LLM. Instead of writing precise,
line-by-line code, the developer acts as a “high-level
coordinator”, guiding the Al agent through an iterative
dialogic process of repeated code generating prompts
and refinements. In vibe coding the key challenge is no
longer mastering a programming language and writing
software line-by-line but efficiently articulating the
desired outcome, i.e., the “vibe”, and critically
evaluating the results produced by the Al.

It is very important to distinguish vibe coding from
any Al-assisted programming because vibe coding
does not imply “using Al tools to help write code”
(Sapkota, Roumeliotis & Karkee, 2025). Specifically,
the term vibe coding can be defined as “generating
code with AI without understanding the code that is
produced”. As clearly stated by Andrej Karpathy:
“vibe coding is a method of developing throwaway
projects that is enjoyable, causing one to forget that the
code exists” (Karpathy, 2025). This is not the same (in
fact, it may be argued it is exactly the opposite) as
incorporating LLM tools into a process for the
documented and responsible development of
production code. Table 1 lists and briefly describes the
key features of vibe coding that differentiate it from
Al-assisted coding and traditional programming
paradigms.

Table 1. Key differences between vibe coding, Al-
assisted coding, and traditional programming

Vibe Coding AI-ass.lsted Tradmon?l
Coding programming
Coordinator .
Developer guiding the Al Coder using Al Only 'author,
. tools for writing all
role with natural -
assistance code manually
language
Prompting, . Mastery of
. Programming syntax,
Developer evaluation, . .
. . . skills and Al algorithms,
core skills and iterative .
tool proficiency and
refinement X
architecture
Not required, Required; the Absolute; the
Code . .
understandin: the code is a developer owns developer is
g "black box" all code the author
. Natural IDE with AL Directly
Interaction
method language autocompletion | writing code in
dialogue and suggestions an IDE
Process Probabilistic Hyl?r{d) Fully
tvpe and non- (deterministic + deterministic
P deterministic probabilistic)
rolt{(?tpldin Productivity develﬁllment
Intended p yping boost for velopment,
and non- . including
use . professional .
production production
. developers
projects systems

36th CECIIS, September 17-19, 2025

Vibe coding offers an opportunity for most people
to develop custom software, even though the majority
does not know how or even will not learn to code in a
particular programming language or software
technology.

2.1 Who Benefits from Vibe Coding?

Given these special characteristics, it is important to
define who the vibe coding is intended for. Although
the paradigm seems especially appealing to junior
developers, particularly those with minimal formal
programming experience, it is equally valuable for
senior developers who may lack the time or interest to
thoroughly learn every emerging technology or
framework. Vibe coding reduces the entry barrier by
enabling users to express intent through natural
language, rather than requiring them to master new
syntax or APIs. This significantly accelerates
development, reduces the cognitive load associated
with traditional coding practices, and eliminates the
“cold start” problem with personal productivity in new
technologies by allowing developers to start
programming immediately without having to consult
manuals and technical documentation or acquiring
sufficient experience with a new toolset.

2.2 Who Should Not Use Vibe Coding?

However, the simplicity that vibe coding offers can be
misleading and potentially harmful particularly for
inexperienced programmers. Junior developers often
lack the theoretical foundations required to
comprehend software architecture, detect hidden
errors, and debug ineffectual components. In academic
settings, schools and universities, particularly within
computer engineering and computer science curricula,
relying on vibe coding may cause students to produce
suboptimal but sufficiently functional code without
understanding the underlying logic, control flow, or
data structures. Because vibe coding is inherently
simple to use, students might disregard fundamental
learning processes, acquiring the ability to prompt for
solutions but lacking the wunderlying necessary
analytical foundations that formal programming
education provides.

Senior developers, on the other hand, who have
already mastered these fundamental skills and learned
programming in a traditional, structured way, are better
equipped to use vibe coding productively. For them, it
is a tool for rapid prototyping, exploring new
technologies, and reducing boilerplate overhead.
Nonetheless, as the codebase generated by LLMs
grows, experienced developers may find it increasingly
difficult to trace, understand, and debug such projects.
The maintenance challenges of large Al-generated
projects could become a significant overhead. The non-
deterministic and verbose nature of LLM output may
worsen the complexity, introducing inefficiencies and
code maintainability issues in the long run.

Varazdin, Croatia

Proceedings of the Central European Conference on Information and Intelligent Systems 789

Therefore, a clear recommendation emerges; vibe
coding should be used as a productivity tool for
experienced developers for rapid prototyping or
exploring new domains. Vibe coding should not be
used as a primary method for programming education,
nor is it appropriate for developing large-scale or
production-grade software systems.

