
Attribute Based Access Control Metamodel for
Spreadsheet Programs

Miro Zdilar
Faculty of Organization and Informatics,

University of Zagreb
Pavlinska 2, 42000 Varaždin, Croatia

mizdilar@student.foi.hr

Abstract. Spreadsheets are one of the most popular
tools used for various purposes in organizations. With
recent technological advancement and new features
added, spreadsheets have become powerful tool for
complex analysis and modelling. However,
spreadsheets are associated with high incidence of
errors and unauthorized changes in multiuser
environments causing companies significant losses.
The goal of this work-in-progress paper is to present
Attribute-Based Access Control metamodel for
spreadsheet programs that empowers organizations to
control unauthorized activities with spreadsheets in
multiuser environments.

Keywords. Authorizations, Attribute Based Access
Control, Metamodel, Spreadsheets, Spreadsheet Error
Detection, Spreadsheet Programs

1 Introduction

Spreadsheets are one of the most successful end-user
programming systems used in business and academia
(Panko, 2008). End-user programming systems
empowers end-users to build and execute powerful
computer programs without the use of traditional
programming languages. In U.S. alone, it has been
estimated that the number of end-user programmers
outnumber traditional software programmers (Scaffidi
et al., 2005). Spreadsheets are traditionally used in
almost all companies in the U.S and Europe for
accounting and financial reporting purposes (Panko &
Ordway, 2008). Several researchers have studied
spreadsheet usage patterns (Reschenhofer & Matthes,
2015) and they identified following business processes
supported by spreadsheets; strategic and capacity
planning, financial reporting, stakeholder analysis, risk
management, performance calculation, data
transformation, cash-flows analysis, time-series
transformations, and simulations. Since the first
introduction of electronic spreadsheets for personal
computers in 1979, they have been developed as single
user application targeted for personal computers. With
recent technological advancement and new features

added, spreadsheets have evolved to cloud-powered
computational platform.

However, spreadsheets still lack effective access
control functionality capable to adapt to technical and
organizational dynamics of enterprises and growing
complexity of spreadsheet programs. Even though
spreadsheet allows Discretionary Access Control
(DAC) at the level of cell and worksheet, this type of
access control does not allow granularity for different
roles, centralised administration with access policy and
monitoring data flow becomes almost impossible as the
spreadsheet program grows in complexity.

Uncontrolled access to spreadsheet programs and
data have been linked with many spreadsheet errors
causing companies and organizations significant
financial losses and negative publicity. Non-profit and
voluntary organization European Spreadsheet Risk
Interest Group (EuSpRIG) maintains list of horror
stories with details of spreadsheet errors and
uncontrolled access to spreadsheet programs and data
(European Spreadsheet Risk Interest Group, 2023).

This work-in-progress article presents Attribute
Based Access Control (ABAC) metamodel for
spreadsheet programs which can describe
authorizations and its enforcement (access control) to
prevalent spreadsheets, including dynamics of
multiuser organizations. Therefore, the work presented
in this paper answers following research questions:
• RQ1: What are common access control models for

spreadsheets, both on technical level of modern
cloud-powered spreadsheets and on organizational
level within multiuser enterprises?

• RQ2: What is a suitable meta model to describe
those access control models for spreadsheets?

The remainder of this paper is organized as follows.
Section 2 provides summary of related work in the field
of access controls models and their suitability for
modern cloud-powered spreadsheets. In section 3,
research method is presented for deriving ABAC
metamodel for spreadsheet programs based on existing
literature review, and architecture of modern cloud-
powered spreadsheets. Afterwards, in section 4, the
derived ABAC metamodel for spreadsheet programs is

presented with descriptions of design challenges and
model components. In section 5, initial results of the
evaluation of the proposed metamodel are presented.
Finally, in section 6, conclusions and critical
reflections on research and model evaluation are
provided with proposals for future research
opportunities.

2 Related Work

This paper followed critical review of the literature
presented in other studies on spreadsheet errors
(Powell et al., 2008). Rather than give a chronological
account of the literature, discussion in this paper is
focused around formulated research questions.

