Proceedings of the Central European Conference on Information and Intelligent Systems 23

Generative Worldcrafting: A Modular Framework for
Al-Assisted Content Creation in Games

Tomislav Peharda, Bogdan Okresa Duri¢

University of Zagreb Faculty of Organization and Informatics

Artificial Intelligence Laboratory
Pavlinska 2, 42000 Varazdin, Croatia
{tpeharda, dokresa}@foi.unizg.com

Abstract. We present a modular framework for
Al-assisted world generation in sandbox games, using
Minecraft as a case study. QOur system integrates
multimodal user inputs, i.e. text, speech, and images,
with large language and vision-language models to
generate structured in-game content. By decomposing
complex prompts into reusable components and
translating them into executable game commands,
the approach supports scalable and intuitive content
creation. This work demonstrates how generative Al
can enhance creative expression and interactivity in
virtual environments.

Keywords. generative artificial intelligence, artificial
intelligence, video games, virtual world generation,
large language models, Minecraft, multimodal inter-
face

1 Introduction

Recent advancements in generative artificial intelli-
gence (Gen AI) have opened up new possibilities
across a wide range of domains, with the game indus-
try being one of the areas of application (Jovanovic &
Campbell, 2022; Takale et al., 2024). One compelling
use case is the generation of virtual worlds, where the
stochastic nature of generative models aligns well with
the need for creativity and variability. Unlike domains
that require deterministic outputs, video games thrive
in environments where multiple outcomes are not only
acceptable but encouraged. This makes the game in-
dustry an ideal candidate for the deployment of Gen Al
technologies (Marr, 2024).

Players have consistently demonstrated a strong in-
terest in shaping their own virtual experiences, as evi-
denced by the popularity of sandbox and builder games
such as Minecraft (Mojang Studios, 2011), Roblox
(Roblox Corporation, 2025), and similar platforms
(Carbonell-Carrera et al., 2021). Despite their creative
freedom, these games often rely on user interfaces that
demand extensive manual interaction, typically involv-
ing keyboard and mouse inputs. This requirement can
pose a barrier to seamless and intuitive world-building

36th CECIIS, September 17-19, 2025

experiences.

This research explores the intersection of Gen Al
and virtual world generation by reviewing existing aca-
demic and industry work in the field. It also pro-
poses practical approaches for leveraging large lan-
guage models (LLMs) to generate rich, dynamic game
content. Furthermore, the study outlines how these
models can be integrated to power world generation
in existing game engines and workflows, potentially
transforming how users interact with and create within
virtual environments.

2 Related work

Gen Al refers to computational techniques that pro-
duce new and meaningful content, such as text, images,
or audio, by learning from large datasets (Feuerriegel
et al.,, 2024). Unlike traditional models focused on
classification, generative models aim to understand and
replicate data distributions, enabling them to generate
realistic outputs. A prominent example are LLMs, such
as GPT-3 and GPT-4, which are built on transformer ar-
chitectures and trained on extensive text corpora (Fui-
Hoon Nah et al., 2023). These models are capable of
handling a wide variety of language tasks, including
dialogue, summarization, and creative writing, often
with little or no task-specific training. Recently, visual
large language models (vVLLMs) have extended this ca-
pability to multi-modal domains by processing both vi-
sual and textual information. vLLMs can interpret im-
ages and generate coherent text based on visual input,
enabling tasks like image captioning, visual question
answering, and multimodal reasoning. Their flexibil-
ity and ability to generalize across domains have made
them foundational tools in many modern artificial in-
telligence (Al) applications.

Speech-to-text (STT) models, which can also be
considered part of Gen Al, are systems that convert
spoken language into written text by analyzing audio
signals and mapping them to linguistic representations
(Reddy et al., 2023; Trivedi et al., 2018). These models
are trained on large datasets of speech and correspond-
ing transcripts, allowing them to learn the patterns of

Varazdin, Croatia

24 Proceedings of the Central European Conference on Information and Intelligent Systems

spoken language across different accents, tones, and
contexts. While their primary function is transcription
rather than creative generation, they play a crucial role
in multimodal generative systems by enabling audio-
based interaction. For example, they are often used as
the first step in voice-controlled applications or conver-
sational agents, where spoken input is transcribed and
then passed to a language model for further processing.

BRICKGPT is a generative model that creates phys-
ically stable LEGO-style structures from text prompts
(Pun et al., 2025). It fine-tunes a large language model
to predict brick placements step by step, using a custom
dataset called StableText2Brick. To ensure the designs
are buildable, it applies physics-based validity checks
and removes unstable bricks during generation. The
outputs can be assembled manually or by robots and
support color and texture customization from descrip-
tive text.