2.3 Essential sKkills for a Vibe Coder

The essential skills for the new role of vibe coder or
vibe programmer are no longer centered on the
traditional computer engineering knowledge such as
computer science theory, algorithms and methods,
object-oriented programming, computer language
syntax, programming patterns, or the actual
programming language experience, but on the
competence of the interaction with the LLM-based
chatbot. Specifically, these new skills important for
vibe coding include:

Prompt Engineering: The ability to efficiently
create precise, specific, and context-rich prompts is
paramount to guiding the LLM toward a desired
outcome. The methodology employed in this study,
which breaks down complex application development
into a sequence of iterative prompts, aligns with
established prompt engineering best practices like
iterative refinement and task decomposition.

Critical Evaluation: The developer must possess
the ability to critically assess the quality, correctness,
and architectural soundness of the Al-generated code.
LLMs frequently introduce subtle errors, security
flaws, or inefficient patterns that may function
correctly but are poorly designed or may not work at
all although LLM is “confident” that the generated
code is correct and bug-free.

Iterative Refinement: Crucially, success in vibe
coding depends on engaging in a conversational loop
of generating code, testing its output, and providing
targeted feedback and corrective prompts to the Al to
fix deviations and hopefully, progressively converge
towards a satisfactory solution. However, this iterative
and interactive dialogue does not necessarily always
lead to the ultimate goal, as the LLM can sometimes
get “stuck” at a certain point in the development
process, showing no further progress despite repeated
corrections. In such cases it is often advisable to restart
the vibe coding process from the beginning rather than
continue an unproductive conversational thread.

2.4 Vibe Coding as End-User Software
Engineering in HCI research

The user of a vibe coding paradigm, i.c., vibe coder,
can be defined as a novice with minimum prior
knowledge of the software development process, or
even, person who is not a software developer. This
context positions the vibe coding in the domain of End-
User Development (EUD) or End-User Software
Engineering (EUSE) (Robinson et al, 2025)

36th CECIIS, September 17-19, 2025

(Gunatilake et al., 2024), a HCI field where non-
professional developers create, modify, or extend
software artifacts. In this context, LLMs represent a
powerful new enabling technology for EUSE, allowing
users to specify complex needs in natural language
rather than relying on constrained graphical interfaces
or simplified scripting languages.

2.5 Vibe Coding is not completely novel:
The “Zero-Code” Analogy

The ambition to give software developers with little to
no formal training an ability to create functional
applications is not a recent phenomenon born from the
GenAl LLM revolution. The core promise of “vibe
coding” - enabling creation through high-level intent
rather than low-level syntax - actually follows a long
history of “zero-code” and Rapid Application
Development (RAD) tools that began in the late 1980s
(Beynon-Davies et al., 1999).

Pioneering examples include Apple's HyperCard, a
hypermedia system released in 1987 that allowed users
to build interactive programs, presentations, and
databases using a simple “stack of cards” metaphor. In
the 1990s, the client-server era saw the rise of powerful
RAD tools (Hirschberg, 1998). Sybase PowerBuilder,
first released in 1991, became famous for its
“DataWindow” technology, which enabled developers
to create complex, data-driven forms, and reports with
minimal coding. Similarly, Borland Delphi, launched
in 1995, provided a visual design environment and a
component-based architecture that dramatically
accelerated the applications development. Other early
tools already offered intuitive graphical interfaces for
database creation and management, further lowering
the barrier to entry for application development (Naz
& Khan, 2015).

However, a crucial distinction separates these
historical precursors from modern vibe coding: the past
tools were deterministic systems. Their behavior was
predictable; a given set of inputs and actions would
always and reliably produce the same output. In
contrast, LLM-based vibe coding is inherently
probabilistic (Taulli, 2024). The output from an Al
prompt is not guaranteed to be identical across repeated
attempts, and the models themselves are often “black
boxes”. Furthermore, just as their predecessors often
struggled when faced with requirements for complex
or unusual functionality, LLMs can also fail to produce
viable solutions for novel or highly specialized tasks
(Jing et al., 2024).

Vibe coding, therefore, can be seen not as a
complete breakthrough. It is only the latest incarnation
in a multi-decade quest to make software development
simpler and more accessible. Vibe coding is
distinguished from Al-assisted programming tools and
traditional programming paradigm by several distinct
features, as listed in Table 1, but the most by its natural
language conversational interface and non-
deterministic and stochastic behavior.

Varazdin, Croatia

790 Proceedings of the Central European Conference on Information and Intelligent Systems

3 Experimental Setup

The objective of the conducted experiment was to
empirically compare the performance, generated
software components, and interactive behavior of
OpenAl's GPT-40 and Google's Gemini 2.5 Pro models
as would be used by a novice developer for frontend
web development tasks.

The experiment was intentionally constrained to
foundational web technologies to isolate the LLMs'
core generative capabilities without the potentially
many confounding variables of newer, complex, or less
popular frameworks which might have less represented
in the LLMs’ training set. The chosen stack included:

e HTML: For web document structure.

e CSS with Bootstrap: For frontend styling and
responsive layout.

e Plain (“vanilla”) JavaScript: For client-side
dynamic logic, deliberately avoiding
frameworks like React, Node.js or Vue.js to
better assess the models' basic coding
abilities.