Authorization and its enforcement (access control)
are key components of enterprise information
technology systems (Korman, 2016). Focus of
researchers have been around modelling different
access control systems, evaluation and comparison of
access control models deployed to various technical
and operational environments, and formal verification
of access control models in context of specific
algorithms and protocols. Following is the summary of
common access control models (Kashmar et al., 2021)
that have been analysed for their suitability in
development of access control metamodel for
spreadsheets;
• Discretionary Access Control (DAC): is access

control model built with three major components
– objects, subjects, and permissions. DAC allows
owners (subjects) to control permissions to their
objects and is commonly implemented with
Access Control List (ACL). DAC is implemented
as integral part of many information technology
systems, such as operating systems and databases.
DAC is part of commercial spreadsheet
implementation for decades and allows
spreadsheet owner to control user’s access to
specific cell or worksheet. Issues with DAC have
been studied by researchers (Downs et al., 1985)
and this type of access control does not allow
granularity for different roles, centralised
administration with access policy and monitoring
data flow becomes almost impossible as the
spreadsheet program grows in complexity.

• Mandatory Access Control (MAC): is access
control model managed in centralized manner and
is built with four key components – a set of
objects, a set of subjects, permissions, and security
level. Even though MAC allows centralized policy
management, it is very complex to implement this
type of access control on all spreadsheet resources
due to mandatory security level assigned to both
subjects and objects. In addition, security levels
specified in traditional MAC has been considered
as antiqued (Dholakia, 2017) and do not seem to

be in accordance with technical and organizational
level of spreadsheet use in modern enterprises.

• Role-Based Access Control (RBAC): is access
control model based on following key components
– subjects, roles, permissions, actions, operations,
and objects. In context of RBAC, role means a
group of permissions to use object(s) and perform
certain action(s). Only designated administrator
has the right to control system security and
manage roles assigned to users. RBAC
implementation has been studied in hospital
management where roles allow modeling complex
relationships between doctors, nurses, etc. (Boadu,
2014). However, modeling and maintaining roles
for different spreadsheet user roles and groups is
very complex, especially in dynamic organizations
where business processes and corresponding user
roles are rapidly changing.

• Attribute-Based Access Control (ABAC): is
access control model based on following three
types of dynamic attributes – subjects, objects, and
environments. User requests are resolved and
determined based on subject attributes, objects
attributes, environmental attributes as well as set
of conditions specified by access policy. ABAC
model is dynamic as it uses state of attributes at
the time of access mode resolution. Even though
we find limited literature on application of ABAC
model to spreadsheets, we decided to further
research applicability of ABAC to development of
our meta model due to following promising
characteristics of ABAC model:
a. ABAC model is based on dynamic attributes,

where object attributes fit to our proposed
model of spreadsheet resources and
corresponding attributes.

b. Hierarchy of spreadsheet resources and
objects can be modelled with set of ABAC
conditions and access rules determinations.
This property prevents conflicts in access
resolutions and simplifies prototype
implementation.

c. Deployment opportunities for ABAC with
spreadsheets are flexible and allows early
prototype implementation as detective access
control system. This minimizes impact on
users and familiarized spreadsheet user
interface.

d. Complexity of ABAC model for spreadsheets
depends on number of spreadsheet resource
attributes.

e. Dynamic nature of modern cloud-powered
spreadsheets and extensions to spreadsheet
formula language fits nicely to ABAC
dynamic attribute concept. Potential new
functionalities and modules added in cloud-
powered spreadsheet can be integrated within
existing ABAC concepts.

Unified metamodel of enterprise authorizations
(Korman, 2016) is summarizing existing models of
access controls. In addition, authors provided mapping
between presented unified metamodel and ArchiMate
tool that is frequently used in modern enterprises as
architecture modeling language. List of generic
metamodels for expressing different configurations of
access models is valuable starting point for our
research and design of ABAC metamodel for
spreadsheets.

ABAC modelling and implementation has been
recognized by U.S. government as important access
control modelling concept for large enterprises and
federal information technology systems. National
Institute of Standards and Technology (NIST)
published in 2014 Special Publication 800-162 “ Guide
to Attribute Based Access Control (ABAC) Definition
and Considerations” (Hu et al., 2014). This publication
provides definitions and considerations for using
ABAC to improve information sharing, design of
systems, while maintain control of that information.
Concepts and terminology for ABAC presented in this
document has been instrumental for design of our
ABAC metamodel for spreadsheets.