SpAltial AI (SpAltial AL 2025) is developing a new
class of generative models called Spatial Foundation
Models, which are designed to reason about and gener-
ate three-dimensional environments grounded in phys-
ical space and time. Unlike conventional generative
models that operate in image space or use 2D projec-
tions, these models work directly in 3D coordinate sys-
tems, enabling consistent and coherent representations
of objects, scenes, and environments. The goal is to
enable machines to understand and interact with the
physical world in a spatially aware manner, support-
ing applications such as digital twinning, autonomous
systems, and 3D content generation with high fidelity
and structural accuracy.

VOYAGER is an open-ended, LLM-powered life-
long learning agent (Park et al., 2023) designed to oper-
ate in the game Minecraft. It uses GPT-4 to explore, ac-
quire skills, and solve increasingly complex tasks with-
out human intervention. VOYAGER features three core
components: an automatic curriculum that proposes
tasks based on exploration progress, a skill library for
storing and retrieving reusable action programs, and an
iterative prompting mechanism that incorporates en-
vironment feedback and execution errors to refine its
code. This design allows VOYAGER to learn and adapt
continuously, outperforming other methods in explo-
ration, task completion, and generalization to new sce-
narios.

Genie 2 is a world model by DeepMind that gen-
erates interactive 3D environments from a single im-
age prompt (Lillicrap et al., 2024). It allows users or
Al agents to explore these worlds using keyboard and
mouse, with consistent physics, object behavior, and
memory. Built on a video diffusion model, Genie 2 pre-
dicts each frame based on actions, enabling real-time,
controllable gameplay suitable for training agents and
creative applications.

Among many video games that offer the ability to
build worlds, one of the most popular ones is Minecraft
(Mojang Studios, 2011). Minecraft is a sandbox

36th CECIIS, September 17-19, 2025

builder game where players can create and explore en-
vironments made entirely of blocks. It provides a wide
range of materials and tools that players use to shape
the world, from constructing simple homes to design-
ing entire cities or landscapes. With its open-ended
gameplay, Minecraft encourages creativity by letting
users build their own worlds from the ground up us-
ing the blocks they’re given (Carbonell-Carrera et al.,
2021).

3 Proposed Approach

Building on prior related work, this research focuses
on proposing approaches for utilizing Gen Al to build
worlds within existing video games, using Minecraft as
an example. The approach to generation is bottom-up,
where the user starts by generating individual objects
that make up the world.

The three key components of this proposal are:

e The user communication interface,
e The world generation business logic,
e The interface to the game engine.

The communication interface refers to the visual,
textual, or audio modalities through which users de-
scribe the objects they wish to generate. Inputs re-
ceived through this interface are transformed into cor-
responding actions within the world generation busi-
ness logic, powered by an LLLM, and are subsequently
used by the interface to the game engine to trigger ap-
propriate actions for generating the world inside the
game.

3.1 Communication Interfaces

This paper investigates multiple user interfaces for in-
teracting with the system and translating user inputs
into game actions. These include textual, audio, and
visual modalities, each enabling intuitive and flexible
interaction patterns for different user preferences or ac-
cessibility needs.

The textual interface allows users to input natural
language commands, such as “generate a house with
two floors and a garden”, which are directly processed
by an LLM. This is the most straightforward modal-
ity and serves as the foundation for others. The au-
dio interface leverages STT models to transcribe spo-
ken commands into text. These models are integrated
upstream of the LLM pipeline, allowing seamless con-
version of voice commands into structured text instruc-
tions. This approach makes the system usable in hands-
free settings.

The visual interface utilizes vLLM, capable of in-
terpreting user-submitted images or drawings. These
models convert visual stimuli into textual descriptions
that serve as LLM prompts. For instance, if a user up-
loads a sketch of a medieval tower, vLLM interprets
the drawing and produces a textual description such

Varazdin, Croatia

Proceedings of the Central European Conference on Information and Intelligent Systems 25

as “generate a tall stone tower with wooden windows
and a red flag”. This modality enables novel and intu-
itive design workflows, where players can create game
structures through sketches or visual references instead
of verbal instructions.

Listing 1 features an example prompt that could be
passed to a vLLM alongside the image, in order to gen-
erate an instruction.

Listing 1. vLLM sample prompt to analyze image and
generate textual instruction

Role

You are an expert at analyzing images and <«
generating a textual instruction on what is <«
in the image.

Instructions
1. Analyze what are the objects you see on the<>
image
2. Generate a description of what you see as <«
an instruction of what needs to be generated

Ezample
"Generate a house with 5 windows and 1 door"

By supporting multimodal interaction, the system
aims to make generative world-building accessible, ex-
pressive, and personalized.