We tasked the models to create three characteristic
web frontends of increasing complexity: 1) simple
paraphrasing and spellchecking tool, 2) moderately
complex messenger client, and 3) complex e-
commerce web shop. The first two applications
required only basic HTML, CSS, and JavaScript
without external graphical assets, and we provided the
models with a predefined set of images and icons to be
incorporated into the web shop interface. Additionally,
a reference picture was provided to the models as a
visual template to illustrate the intended appearance of
the web shop frontend layout.

A zero-shot prompt chaining approach was used to
instruct the models through the code development
process. Specifically, for each application, a predefined
set of sequential prompts defining web features and
frontend layout was given to each model. After each
prompt, the generated code was analyzed, and
corrective follow-up prompts were issued as needed to
fix errors or address misinterpretations. This process
simulates a realistic, conversational development

Paraphrasing and spellchecking tool

workflow in the vibe coding paradigm. All interactions
were conducted in English, the de facto language for
software development and the primary language for
LLM training data. In the final step of the experiment,
the generated code for the web shop was exchanged
between the two models, with each model tasked with
refactoring the other’s output. A long and detailed
zero-shot prompt was used for the final refactoring.

The sequence of prompts for each interface, the
paraphrasing tool, the messenger client, and the web
shop, is shown in Fig. 1. A custom metrics was defined
containing a comprehensive set of various vibe coding
features to evaluate each model's performance. The
metrics is explained in Table 2.

Table 2. Model evaluation metrics used in the

experiment.
Category Feature Description
Number of The number of initial prompts
instructional required to define a specific
_§ prompts frontend task.
=
“:é 5 Number of The number of follow-up
= .
§ S corrective prompts needed to fix errors or
= prompts deviations.
Total number of The sum of all interactions
prompts with the model.

Total Lines of The total volume of generated

=
£ Code (LOC) HTML', CSS, JS code
s 8 (excluding comments).
g Functionalities generated by
=
=t 5 Number of the LLM that were not
] unrequested . .
&} features explicitly asked for in the
prompts. Model proactivity.
The number of functional or
z Number of : .
£ syntactic errors in the
= errors
3 generated code.
% Number of Instances where the model
& misinterpreted significantly misunderstood a
prompts core requirement.
User rating of the final
Subjective solution's quality,

rating (1-5) functionality, and adherence to

the initial "vibe."

User
perception

Messenger client

Web shop

1, Create a web page using HTML, CSS Bootstrap and vanilla Javascript. Purpose b
of the web page is to paraphrase the text. messenger application.
2. Create a container in which there will be all the elements of the web page. The
background of the web page is wite, and the baciground i th container s ght

ray. The container takes up most of the page. Leave some space on each side of

the container. Container has rounded corners. example contacts witf
3. In the center of the container are two textboxes one next to another. Two
textboxes take up horllontallY‘ half of the container, and vertically almost all of the

2 y . e contacts list with a line.
container’s height. Put in both textboxes appropriate placeholders.

Imrlemen(on click action that can be replaced with an actual functionality from
API later. The buttons position is underneath the left textbox positioned so that
the right side of the button and right side of the left textbox are vertically aligned.

was selected in the contacts list.

"Paraphrase for me". e the font Britannic Bold. The headline size is the

biggest one. Title of the web page is the same as the headline name.

55/ the top let corner of the container i.a headline with the name of the page -
a

Background for that part is light gray.

1. Create a web page using HTML, CSS Bootstrap and vanilla JavaScript. It is a

2. On the left side there will be a list of all the contacts. That side uses 1/4 of the

screen horizontally and vertically at full length. Contacts are one underneath the

other and horizontally each contact takes up full length of that side. Create a few
first names and last names.

3. At the top of the contacts list is headline "Chats". Divide that headline from the

4. When clicked on a specific contact, on

5 o 1 S the right side appears the chat with that
4. Underneath the textboxes is a button "Paraphrase". The button type is primary. contact. The right side uses 3/4 of the

screen horizontally and full length
vertically. At the top, in the same line as "Chats" headline is a contact name that

5. In the middle, taking up most of the space is place for a specific chat. Divided
with a line from the top part (Contact name). The chat background is white.

6. Chat bubbles are blue for the person using the app and those bubbles are on
the right of that area. Received messages have light gray nd a
the left side of that middle part. Chat bubbles have rounded edges. Create some
examples for already created contacts.

7. At the bottom there is an input element and a "Send" button next to it on the
far right of that bottom part. The input element takes up all the space, small
margin, and then a button. Button is primary. Before the input element add small
camera icon ~ that is a button that will be used for picture/document sending
implemented using API. Divide that part from the middle part with a line.

When no_chat is selected right side (3/4 of the screen) is empty with

instructions: "Start a chat by clicking on a specific contact'

1. Create a web page using HTML, CSS Bootstrap and vanilla JavaScript. It is a web
shop that sells different Rubik's cubes. The picture provided is how the web page
should look like but for selling Rubik's cubes.