To further explore our second research question, in
continuation of this literature review we focused our
discussion on spreadsheet modelling. Popularity and
success of spreadsheets in various domains triggered
significant interest of research community (Jannach et
al., 2014,), including visualization techniques, static
code analysis and reporting, testing approaches,
automated fault localization and repair, model-driven
development, and design support.

In one of the first publications structured around
spreadsheet modelling (Isakowitz, 1995), authors
presented model of spreadsheet with separation
between logical and physical view. Presented
spreadsheet model consists of four key components-
“schema” which captures spreadsheet program’s logic,
“data property” which holds input values of the input
cells, “binding property” which maps logical view of
schema and data to two-dimensional spreadsheet grid,
and finally “editorial property” which provides visual
description for headings, labels, tables and
documentation on two-dimensional spreadsheet grid.
With the help of tools, logic can be extracted from
simpler spreadsheet programs and presented in
“schema” component with relational logic model.
Ideas presented in this paper inspired our work and
research related to spreadsheet modelling.

Formal set-oriented spreadsheet modelling
approach has been presented by authors as part of their
effort to research type inference for spreadsheet
programs (Abraham, 2006). A spreadsheet is defined
as collection of formulas and values embedded into a
spatial structure. Authors provided generalization of
spatial structure where two-dimensional grid is just one
possible representation. In this paper, spreadsheet
formula language is formalized with grammar based on

set-oriented and logical representation. Concept of
spreadsheet types introduced is still relevant and
applicable to modern cloud-based spreadsheets. Ideas
presented by authors has been influential in design of
presented ABAC metamodel for spreadsheets,
specifically in design of access rule resolution and
prototype implementation.

The most influential conceptual model of
spreadsheet for research presented in this paper have
been published by authors researching complexity
metrics for spreadsheets (Reschenhofer at al., 2017).
Presented spreadsheet metamodel captured and
integrated all relevant aspects of spreadsheet, including
spreadsheet formula language. Main idea presented by
authors has been further explored in this work with
inclusion of modern cloud-based spreadsheets.

3 Research Method

Work in this paper follows Design Science Research
(DSR) approach (Hevener et al., 2004). DSR is
structured around three interconnected components or
research phases that should jointly deliver design
science research artefact. Specifically, application of
DSR to this research resulted with following method
and research phases:

• Environment – defines set of requirements to the
design artifact. In this research proposed ABAC
metamodel for spreadsheet represents theoretical
foundation for addressing business needs for
spreadsheets in multiuser environments and
reduction of unauthorized change and spreadsheet
errors. Proposed metamodel is agnostic to actual
spreadsheet commercial products. In addition,
proposed metamodel should address the needs of
different business domains and organizations.

• Knowledge Base – we followed focused approach
to related work and literature review and actual
knowledge base for this work is presented in
Section 2.

• Design Science Research – main deliverable of
this research is ABAC metamodel for spreadsheets
which was designed with iterative approach and
continuous refinements and verifications. In
addition to design of research artifact, our work
contributes with new additions to spreadsheet and
access control knowledge base. Our work has been
influenced by model of spreadsheet with
separation between logical and physical view
(Isakowitz, 1995), formal set-oriented spreadsheet
modeling approach (Abraham, 2006), conceptual
model for measuring the complexity of
spreadsheets (Reschenhofer at al., 2017) and
unified metamodel for enterprise authorizations
(Korman, 2016). The evaluation as part of design
science research was done by applying the

designed ABAC metamodel for spreadsheets on
use case in multiuser environment.

4 ABAC metamodel

According to research method described in Section 3,
we designed ABAC metamodel for spreadsheets which
is capable to control unauthorized activities with
spreadsheets in multiuser environments. Due to limited
space in this publication, basic model is depicted in
Fig. 1, spreadsheet formula model is further explained
in Fig. 2 and lastly unified view to key components of
ABAC metamodel for spreadsheet is depicted in Fig 3.

