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Abstract. This study investigates the use of generative
Al within a university-level sofiware engineering (SE)
course by analysing survey responses from second-
year students. The survey explored multiple dimensions
of students’ interaction with AI while working on their
course projects, including frequency of use, task types,
prompting strategies, and perceived challenges. The
results reveal widespread use of Al, especially for
coding and debugging, though students also apply it
across other phases of the software development
lifecycle (SDLC). Despite this broad engagement, and
even some use of advanced prompting, understanding
of these techniques remains limited. All students
reported verifying Al outputs, indicating low trust,
which is further reinforced by the fact that many cited
the inaccuracy of Al-generated results as their biggest
challenge. Students also expressed a clear interest in
improving their skills, particularly in prompt design.
These findings underscore the need for structured
support in Al literacy and prompting skills, as well as
adapting course projects for an Al-enhanced learning
context. This study provides a foundation for future
research and instructional design in SE education.
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1 Introduction

Generative Al tools such as DeepSeek, Claude,
ChatGPT, and GitHub Copilot are rapidly becoming
part of the everyday toolkit for software developers,
including students. In higher education, these tools
offer opportunities to support coding, debugging,
writing documentation, and other essential tasks in
Software Engineering (SE) activities. The growing
presence of these tools in educational contexts raises
urgent questions about how students are engaging with
them, what challenges students face, and what kinds of
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support students need use these tools effectively and
responsibly.

As a result, the educational community has seen a
surge of empirical studies investigating how generative
Al is being used by students. This growing body of
work is not only welcome but necessary. Given the
diverse educational contexts, varying levels of Al
literacy, and the rapid evolution of models, tools, and
prompting strategies, no single study can offer
generalizable conclusions. Continuous empirical
research is needed to track how students adopt, adapt
to, and are affected by these technologies, especially as
institutional policies, pedagogical approaches, and the
tools themselves evolve.

This paper contributes to the ongoing effort by
examining how second-year undergraduate students
used generative Al tools within a SE course. By
analysing survey data on their usage patterns,
prompting behaviours, challenges, and skill needs, we
aim to provide timely insight into student practices and
perceptions. These findings offer valuable implications
for the design of instructional strategies, the
development of Al literacy, and the adaptation of
course projects to align with an Al-enhanced learning
environment.

The rest of the paper is organized as follows:
Section 2 provides background on generative Al in
education and SE. Section 3 outlines the study’s
methodology, followed by survey results in Section 4.
Section 5 presents a discussion of the findings, and
Section 6 briefly covers the Threats to Validity.
Finally, Section 7 concludes the paper with
implications and directions for future research.

2 Background

In general, generative Al has transformed higher
education by enabling personalized learning,
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automating repetitive tasks, and fostering creative
problem-solving. Generative Al tools support diverse
applications, from writing assistance to code
generation. However, their adoption raises concerns
about academic integrity, over-reliance, and equitable
access.

For instance, Ali et al. (2024) conducted a
systematic review of Al applications in education,
identifying key challenges such as tool reliability and
ethical concerns, which align with the struggles
reported by students in our study. Similarly, Fu and
Weng (2024) emphasized the importance of framing
responsible, human-centered Al practices, reinforcing
our call for ethical integration in curricula. Lepp and
Kaimre (2025) explored student perceptions of
generative Al in programming education, finding that
while students appreciated Al’s assistance, its impact
on actual learning outcomes was mixed—supporting
our observation that students may rely on Al without
fully understanding its mechanisms. Jin et al. (2025)
provided a global overview of institutional Al adoption
policies, highlighting the need for clear guidelines and
structured support, which our findings also suggest.
Yusuf et al. (2025) proposed a conceptual framework
for pedagogical Al agents, noting their potential to
enhance engagement and learning outcomes. This is
particularly relevant given our students’ limited
awareness of Al agents and their capabilities. Finally,
Terragni et al. (2025) discussed the future of Al-driven
SE, emphasizing the growing role of autonomous
agents and the importance of preparing students for this
shift—an area where our respondents showed interest
but lacked exposure.

In SE, Al tools provide now a huge support helping
with code generation, debugging, and testing. There
are reports that GitHub Copilot, for example, vastly
reduces coding time and improves task completion
rates.!. On the other hand, there are also issues in the
adoption of Al (Giannakos, 2024) as they can hinder
students conceptual understanding by prioritizing task
completion over a proper learning of the actual
concepts. Furthermore, prompt engineering, i.e., the
way precise inputs to optimize Al responses—is a
critical skill for leveraging LLMs effectively, prompt
patterns like few-shot prompting (providing examples
to guide Al), chain-of-thought reasoning (breaking
tasks into logical steps), and role-based prompting
(assigning Al a specific role, e.g., “act as a senior
developer™) as essential for high-quality outputs. Not
only that, but structured prompts can also improve code
quality highlighting their importance in SE education.