2. Images for all products are in the same folder with names 3x3, 2x2, 4x4,
Pyraminx, Megaminx, Mirror and all have .webp extension. Add those images to
the co responding products.
3. The shop’s name is Twisted Corner Store. Insert the stores logo at the top left
corner on the navigation bar.

4.0n the cart button, left of the word Card add shopping cart icon. Make the card
button work. When clicked it opens a panel that shows all items that were added.
Under the items in the cart write a total for all the prices from items in the cart.

5. On the shop button in navbar create a dropdown with the list of all the puzzles
but in plural. Also, on the navbar add search field that works. So when clicked on
3x3 Cubes it will have a cards list of all 3x3 Cubes available to buy. For now only
put the one that is on the home page. Do that for all puzzles.

re on art of the page is dark gray. Make the whole page a bit

6. Everything on top
playful with colors and fonts.

7. Remember all the items in the card when the page is refreshed.

Figure 1. The sequence of prompts used to vibe code the three web frontends (paraphrasing tool, messenger
client and web shop) of different complexity, the simplest on the left, and the most complex on the right.

36th CECIIS, September 17-19, 2025

Varazdin, Croatia

Proceedings of the Central European Conference on Information and Intelligent Systems 791

4 Results and analysis

The final appearance of the paraphrasing frontends for
both evaluated models is shown in Fig. 2.

ChatGPT-40

Paraphrase for me

P

Gemini 2.5 Pro

Paraphrase for me

Figure 2. Comparison of paraphrasing tool frontends
generated by GPT-40 (top) and Gemini 2.5 Pro
(bottom).

As can be seen in Fig. 2, both versions share a
similar minimalist design but there are notable
differences in usability and visual clarity. Gemini’s
interface includes explicit field labels (“Original Text”
and “Paraphrased Text”), which improve clarity and
usability. Also, it incorporates a copy-to-clipboard
button in the output field, providing a functional
enhancement missing in the GPT-40 code. Overall,
although similar Gemini’s layout provides a more
structured visual design with slightly better user
experience (UX) and web interface quality.

ChatGPT-40

-]
=
Q o
@ a
=

Figure 3. Comparison of messenger tool frontends
generated by GPT-40 (top) and Gemini 2.5 Pro
(bottom).

36th CECIIS, September 17-19, 2025

As with the first frontend task, in the second task
Gemini 2.5 Pro’s messenger frontend shows more UX
maturity by including profile images, timestamped
messages, and chat previews in the sidebar (Fig. 3).
These features improve user orientation and make the
interface feel more like a modern messaging platform.
The GPT-40 version, on the other hand, offers a
minimalist layout with functional but less engaging
visual elements, without avatars, time context and
preview content. Although both designs include quick
reply buttons, and functional input areas, Gemini’s user
interface is richer, more intuitive to modern users.

In the last task, generating a web shop, the models
were given a prompt and an image with a template for
the layout of the user interface (see Fig. 4).

seacs

Figure 4. The webshop frontend layout template
given to the models together with the prompts.

The output of the webshop vide coding task is
presented in two parts. In addition to generating the
homepage of the webshop homepage, both models also
produced a shopping cart layout. The main layout of
the front end is shown in Fig. 5, while the shopping cart
is presented separately in Fig. 6.

The webshop frontend generated by Gemini
appears more complete. It contains additional features
such as product discount display, a sales label, a
structured footer, and a more extensive product
catalogue. The GPT-40 model provides a more colorful
and well-rounded aesthetic with simpler product
labelling and fewer UI enhancements. The Gemini vibe
code for the shopping cart interface has a higher level
of design maturity and functional completeness
compared to GPT-4o0. Gemini includes important
usability improvements such as product thumbnail
images, clearly defined quantity indicators, intuitive
delete icons, and a prominently placed checkout button
that allows for better e-commerce experience. The
GPT-40 is functionally appropriate and sufficient, but
lacks visual context and transactional cues, making it
more suitable for early prototyping than for a user-
ready deployment.

Varazdin, Croatia

792 Proceedings of the Central European Conference on Information and Intelligent Systems

Shop Rubik's Cubes

Find your partaect auba purria

Ff_%! :_" !:' Qq{’ﬂ B _l':\gl
o i [n f

ChatGPT-40

Raatoan ot v
Gemini 2.5 Pro

Figure 5. Comparison of webshop frontends created
by GPT-4o0 (top) and Gemini 2.5 Pro (bottom).

ChatGPT-40

B
W
ko B4
Lz e
o .
T e smon
T
Totat ssa00

Gemini 2.5 Pro

Figure 6. The shopping cart layout in webshop
frontends from GPT-40 (top) and Gemini 2.5 Pro
(bottom).

Regarding the webshop task, similarly to previous
tasks, it can be concluded that while GPT-40 version is
functional and visually appealing for a prototype,
Gemini’s design is more in line with modern e-
commerce standards, and supports scalability, visual
elements hierarchy, and distinctive marketing
elements.