Figure 1. Metamodel of spreadsheet resources and
associated attributes

Figure 2. Spreadsheet formula metamodel
(Continuation from Figure 1)

Figure 3. Proposed ABAC metamodel for
spreadsheets

Design considerations in proposed metamodel are
structured around resources that constitute modern
cloud-powered spreadsheet. Spreadsheet resources are
building blocks for spreadsheet programs and are
manipulated by spreadsheet users or change their state
during lifecycle of spreadsheet as result of spreadsheet
program execution. Spreadsheet resources and their
attributes are bounded with ABAC rules and
permissible actions performed by spreadsheet users.
Key spreadsheet resources unique to proposed ABAC
metamodel for spreadsheets are following:
• The class NamedObject represents resource in

modern spreadsheets that is controlled by user
through Named Manager functionality. This
naming convention is used in Micorsoft Excel 365
(Excel) product, but other cloud-based
spreadsheets offer similar functionality. With
recent introduction of LAMBDA functions (Gross,
2024) and collection of supporting functions
(MAP, REDUCE, SCAN, MAKEARRAY, BYROW,
BYCOL, ISOMITTED), Excel is additionally
empowered for computational tasks previously
reserved for plugins or scripting with embedded
macro language. Great demonstration of new
Excel capabilities and powerful development
strategies using only Excel formulas has been
provided by Bartholomew at EuSpRIG conference
(Bartholomew, 2023). Lambda functions are
essential for creation of reusable software
components, empowering spreadsheet developers
to develop models quicker with fewer errors
(Hatmaker, 2023). Other exciting new feature
added to Excel is native support for Python
programming language (Microsoft Excel, 2023).
Powerful Python computational engine is
embedded in Excel and users can integrate Python
language code with existing formula language at
the level of cell. Python in Excel is compatible
with existing tools and libraries for charting and
numerical analysis. Among many exciting new
features that Python in Excel offer to users is
ability to create and dynamically control complex
tabular and visual objects directly from python
code. This functionality was previously available
only through Excel predefined toolbar. The class

Spreadsheet

Spreadsheet_Attrs

Add-in

Add-in_Attrs

Worksheet

Worksheet_Attrs

1

1..*

1 0..*

NamedObject

NamedObject_Attrs

1

0..*

VisualObject

VisualObject_Attrs

Table

Table_Attrs

Cell

Cell_Attrs

LabelCell

LabelCell_Attrs

ValueCell

ValueCell_Attrs

InputData

InputData_Attrs

Formula

Formula_Attrs

1

1

1

1

0..*

0..*

1..*

0..*

1 0..*

1
0..*

Formula

Formula_Attrs

Expression

Expression_Attrs

Function

Function_Attrs

1

1

0..1

*

ParentExpression

SubExpression

Operator

Operator_Attrs

Literal

Literal_Attrs

NamedObject

NamedObject_Attrs

Reference

Reference_Attrs

SingleReference

SingleReference_Attrs

RangeReference

RangeReference_Attrs

NamedReference

NamedReference_Attrs

1 Access Rule1..*

SpreadsheetResource

SpreadsheetResource_Attrs

AccessMode1

Subject

Subject_Attrs

Environment

Enviornment_Attrs

1

Access Control
Policy 1

Defines EvaluatesTo

0..* 1..*1..*

*
SubRule

ParentRule
0..1

Preventive

ValueType: Permits | Prohibits

Detective

ValueType: Valid | Non-valid

NamedObject represents all these powerful
resources added to Excel and through ABAC rules
allows controlled access by users.

• The class Table represents Excel named table
resources that could be added to worksheet
through application interface. However, after
manual creation of named table, this spreadsheet
resource can be controlled directly from
spreadsheet formula language. Structured
references are powerful extension to formula
language and allows spreadsheet users to reference
in their code entire table, columns, rows, and table
ranges. Through designated attributes, named
table manipulations by users can be controlled
with ABAC rules.

• The class Expression represents powerful
spreadsheet language ability for nesting formulas.
Original design introduced by Retschenhofer et al.
(Reschenhofer at al., 2017) have been extended to
include NamedObject as parameters and
NamedReference as one possible realization of cell
references.