3.2 Business Logic for World Generation

Once the user input is transformed into a textual query,
the system’s core logic is responsible for interpret-
ing the prompt and generating corresponding game ac-
tions. This logic is built around the capabilities of
LLMs to follow instructions, reason about structures,
and generate sequences of domain-specific operations.

The LLM is prompted with detailed instructions and
few-shot examples that teach it how to translate user
intentions into actions tailored to the game interface.
For example, the input "generate a house" would re-
sult in an ordered list of Minecraft block placements,
structured by dimensions, materials, and spatial rela-
tionships.

Listing 2 shows an example system prompt to an
LLM.

Listing 2. System prompt to produce world generation
steps

Role

You are an expert at generating game actions <
that produce blocks that the expected object <«
is comprised of.

Instructions

1. Analyze user message and determine what <
object needs to be created.

2. Each object is comprised of one or multiple<>

small size box-like blocks

3. Generate blocks with coordinates that are <«
needed to shape a 2D representation of the <«
requested object

4. Output should be list of objects comprised <«
of x and y coordinates

Ezample
Input: "Generate a tree"
OQutput: [{"x": O, "y": 0}, {"x": 0, "y": 1}, <

36th CECIIS, September 17-19, 2025

Listing 3 shows a sample expected output.

Listing 3. Object generation output

{"X": 0, Ilyll: O}’ {"X": O’ l|yl|: 1}’ {“x“: P}
o, "y": 2}, {"x": 0, "y": 3}, # trunk
{"x": -1, "y": 4}, {"x": 0, "y": 4}, {"x":¢

1, "y": 4}, # bottom foliage layer

{"x": -1, ry 5}, {"x": 0, oyt 5}, {"x":¢
1, "y": 5}, # middle foliage layer

{"x": 0, "y": 6} # top foliage

To improve compositionality and reuse, an alterna-
tive approach is to have the LLM break down complex
objects into known components. For instance, instead
of generating an entire house from scratch, the model
can output a set of required components such as win-
dows and doors, each of which can be retrieved from a
database.

An example system prompt to the LLM is shown in
Lst. 4.

Listing 4. System prompt to break down complex ob-
ject into components

Role

You are an expert at providing list of <>
components that are needed to generate a <«
complex object, given the available <>
components.

Instructions

1. Analyze user message and determine what are<>
the components that the expected object <
given the list of available components

2. Provide an output as a list of unique <«
strings that describe needed components

Available compoments
- window

- door

- roof

Exzample

Input: "Generate a house with 5 windows and 2 <
doors"

OQutput: ["window", "door"]

That being said, if the user query is “Generate a
house with 5 windows and 2 doors,” the LLM output
would be: window and door. These two components
are then searched against a database where the required
blocks for generating each object are stored. Upon re-
trieval, the LLM can be queried again, this time with
the sets of blocks for both components, asking it to gen-
erate the originally requested object using those com-
ponents. An example LLM prompt is shown in Lst. 5.

Listing 5. System prompt to synthesis low-level object
blocks into a complex object

Role

You are an expert at producing steps to build <
a complex object given the available sub-<
components and its corresponding blocks.

Instructions

1. Analyze what are the components that a <«
complex object is comprised of.

2. Components to build a complex object must <«
be from the list of available components

3. Utilize the blocks for building low-level <
components to build complex object

Available components

Varazdin, Croatia

26 Proceedings of the Central European Conference on Information and Intelligent Systems

User communication interface ‘World generation business logic

Audio Text-to-speech

Interface to game engine

%

Break down complex

Text object into
icomponents with LLM

Synthesize
Retrieve blocks Invoke game engine Game engine
based on names into complex object actions
with LLM

VLLM to describe
image

Visual (image)

Figure 1. Complex object generation process

- window: [<list of objects with x and y <«
coordinates to build window>]

- door: [<list of objects with x and y <«
coordinates to build door>]

Ezample

Input: "Generate a house with 5 windows and 2 <«
doors"

Qutput: [{"x": 0, "y": 0}, {"x": 0, "y": 1}, <«

.

This component-based generation can be formalized
as a three-step process:

1. Use the LLM to decompose a complex object into
its constituent parts or components.

2. Perform a search over a database of predefined
generation blocks for these components.

3. Return the retrieved instructions to the LLM and
ask it to synthesize them into a complex object.

This hybrid reasoning framework supports both cre-
ative and reusable generation. It benefits from the
LLM’s ability to generalize, while maintaining consis-
tency and efficiency through the reuse of known build-
ing blocks.

3.3 Interface to a Game Engine

The final component of the system ensures that the gen-
erated world representations are rendered within the
game environment. This requires an execution inter-
face that connects the LLM’s outputs to the concrete
API of the game engine.