The analysis of the generated code revealed that the
aggregated quantitative results of all three applications
exhibited consistent variations in the behavior of the
employed models. First, Gemini 2.5 Pro consistently
produces significantly more code than GPT-40. This
gap becomes larger as task complexity increases, from
a 61% larger codebase for the simple paraphrasing tool
to an 89% larger one for the most complex webshop.
Second, Gemini consistently generates unrequested but

36th CECIIS, September 17-19, 2025

useful UI features (e.g., loading spinners, checkout
buttons), whereas GPT-40 does not generate extra
features and strictly follows the user's prompts. Third,
GPT-40 makes errors that require re-entering prompts
that have already been entered in the prompt sequence,
sometimes several steps before. Fourth, Gemini
consistently received higher subjective satisfaction
ratings from the standpoint of a novice user. Finally,
Gemini's proactive nature sometimes allows it to
anticipate future steps, reducing the number of
instructional prompts needed, as seen in the Messenger
frontend task. The aggregated quantitative results are
shown in Table 3.

Table 3. Quantitative performance metrics results.

Metric Task ChatGPT Gemini
Number of Paraphrase 5 5
instructional Messenger 7 4
prompts Web Shop 7 7
Total Paraphrase 14 10
number of Messenger 21 13
prompts Web Shop 14 17
Number of Paraphrase 9 5
corrective Messenger 14 9
prompts Web Shop 7 10
+ 0,
Total Lines Paraphrase 84 135 (+61%)
of Code Messenger 120 147 (+23%)
(LoC) Web Shop 193 365 (+89%)
Paraphrase 0 2
Unrequested
Features Messenger 0 2
Web Shop 0 4
Ave. Paraphrase 3.6 3.8
Subjective Messenger 4.0 4.5
Rating (I5) w1 Shop 3.7 4.1

Interestingly, there were no syntax errors in code
from either model, in either language - HTML, CSS or
JavaScript. The total number of misinterpreted prompts
was 1 for GPT-40, and 0 for Gemini 2.5 Pro. The
subjective rating of the quality of the produced final
output is given in Table 1.

A qualitative analysis of the code confirms already
noticed differences in the architectural and stylistic
decisions of each model. While Gemini's proactive
approach resulted in a better and more dynamic
architecture for the medium-complexity Messenger
task, the same tendency proved negative in the high-
complexity case webshop. Gemini 2.5 Pro hardcoded a
large number of product entries directly into HTML,
creating a rigid and unscalable codebase. In contrast,
GPT-40 model used a more robust and traditional
software engineering pattern: separating data (a
JavaScript array of products) from presentation
(dynamically rendered HTML). This approach is by
design more manageable and scalable.

Varazdin, Croatia

Proceedings of the Central European Conference on Information and Intelligent Systems 793

Because of the space constraints it is not possible to
present the entire generated code in full detail;
however, several representative elements can be
highlighted.

For example, in the first scenario for the
paraphrasing tool, the overall code quality produced by
both agents is high. The generated code includes all
requested components, is well-structured, and uses
intuitive variable naming. GPT-40 implementation
relies on a single main container (paraphrase-
container) (Fig. 7) for element layout, whereas
Gemini 2.5 Pro introduces additional components such
as card and box-shadow, giving the application a more
professional appearance (Fig. 7).

><diQViiass="paraphrase-container">
GPT-40

<hl>Paraphrase for me</hl> [::::::
<div class="content-row">
</div>

</div>

<style> Gemini Pro 2.5

.card { — =1

width: 100%;
height: 100%;
background-color: #f8f9fa; /* Light gray background */
border: 1px solid #dee2e6;
box-shadow: @ ©.5rem 1rem rgba(@, 0, @, 0.15) ;
display: flex; /* Use flexbox for the card itself */
flex-direction: column; /* Stack card content vertically */
}
</style>

<div class="content-wrapper">
<div class="card">
<div class="card-body p-4 p-md-5">
<hl class="card-title mb-4">Paraphrase for me</h1>
<div class="grid-container">

</div>
</div>
</div>
</div>

Figure 7. The main HTML container for element
layout in paraphrasing tool generated by GPT-40
(above) and Gemini 2.5 Pro (below).

In JavaScript, GPT-40 provides a minimal
implementation with only the basic onClick action
(Fig. 8), while Gemini delivers a more extensive and
detailed implementation (Fig. 8). Notably, Gemini
disables the “Paraphrase” button during text processing
and adds a loading spinner, further improving usability.
Finally, the layout in the ChatGPT-generated interface
is static, whereas Gemini’s interface exhibits greater
flexibility and adaptability. A similar pattern emerges
in the Messenger client task and the web shop task:
GPT-40 versions are minimal, displaying only the
necessary, while Gemini enriched the implementation
with additional usability features improving both
aesthetics and functionality.