Knot et al (2024) also states that students often rely
on trial-and-error due to a lack of formal training,
limiting their ability to tackle complex tasks like
system design. Recent frameworks propose teaching
prompt engineering as a core competency, similar to
programming or debugging, see for example Lee and

1 https://github.blog/news-insights/research/research-quantifying-
github-copilots-impact-in-the-enterprise-with-accenture/

36th CECIIS, September 17-19, 2025

Palmer (2025). Hou et al (2024) review the use of
Large Language Models in SE, highlighting their
applications, optimization techniques, and challenges.
They also include the number of studies using different
prompt patterns.

Al agents, i.e., autonomous systems that perform
multi-step tasks with minimal human intervention, are
also transforming SE. Unlike LLMs, which respond to
individual prompts, Al agents can autonomously write,
test, and deploy code, integrating seamlessly with
development environments. These agents support all
SDLC phases by automating repetitive tasks. However,
student awareness of Al agents is limited hindering
students’ ability to use agent in development projects.

Finally, there a need to for ethical integration of Al
in education, including hallucination (Al generating
incorrect outputs), bias in training data, and unequal
access to tools. In SE, these are important, as biased Al
outputs can introduce security vulnerabilities or
perpetuate suboptimal design patterns. For example, an
Al-generated sorting algorithm might prioritize speed
over correctness if not properly verified, leading to
errors in production systems. Nam and Bai (2024)
emphasise the need for including ethics in the curricula
to identify and mitigate Al biases, ensuring responsible
use in technical disciplines.

3 Methodology

This study investigates the use of Generative Al in SE
education through a survey-based approach combining
quantitative and qualitative data collection. The
research was guided by two questions:
e RQI: How do students use Generative Al
when performing SE tasks?
e RQ2: What challenges do students face when
using Generative Al in their coursework?

To address these questions, we administered a
structured survey to which 26 students enrolled in a
second-year undergraduate SE course responded. The
questions focused on students' use of Generative Al
during their work on course-related software projects.
While working on their projects, students were
engaged in typical software development lifecycle
(SDLC) activities, including requirements
specification, software design, implementation
(coding), and testing. Throughout the course, students
were encouraged to explore and incorporate
Generative Al tools in completing these activities and
were provided with teaching materials that would help
them do so. The questionnaire that was given to
students comprised 10 questions, designed to capture
both quantitative and qualitative data. Multiple-choice
items were included to assess usage patterns and
perceptions in a structured format, while open-ended
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questions provided opportunities for participants to
elaborate on their experiences and perspectives in
greater depth.

The survey was administered in person during a
scheduled class session that was compulsive at the end
of the term. Therefore, the survey was answered by
almost all students taking the course, however, the
participation was voluntary, and all responses were
anonymous. In the future, we will explore the
possibility of linking surveys to academic scores, for
further statistical analysis. Quantitative responses were
analysed using descriptive statistics (e.g., frequency
distributions and means) to identify patterns in
students’ use of Al Qualitative responses were
analysed using open coding to extract themes and
patterns related to student experiences and
expectations.

4. Results

In this section, we provide the summarised results of
the survey.

When asked how often they use Al tools for SE
tasks, students responded as follows (see Fig. I):
“Always” — 3 students, “Frequently” — 13 students,
“Sometimes” — 9 students, ‘Rarely’ — 1 student, and
‘Never’ — 0 students.
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Figure 1. Frequency of Al use for SE tasks

Students were then asked to specify which SE tasks
do they use AI for by choosing from multiple
applicable options (see Fig. 2). The most frequently
selected task was “Debugging,” reported by 20
respondents. Both “Coding” and “Testing” were each
selected by 16 respondents. “Requirements” was
chosen by 13 respondents, while “Design” and
“Documentation” were selected by 11 and 10
respondents, respectively.
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Figure 2. Al use across SE tasks

Regarding students’ self-assessed competence with
Al tools in the context of coding, a majority (19
respondents) considered themselves “Proficient,”
while 7 respondents rated their skills as “Basic.”