• Spreadsheet resources represented in proposed
metamodel contains associated set of attributes.
We used simple naming convention and set of
attributes are represented with suffix _Attrs
concatenated to Class name that represents
spreadsheet resource. For example, set of
attributes associated with class Worksheet is
represented in model as Worksheet_Attrs.
Depending on nature and characteristics of
modeled spreadsheet resource, corresponding
attributes are represented with enumerated lists or
key-value HashMap. For example, attribute type
for InputData is represented with enumerated list
[Boolean, Integer, Number, String, Date, Array]
(Reschenhofer at al., 2017). Attribute name for
Worksheet is represented with key-value
HashMap {“name”:“Worksheet_Name”}.

• The class AccessMode is generalization of
Preventive and Detective classes. In optimal
deployment case, proposed model should be
implemented as preventive ABAC control system
that prevents users for performing unauthorized
actions. However, proposed ABAC metamodel
can be deployed as detective control mechanism to
determine validity of performed user actions with
spreadsheet under control.

4.1 Access Rules

In proposed ABAC metamodel, access rules are
modelled as quadruple with following structure:

<S, A, SR, E> (1)

S represents set of spreadsheet users or roles of the
spreadsheet user. Theoretically, S represents any Agent

that might interact with spreadsheet and controlled
access is required. For example, other IT system might
access spreadsheet via predefined interface or
background job might update spreadsheet input data
during predetermined period of times.
A is set of actions that subject might perform on
spreadsheet resource represented with following
enumerated list:

A ∈ [CREATE, READ, UPDATE, DELETE] (2)

Above enumerated list is well known in computer
science as CRUD acronym. Important to note is that
proposed ABAC metamodel does not have restrictions
to number of actions and if needed in specific
deployment scenarios, number of actions could be
reduced or extended.
SR represents set of spreadsheet resources and
corresponding resource attributes on which subject S
can perform action A.
E are dynamic conditions, independent of subject and
spreadsheet resources that may be used as attributes at
decision time to influence an access decision.
Examples of environment conditions include time,
location, threat level, and temperature (Hu et al., 2014).

4.2 Access Mode Determination and
Conflict Resolution

In order to formalize access mode determination in
proposed metamodel and prevent conflict in access
rules resolution, we introduce following definitions:

Atomic Access Rule (AAR):
AAR is quadruple of the from (1);

<Si, Aj, SRk, El> (3)

Where Si ∈ S, Aj ∈ A, SRk ∈ SR, El ∈E.

□
Composed Access Rule (CAR):
CAR is conjunction statement composed with AARs:

AAR1∧ AAR2∧ AAR3 ∧ … ∧ AARn (4)
□

Access Policy (AP):
AP is set of all CARs applicable to single organization,
and all its users and spreadsheet programs.

□
Deny-by-default Policy (DP):
If not explicitly defined in AP, all actions for all users
and all spreadsheet resources are prohibited.

□
Priority of Actions (PA):
Actions should be evaluated in following order:

DELETE > CREATE > UPDATE > READ (5)
□

Delete action has highest priority and operator > in
context of above relation should be interpreted as
“Allow to Perform”. For example, if access rule
permits user to delete specific spreadsheet resource,
according to above definition, user is also allowed to
create, update, and read corresponding resource.

Rule Evaluation Hierarchy (REH):
All child spreadsheet resources inherit rules applicable
to their parents.

□
Proposed metamodel is structured around natural

hierarchy of spreadsheet resources. For example,
Spreadsheet class contains (“HAS A” relationship),
Add-in, Worksheet and NamedObject classes, and all
applicable access rules for Spreadsheet are inherited by
its children, Add-in, Worksheet and NamedObject.
Determining hierarchy for dynamic spreadsheet
resources, such as composed formula expressions and
large data tables is challenging, however strict
conformance with REH rule during all stages of
spreadsheet lifecycle is important for consistent rule’s
evaluation and user’s activity control.

5 Model Evaluation

Proposed ABAC metamodel for spreadsheets has been
evaluated on use case within analytical laboratory. In
order to minimize impact on established organizational
processes and spreadsheet use patterns, we deployed
ABAC detective controls to determine validity of
performed user actions with spreadsheet under control.