This interface can take the form of a custom-built
socket server, a game engine plugin, or an intermediary
software development kit. Its purpose is to consume
the LLM-generated instructions and translate them into
executable commands in the target game. For instance,
in Minecraft, this might involve calling Java APIs or
sending commands via a server console to modify the
game world in real-time.

This layer must also handle synchronization, error
handling, and user feedback. It ensures that gener-
ated instructions conform to the game’s capabilities
and gracefully degrade when the output exceeds sys-
tem constraints. Additionally, the interface could sup-
port real-time feedback loops, where the game engine

36th CECIIS, September 17-19, 2025

returns information to the LLM or user. For instance,
describing whether a structure was successfully built or
if an object is invalid in the current context.

By closing the loop from user query to in-game real-
ization, this interface enables dynamic, Al-driven con-
tent creation that feels native to the game environment.

Fig. 1 presents the process of breaking a complex
object into components and utilizing them to generate
blocks for its construction.

4 Conclusion

This work presents a modular framework for Al-
assisted world generation, integrating multimodal user
interfaces with the reasoning capabilities of large lan-
guage models to generate structured game content.
By decomposing complex user requests into reusable
components and translating them into actionable game
commands, the system supports both creative flexibil-
ity and structural consistency. The proposed approach
demonstrates how generative models can enhance user
interaction in sandbox environments like Minecraft,
making content creation more intuitive and expressive.

Future work could explore the extension of this
framework beyond 2D representations into full 3D
spatial reasoning. ~ This would involve adapting
prompts and component libraries to support volu-
metric structures and spatial constraints more effec-
tively. Additionally, integrating reinforcement learning
or planning-based agents alongside LLMs may enable
the system to validate and optimize generated struc-
tures in context. Finally, user evaluation studies could
be conducted to assess the usability, creativity support,
and overall engagement enabled by multimodal world
generation systems.

References

Carbonell-Carrera, C., Jaeger, A. J., Saorin, J. L.,
Melian, D., & De la Torre-Cantero, J. (2021).
Minecraft as a block building approach for devel-
oping spatial skills. Entertainment Computing, 38,
100427.

Varazdin, Croatia

Proceedings of the Central European Conference on Information and Intelligent Systems 27

Feuerriegel, S., Hartmann, J., Janiesch, C., & Zschech,
P. (2024). Generative ai. Business & Information
Systems Engineering, 66(1), 111-126.

Fui-Hoon Nah, F., Zheng, R., Cai, J., Siau, K., & Chen,
L. (2023). Generative ai and chatgpt: Applications,
challenges, and ai-human collaboration.

Jovanovic, M., & Campbell, M. (2022). Generative
artificial intelligence: Trends and prospects. Com-
puter, 55(10), 107-112.

Lillicrap, T., et al. (2024). Genie 2: A large-scale foun-
dation world model [DeepMind blog].

Marr, B. (2024). The role of generative ai in
video game development [Accessed: 2025-07-03].
Forbes. https://www.forbes.com/sites/bernardmarr/
2024/04/18/the-role- of - generative- ai-in- video-
game-development/

Mojang Studios. (2011). Minecraft.

Park, J. S., O’Brien, J., Cai, C.J., Morris, M. R., Liang,
P, & Bernstein, M. S. (2023). Generative agents:
Interactive simulacra of human behavior. Proceed-
ings of the 36th annual acm symposium on user in-
terface software and technology, 1-22.

36th CECIIS, September 17-19, 2025

Pun, A., Deng, K., Liu, R., Ramanan, D., Liu, C,, &
Zhu, J.-Y. (2025). Generating physically stable and
buildable lego designs from text. arXiv preprint
arXiv:2505.05469.

Reddy, V. M., Vaishnavi, T., & Kumar, K. P. (2023).
Speech-to-text and text-to-speech recognition us-
ing deep learning. 2023 2nd international confer-
ence on edge computing and applications (ICE-
CAA), 657-666.

Roblox Corporation. (2025). Roblox [Accessed: 2025-
07-03].

SpAltial AL (2025, July). Announcing spaitial [Ac-
cessed: 2025-07-02].

Takale, D. G., Mahalle, P. N., & Sule, B. (2024). Ad-
vancements and applications of generative artifi-
cial intelligence. Journal of Information Technol-
ogy and Sciences, 10(1), 20-27.

Trivedi, A., Pant, N., Shah, P., Sonik, S., & Agrawal, S.
(2018). Speech to text and text to speech recogni-
tion systems-areview. IOSR J. Comput. Eng, 20(2),
36-43.

Varazdin, Croatia