In relation to debugging, students were asked how
they typically ask Al for help, with multiple selections
allowed (see Fig. 3). The most frequently reported
approach was to ‘“Paste errors,” selected by 19
respondents. This was followed by “Ask for
explanations” (15 respondents) and “Use step-by-step
prompts” (13 respondents).
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Figure 3. How students ask Al for debugging help

Students were asked whether they had
experimented with advanced prompting techniques
when interacting with Al tools. A total of 20
respondents indicated (see Fig. 4) that they had used at
least one advanced strategy, while 6 stated that they
relied solely on simple queries. Among those who had
used advanced prompting, the most selected type was
“Few-Shot” (13 respondents), followed by “Role-
Based” (11), “Chain-of-Thought” (10), and
“Constraints” (9).
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Figure 4. Use of advanced prompting techniques

In response to the question about verifying Al-
generated outputs (see Fig. 5), 22 students indicated
that they “always” check the results themselves. Four
students reported that they do so ‘“sometimes, for
important things,” while none selected the option “No,
I trust it”.

24

Yes, always Sometimes, for important things No, | trust it
Response Option

Figure 5. Verifying Al's results

When asked whether they understand what a
prompt pattern is and how to use it, 14 students
responded “Yes,” while 10 indicated “No.” It is worth
noting that only 24 out of the 26 participants responded
to this question.

The most commonly reported challenge students
face when using Al is that it “makes mistakes,”
selected by 20 respondents. Other struggles were noted
less frequently: 4 students pointed to ethical concerns,
3 admitted over-reliance on Al, and 2 cited other
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Figure 6. Students' struggles with Al

Out of 26 students, 22 provided a response to the
open-ended question asking for an example where Al
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either helped or failed them. Eight students described
positive experiences with Al assistance. Among these,
4 mentioned Al helped them with fixing errors, 2 with
coding tasks, 1 with design and diagramming, and 1
with summarizing materials. In contrast, 14 students
shared instances where Al failed to meet expectations.
The most cited issue was incorrect code generation (7
respondents), followed by failures in error fixing (5
respondents) and diagram creation (2 respondents).

The survey results reveal several key outcomes
regarding students' engagement with generative Al in
SE tasks. First, Al use has become a regular part of
students’ workflow, with the majority reporting
frequent or constant use which suggests a shift in how
students approach software development, integrating
Al tools as standard practice. Students used Al across
a wide range of SE tasks, not just coding and
debugging. However, the predominance of debugging
and coding tasks also could reflect a tendency to rely
on Al technical problem-solving rather than conceptual
or design-oriented work.

The self-assessed competence levels show that
most students feel confident in using Al for coding,
which may reflect growing familiarity and confidence
with these tools. Yet, it seems that fewer understand
the underlying principles of prompting. This gap
between practice and understanding highlights the
need for formal training in prompt engineering for SE
(this may not so necessary for general use, as LLMs are
getting better at understanding user’s use intend by the
users). Finally, verification of Al outputs emerged as a
challenge identified as the most common struggle.
Open-ended responses showed that while some
students benefited from Al assistance in coding and
debugging, others encountered significant failures,
especially in diagram creation. These mixed outcomes
underscore the importance of teaching students how to
critically evaluate and effectively prompt Al tools, in
particular generating diagrams seems to be harder than
generating code or test cases. Finally, students
expressed a desire to improve their skills by applying
Al to the full SE life cycle, indicating the necessity for
educational support.

5 Discussion

In this section, we discuss our findings related to the
two research questions stated previously in
methodology section.

To begin with, we consider how students are
currently using generative Al in the context of SE tasks
(RQ1). The survey data indicate all students reported
some level of Al use, with over 60% reporting that they
use Al “frequently” or “always” for SE tasks. This
suggests that Al has not only achieved a wide adoption
among SE students but has become a regular part of
their workflow rather than an occasional aid. Given this
widespread adoption, SE educators may need to
rethink the type, scope, and complexity of student
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projects to ensure they remain appropriately
challenging and educational in an Al-augmented
learning environment. Regarding the use of Al in
different SE tasks, while code-centric tasks dominate,
students do not stop there, they are also aware of Al’s
potential in earlier and later phases of development
process. This awareness is important as the SDLC is
both increasingly and deeply infused with Al at every
stage.

Survey results imply that all students verify Al-
generated results, with 85% of students report doing
that “always”. Even if this does not reflect actual
practice, it at least implies a shared awareness of the
necessity of result verification. This cautious approach
is especially relevant in SE tasks, where precision and
correctness are critical and unchecked errors can lead
to significant issues and maintenance problems. The
fact that verification is universally reported also
indicates that students may have moved beyond the
initial naivety and inflated expectations that often
accompanied the early hype around generative Al.