The final step of the experiment was a refactoring
scenario with the webshop code previously generated
by the two agents. Specifically, the ChatGPT agent was
assigned the code originally generated by the Gemini
agent and, conversely, the Gemini agent received the
code generated by ChatGPT. Along with the code, both
agents were provided with a clearly defined prompt
outlining how to approach the refactoring task. Upon
receiving the instructions, both agents identified issues
in the code and presented concise summaries of the

36th CECIIS, September 17-19, 2025

problems, followed by detailed implementation steps
for the refactoring process and best practice
recommendations for future development.

document.getElementById('paraphraseBtn').addEventListener('click', () => {
const inputText = document.getElementById('inputText').value.trim();

const outputTextarea = document.getElementById('outputText');
outputTextarea.value = '"; GPT-40

if (linputText) {
outputTextarea.value = 'Please enter some text to paraphrase.’;
return;

// Placeholder action : replace with actual API call
console.log('Paraphrase button clicked. Input:', inputText);
outputTextarea.value = '...paraphrased text will appear here...';

1)

const paraphraseBtn = document.getElementById('paraphrase-btn');
const inputText = document.getElementById('inputText');

const outputText = document.getElementById('outputText');

const spinner = paraphraseBtn.querySelector('.spinner-border');
const copyBtn = document.getElementById('copy-btn');
paraphraseBtn.addEventListener('click', () => {

spinner.classList.remove('d-none');

s

copyBtn.addEventListener ('click', () => {
Ds !iﬂﬁiﬂi!ﬁ!'

Figure 8. JavaScript implementation of the button
click handler in GPT-40 (above) and Gemini 2.5 Pro
(below).

In the refactoring both agents reorganized the
original code base into multiple files and directories to
improve readability and make it easier to find
components, as shown in Fig. 9. All business logic was
moved to JavaScript files: 5 different files in GPT-40
refactoring, and only one JavaScript file (main.js)
with Gemini 2.5 Pro. In addition, both agents
introduced standardized conventions for naming
components, adhering to the BEM (Block Element
Modifier) method.

v ChatGPTRefactorOfGemini v GeminiRefactorOfChatGPT
v scripts css

style.css

~ images

i 4x4.webp

= Megaminx.webp

bootstrap-custom.mi

= Mirror.webp
components. = Pyraminx.webp
layout.css = web_shop_logo.png
utilit Vs
index.html| J5 main.js

index.html

Figure 9. The file structure of the refactored code for
the web shop task from GPT-4o (left) and Gemini 2.5
Pro (right).

However, despite providing informative comments
and useful suggestions, the code refactored by GPT-40
performed worse than the original implementations.
Moreover, the webshop refactored by GPT-40 was not
functional because important elements such as the
product display and the top navigation bar were

Varazdin, Croatia

794 Proceedings of the Central European Conference on Information and Intelligent Systems

missing. The GPT-40 model assumed that the products
would be located in a data directory within a
products.json file, but failed to specify this
requirement or provide an example of the expected
JSON structure.

On the other hand, Gemini 2.5 Pro successfully
refactored the code from GPT-40 and created an almost
identical version of the original page. Despite minor
shortcomings, such as the placement of the “Sale”
button in the top right corner and oversized product
images, the Gemini agent performed a more effective
refactoring than GPT-4o0. It preserved all the original
functionalities and introduced subtle improvements.

The complete codebase developed for this research,
consisting of HTML, JavaScript, and CSS files for all
four tasks or scenarios (paraphrasing, messenger,
webshop and refactoring), is freely accessible at:
https://github.com/mhorvat/vibecoding_frontend.

5 Discussion

The key finding of the conducted experiment in front-
end web development is that GPT-40 and Gemini 2.5
Pro are not simply interchangeable tools for vibe
coding. They embody two different philosophies of Al-
powered support that represent different levels of
support for a developer.

OpenAl’s ChatGPT with GPT-40 model acts as a
direct and literal tool. Its behavior is predictable and
controllable. It produces lean code that strictly adheres
to the user's explicit instructions. This paradigm places
the entire cognitive burden of design, functional
specification, and architectural planning on the user.

Google Gemini 2.5 Pro works as a proactive and
collaborative agent. It attempts to derive higher-level
goals, anticipate the user's needs, and enrich the output
with features and subtleties that go beyond
specifications stated in the prompt. It shares the burden
of design and makes decisions to deliver a more
complete product.

For a junior developer, the choice between these
two paradigms is crucial, and our results show that
Gemini's approach is generally superior. The data show
that Gemini consistently achieves higher subjective
satisfaction ratings across all three front-end scenarios.
This is because its proactive enhancements provide a
more complete and professional looking application
that is ready to use immediately. For a beginner, it is
very motivating to see how quickly an application with
many functions can be created.

The literalness of GPT-40 leads to simpler code,
but it is also a significant disadvantage for junior users.
Beginner developers must behave like experts, specify
every design detail and anticipate web front-end
features they may not even know are possible. This
may be difficult for junior users and can lead to a
frustrating development experience. Gemini's ability to
“fill in the gaps” in the prompt, i.e., the software

36th CECIIS, September 17-19, 2025

specification, makes it a far more effective assistant,
guiding the novice to a better result.