Students expressed strong confidence in their Al
skills when coding, with over 70% identifying as
proficient. They reported a variety of techniques for
debugging with Al—ranging from simply pasting error
messages into a chat window to more structured, step-
by-step interactions. When shown prompt examples,
more than 75% indicated that they had used some form
of advanced prompting, with Few-shot prompting,
Chain-of-thought and Role-based prompt types being
the most recognized ones. However, only 58% reported
knowing what prompt patterns are, highlighting a clear
gap between practice and understanding—and
underscoring the need for more formal, structured
education in this area.

Turning to the second research question, we
examine the challenges students face when using
generative Al in their coursework (RQ2). A clear
majority of students identified AI’s tendency to
produce incorrect or misleading outputs as their biggest
struggle. This concern was reported far more
frequently than other issues such as ethical dilemmas
or over-reliance on Al. The emphasis on Al-generated
mistakes aligns with previously mentioned students’
cautious behaviour, such as consistently verifying
outputs. While technical reliability clearly emerged as
the central challenge—far outweighing other
concerns—some students did report issues such as
ethical dilemmas or overreliance on Al tools. Although
only a small number explicitly mentioned becoming
too dependent on Al, this may serve as an early
warning sign, particularly given that the respondents
are second-year students still developing foundational
SE skills. It is also possible that the actual number is
higher, as some students may not yet recognize their
overreliance or may be hesitant to admit it. Similarly,
the low frequency of ethical concerns in the responses
may point not to their irrelevance, but rather to a lack
of awareness—highlighting the need for more

36th CECIIS, September 17-19, 2025

structured education around responsible Al use in
academic and professional contexts.

Open-ended responses provided interesting
insights into AI’s performance and students’
satisfaction with it. While some students shared
positive examples of Al assistance, particularly in error
correction, coding, and summarization tasks, nearly
twice as many described instances where Al failed to
deliver accurate or usable results. Common failure
points included incorrect code, ineffective debugging
assistance, and flawed diagram generation. The higher
number of failure reports may suggest that such
scenarios are more frequent, or at least more
memorable. This raises important questions about
whether these failures stem from limitations in the
tools themselves or from students using them
ineffectively—again pointing to the need for formal
education on how to prompt and evaluate Al
effectively. It may be also possible that some of these
frustrations reflect unrealistic expectations or low
tolerance for imperfection. As second-year students
who began their academic journey in the age of
generative Al, they may take the technology for
granted in ways that more mature students or
professionals—who worked without such tools—do
not. This generational shift in expectations may shape
how students perceive both the value and the
limitations of Al

When asked what Al-related skills they would like
to develop, students overwhelmingly expressed a
desire to improve their prompting abilities. This aligns
with earlier findings indicating widespread use of
prompting techniques, but only partial understanding
of underlying patterns. Some students also noted a
desire to apply Al more holistically across the SE
process, rather than limiting its use to isolated tasks
like debugging or code generation. Others expressed
interest in learning how to design software with Al
support or even build Al systems themselves. These
responses suggest that students are not only aware of
their current skill gaps, but are also willing to learn
beyond surface-level usage. The strong emphasis on
prompting shows the need for instructional support in
teaching students how to engage with Al tools more
deliberately, strategically and effectively.

To translate these findings into actionable teaching
strategies, educators should consider integrating
structured Al literacy modules into SE curricula. These
modules should cover not only the technical use of
generative Al tools, but also prompt engineering,
agents, ethical considerations, and critical evaluation
of Al outputs. For example, SE educators need to
design assignments that require students to use
different prompting techniques and reflect on the
outcomes, thereby deepening their understanding of
prompt patterns and their impact on Al outcomes.
Moreover, educators need to adapt project-based
learning assignments to include Al-supported
workflows. This could involve tasks where students
must use Al tools for requirements gathering, design,
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coding, and testing, in CD/CI (Continuous
Development/Continuous Development) followed by a
critical review of the Al-generated output. Such
activities would help students develop quality software
with the help of Al across the whole SDLC.

6 Threats to Validity

This study presents several threats to the validity
(TTV) that may affect the interpretation and
generalizability of its findings. These are categorized
below according to common validity frameworks in
empirical SE research (Wohlin et al, 2024).

External Validity. The small sample size—26
students from a single second-year software
engineering course—limits generalizability. Student
behaviours may differ across institutions, academic
levels, or course designs.