However, Gemini's proactive nature, while
beneficial, is not without risks. The “complexity-
architecture inversion” observed in the webshop task,
where Gemini's hard-coded HTML was architecturally
inferior to dynamic data array generated by GPT-4o is
a clear example of this feature. But for a developer who
is more interested in rapid prototyping rather than
building a large-scale enterprise-level application this
is a worthwhile trade-off.

The primary goal of any developer using vibe
coding should be to quickly turn an idea into a working
software prototype. In this context, Gemini's delivery
of a feature-rich, visually polished application, and
more rapid development and validation is more
valuable than the architectural simplicity of GPT-40
code.

Finally, the presented study has several limitations
that must be acknowledged. First, the experiment did
not include many other popular coding Al tools. An
expanded experiment including even more LLMs, and
frontend types is planned for future research and a
more comprehensive publication. Second, the
experiment was conducted with ratings from a single
user which limits the generalizability of the obtained
results. A formal verification should be undertaken in
the future to assess the quality of the generated code
more clearly. Third, the study was limited to vanilla
HTML, CSS, and JavaScript. The observed paradigms
may differ significantly for more complex frameworks
such as Node.js, Vue.js or React. Finally, the
experiment was focused solely on front-end Ul
development. The reported results may not apply to
other application architecture components such as
backend logic, database management or middleware,
and should be investigated separately in the future.

6 Conclusion

The presented research provides a direct empirical
comparison of OpenAl GPT-40 and Google Gemini
2.5 Pro LLMs in a vibe coding context of web frontend,
showing that for junior and senior developers alike, the
models are not only different, but one is demonstrably
superior. Google Gemini acts as a proactive and
augmenting agent, proving to be the more effective tool
for both user groups. Its ability to anticipate user
requirements, incorporate beneficial unsolicited
features, and create more refined and comprehensive
web frontend components is perfectly aligned with the
goals of an inexperienced developer looking to convert
a high-level “vibe” quickly and efficiently into a
functional product. Also, for senior developers a
proactive model such as Gemini 2.5 Pro will be more
beneficial to develop "quick and dirty” code, but with
a caveat of a larger codebase than with using GPT-4o0.
Such larger code will be more difficult to trace and

Varazdin, Croatia

Proceedings of the Central European Conference on Information and Intelligent Systems 795

debug. However, this is a trade-off that a senior
developer must contend with.

In the academic setting, vibe coding certainly has
the potential to transform the educational process. Its
integration into university-level programming
instruction has an opportunity to increase engagement,
accelerate learning, and improve overall teaching
quality (Saréevié et al., 2024), especially when
integrated into one of the many digital game-based
learning models that support formal student assessment
(Horvat et al., 2022). However, the increasing ease of
automatic code generation also introduces new
pedagogical challenges, particularly in academic
integrity, plagiarism detection, and assessment design
(Hartley, Hayak & Ko, 2024) (Mekterovi¢, Brki¢ &
Horvat, 2023). GenAl tools can help students with
coding assignments by suggesting, hinting, and
generating code snippets, encouraging better coding
practices. However, using GenAl in programming
education can lead to students becoming too dependent
on Al-generated code and failing to understand
fundamental concepts, which may negatively impact
the long-term sustainability of computer engineering in
higher education (Silva, 2024).

Developing robust solutions for detecting vibe-
coded laboratory assignments, seminar papers, and
student projects is an urgent issue that the academic
community must address (Adnin et al., 2025). From an
application design standpoint, vibe coding encourages
the creation of responsive, mobile-friendly, and
platform-consistent interfaces, allowing students and
professionals to create modern frontends with
minimum technical overhead (Smoli¢ et al., 2024).

In addition to limitations of the experiment, as
outlined in the previous section, which should be
corrected with future investigations, this research
opens several interesting avenues for further research.
First, including other models such as Anthropic
Claude', GitHub Copilot? or Cursor AI3. Second, by

expanding the scope by replicating the study with more
complex JavaScript frameworks and software
technologies to determine if the observed paradigms
remain consistent across the technology stack. Third,
by using professional tools and formal code analysis
techniques to determine the quality of the generated
code. Fourth, the robustness of the vibe coding
paradigm should be tested on different programming
assignments, such as backend, databases,
microservices, etc. Finally, in the future it would be
interesting to investigate the impact of different
prompting strategies and measure the impact of prompt
structure on code quality, architectural choices, and
model behavior more systematically.

Universities and curriculum designers must
formulate explicit standards for the ethical and
successful integration of vibe coding into coursework,
ensuring that Al-assisted coding and vibe
coding

!https://www.anthropic.com/claude.
2 https://github.com/copilot

36th CECIIS, September 17-19, 2025

enhance rather than undermine the development of
fundamental programming skills.

We hope our findings will have significant positive
implications for tool selection and software developer
education in vibe coding.

References

Adnin, R., Pandkar, A., Yao, B., Wang, D., & Das, M.
(2025, April). Examining Student and Teacher
Perspectives on Undisclosed Use of Generative Al
in Academic Work. In Proceedings of the 2025
CHI Conference on Human Factors in Computing
Systems (pp. 1-17).

Beynon-Davies, P., Carne, C., Mackay, H., &

Tudhope, D. (1999). Rapid application
development (RAD): an empirical
review. European Journal of Information

Systems, 8(3), 211-223.

Coello, C. E. A., Alimam, M. N., & Kouatly, R. (2024).
Effectiveness of chatgpt in coding: A comparative
analysis of popular large language
models. Digital, 4(1), 114-125.

Gunatilake, H., Grundy, J., Hoda, R., & Mueller, L.
(2024). The impact of human aspects on the
interactions between software developers and end-
users in software engineering: A systematic
literature review. Information and Software
Technology, 107489.

Hartley, K., Hayak, M., & Ko, U. H. (2024). Artificial
intelligence supporting independent student
learning: An evaluative case study of ChatGPT and
learning to code. Education Sciences, 14(2), 120.

Hirschberg, M. A. (1998). Rapid application
development (rad): a brief overview. Software Tech
News, 2(1), 1-7.

Horvat, M., Jagust, T., Veseli, Z. P., Malnar, K., &
Cizmar, Z. (2022, May). An overview of digital
game-based learning development and evaluation
models. In 2022 45th Jubilee International
Convention on Information, Communication and
Electronic Technology (MIPRO) (pp. 717-722).
IEEE.

Jing, Y., Wang, H., Chen, X., & Wang, C. (2024).
What factors will affect the effectiveness of using
ChatGPT to solve programming problems? A
quasi-experimental study. Humanities and Social
Sciences Communications, 11(1), 1-12.

Karpathy, A. (2025, Feb 3). Vibe coding. Retrieved
from

3

https://cursor.com/

Varazdin, Croatia

https://www.anthropic.com/claude
https://github.com/copilot
https://cursor.com/

796 Proceedings of the Central European Conference on Information and Intelligent Systems

https://x.com/karpathy/status/18861921848081493
83

Kotsiantis, S., Verykios, V., & Tzagarakis, M. (2024).
Al-assisted programming tasks using code
embeddings and transformers. Electronics, 13(4),
767.

Liang, J. T., Yang, C., & Myers, B. A. (2024,
February). A large-scale survey on the usability of
ai programming assistants: Successes and
challenges. In Proceedings of the 46th IEEE/ACM
international conference on software
engineering (pp. 1-13).

Mekterovi¢, 1., Brkié, L., & Horvat, M. (2023). Scaling
automated programming assessment
systems. Electronics, 12(4), 942.

Naz, R., & Khan, M. N. A. (2015). Rapid applications
development techniques: A critical
review. International Journal of Software
Engineering and Its Applications, 9(11), 163-176.

Porter, L., & Zingaro, D. (2024). Learn Al-Assisted
Python Programming: With Github Copilot and
ChatGPT. Simon and Schuster.

Robinson, D., Cabrera, C., Gordon, A. D., Lawrence,
N. D., & Mennen, L. (2025). Requirements are all
you need: The final frontier for end-user software
engineering. ACM Transactions on Sofiware
Engineering and Methodology, 34(5), 1-22.

Sapkota, R., Roumeliotis, K. I., & Karkee, M. (2025).
Vibe coding vs. agentic coding: Fundamentals and

practical implications of agentic ai. arXiv preprint
arXiv:2505.19443.

Sergeyuk, A., Golubev, Y., Bryksin, T., & Ahmed, I.
(2025). Using Al-based coding assistants in
practice: State of affairs, perceptions, and ways
forward. Information and Software
Technology, 178, 107610.

Shakya, R., Vadiee, F., & Khalil, M. (2025, April). A
Showdown of ChatGPT vs DeepSeek in Solving
Programming Tasks. In 2025 International

Conference on New Trends in Computing Sciences
(ICTCS) (pp. 413-418). IEEE.

Silva, C. A. G. D., Ramos, F. N., De Moraes, R. V., &
Santos, E. L. D. (2024). ChatGPT: Challenges and
benefits in software programming for higher
education. Sustainability, 16(3), 1245.

Smoli¢, E., Boras, B., Horvat, M., & Jagust, T. (2024).
Smartphone-Enabled Interaction on Large
Displays—A Web-Technology-Based
Approach. Electronics, 13(5), 929.

Sarevié, A., Tomi¢ié, 1., Merlin, A., & Horvat, M.
(2024, May). Enhancing Programming Education
with Open-Source Generative Al Chatbots. In 2024
47th MIPRO ICT and Electronics Convention
(MIPRO) (pp. 2051-2056). IEEE.

36th CECIIS, September 17-19, 2025

Taulli, T. (2024). Al-Assisted Programming: Better
Planning, Coding, Testing, and Deployment. "
O'Reilly Media, Inc.".

Varazdin, Croatia