Internal Validity. Survey timing at the end of the
course may have influenced responses due to recent
experiences or exam stress. Uncontrolled factors like
prior Al exposure or peer influence could also affect
reported behaviours.

Construct Validity. The custom-designed, non-
validated questionnaire may not reliably measure key
constructs such as Al proficiency or ethical awareness.
Additionally, self-reported data introduces bias, as
students may misjudge their skills or respond in
socially desirable ways.

Despite these TTV, this preliminary study offers
some initial insights into student interactions with
generative Al. These findings serve as a foundation for
further research that incorporates validated
instruments, broader survey samples (students and
professionals), and mixed-research approaches to
deepen our understanding of Al integration in SE
engineering education.

7 Conclusions and future works

This preliminary study explored how second-year
SE students use generative Al tools in their coursework
and what challenges they face. The findings indicate
that Al has already become a routine part of students’
development practices, especially for tasks like
debugging and coding. While students report
confidence in their skills and actively experiment with
advanced prompting strategies, gaps in understanding
remain—a point also acknowledged by students
themselves, who expressed a desire to learn more about
prompting and Al use. Technical reliability remains the
primary challenge to students, but ethical awareness,
responsible use, and the risk of overreliance also
appear to require further attention.

The results point to a clear need for structured Al
literacy within SE education—especially in the areas
of prompting, critical evaluation of outputs, ethical use,
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and awareness of potential overreliance. In parallel,
student tasks and project designs may also need to
evolve to remain challenging and meaningful in an
environment where Al support is widespread.

As a preliminary study, this work lays the
groundwork for more extensive and validated research
involving larger and more diverse student cohorts and
professionals. Future work will focus on designing and
evaluating instructional modules that integrate
generative Al into SE education. Additionally, future
surveys could incorporate student performance on
tasks involving Al tools as a proxy for understanding
prompting patterns, thereby reducing reliance on self-
reported data.
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Questionnaire

Section 1: How Do You Use AI?

1.  How often do you use Al for coding/SE tasks?
(Check one box)

o Never (I don’t use Al)

o Rarely (only a few times)

o  Sometimes (for some tasks)

o  Frequently (almost every project)

o  Always (Al is part of my workflow)

2. Which SE tasks do you use Al for? (Check all that
apply)

o Requirements (e.g., "Generate user
stories for a fitness app")

o Design (e.g., "Create a UML diagram for
a banking system")

o Coding (e.g., "Write Python code for a
REST API")

o  Debugging (e.g., "Explain why this Java
error occurs")

o  Testing (e.g., "Generate unit tests for this
function")

o Documentation (e.g., "Summarize this
code for a README file")

o  Other:

Section 2: How Skilled Are You with AI?

3. For CODING, which best describes you? (Check

one)
o Basic: I ask simple things (e.g., "How do
I write a for-loop in Java?")
o Proficient: 1 use smart prompts (e.g.,
"Optimize this SQL query for speed" or
"Explain this algorithm, then rewrite it in
C++.")
4. For DEBUGGING, how do you ask Al for help?
(Check all that apply)
o Paste errors (e.g., "Fix this error:
NullPointerException")
o  Ask for explanations (e.g., "Why does
this Python code give a TypeError?")
o  Use step-by-step prompts (e.g., "Analyze
this stack trace and suggest fixes")
o  Other:
5. Have you tried ADVANCED PROMPTING?
(Check all that apply)
o Few-Shot (e.g., "Here’s my code.
Suggest improvements like these
examples.")

o  Chain-of-Thought (e.g., "First explain
the bug, then suggest fixes.")

o Role-Based (e.g., "Act as a senior dev
and review my code.")

o  Constraints (e.g., "Rewrite this function
with O(1) space complexity.")

o None (I only use simple questions)

Section 3: Challenges & Feedback
6. Do you CHECK AI’s work? (Check one)
o No, I trust it

o  Sometimes, for important things
o Yes, always! (I test code/docs myself)
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7. What’s your BIGGEST struggle with AI? (Check

one)
0 Al makes mistakes
0 I rely on it too much
o Ethics (e.g., plagiarism, cheating?)
o Other:
8. Give ONE example where Al helped (or failed)
you:
(Example: "Al wrote a SQL query for me, but it had a syntax

error.")
Your Answer:

9.  What AI skills do you WANT TO LEARN?
(Example: "Better debugging prompts" or "How to design
with AI")

Your Answer:

10. In general, do you think you know what a prompt
pattern is and how to use them?
o  Yes, I know them and use them
o No, I don’t know about prompt patterns
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