In agreement with laboratory management, we
selected spreadsheet program for Negative
Temperature Coefficient (NTC) probe calibrations.
NTC spreadsheet supports important laboratory
processes for calibration and management of 65
temperature probes utilized for temperature
measurement of air, surface or liquids. Template
spreadsheet “NTC” used for calibration of NTC probed
in analytical laboratory is depicted in Figure 4.

Figure 4. Worksheet “NTC” used for ABAC model

evaluation.

NTC probe calibration spreadsheet is used on daily
basis by different team members. Every Monday,
calibration expert performs checks and potentially
calibrations on all 65 probes utilized in laboratory. One
spreadsheet instance is managed for each calibration
probe. Laboratory Manager reviews all calibration
spreadsheets and if results of NTC probe calibration
complies with laboratory guidelines, Manager changes
colour of result cell and corresponding worksheet to
green as evidence of review and compliant status of
performed calibration. Lastly, on Tuesdays, laboratory
administrator edits header label and adds information
about probe serial number, date of calibration, prints
calibrations results on preformatted stickers and
attaches them on probe housing. All calibrated probes
should be ready for
Based on above process description following
sentences in natural language describes user’s role:
• Calibration Expert is responsible for calibration of

NTC probes. Calibration should be performed
every Monday at the beginning of working week.
Results of checks and calibrations should be
recorded in dedicated spreadsheet for each
calibrated NTC probe, in designated cells for
calibration results. Other elements of spreadsheet
should remain unchanged.

• Laboratory Manager is responsible for reviewing
and approving performed NTC probe calibrations.
As evidence of approval and satisfactory
calibration results, Manager should change color
of result cell and of NTC worksheet to green.
Yellow color should be used if probe requires
recalibration and red color if probe should be
inspected by technician or discarded for future use.

• Laboratory administrator is responsible to edit
header of all green (approved) spreadsheets every
Tuesday, add probe serial number and date to
worksheet header label, print final worksheet on
sticker and apply sticker to probe housing. This
activity should be completed by end of Tuesday.

Based on above role descriptions in natural language
we translated them to ABAC access policy (AP) for
three different user roles within analytical laboratory.

<expert, update, R0, Monday>∧
<expert, update, Beta, Monday>∧
<expert, update, t0, Monday>∧
<expert, update, t1, Monday>

<manager, update, R1.color=”Green”, Monday>∧
<manager, update, R1.color=”Yellow”, Monday>∧
<manager, update, R1.color=”Red”, Monday>∧
<manager, update, NTC.color=”Green”, Monday>∧
<manager, update, NTC.color=”Yellow”, Monday>∧
<manager, update, NTC.color=”Red”, Monday>

<admin, update, header1.type=”Date”, Tuesday>∧
<admin, update, header2.type=”String”, Tuesday>

To align with provided definitions for access mode
determination and conflict resolution, above policy is
structured with conjunction statements for each user’s
role that participate in evaluation.

In continuation of evaluation process, we requested
analytical laboratory team to continue with their
standard weekly procedures and provide us access to
all spreadsheet instances generated during the weekly
calibration procedures. From the perspective of
laboratory users, our evaluation had no impact to their
well-established procedures and routines.

To determine users’ activity and generate
dynamically hierarchy of spreadsheet resources under
evaluation we utilized Abstract State Machine (ASM)
model for spreadsheets (Zdilar, 2023). ASM model
was instrumental to identify all manipulations to
spreadsheet resources including formula expressions.
ASM has been implemented in Python 3 programming
language (Van Rossum & Drake, 2009), with
OpenPyXL library utilized for parsing spreadsheet
formulae (Zumstein, 2021). ASM model generates
directed graph as result of changes performed by users
in spreadsheet under evaluation. Edges in graph
represents state transitions and corresponds to changes
and modifications to spreadsheets resources performed
by users. We further utilized NetworkX python library
(Hagberg et al. 2008) to generate graph queries and
compare identified user changes with allowed actions
in defined access policy.

We successfully parsed and analysed all 65
spreadsheets generated by laboratory users during one
week of calibration activities. Due to experience of
laboratory stuff, only two minor unauthorized changes
have been detected by proposed model – cell colour in
one spreadsheet was not properly changed and
laboratory administrator completed printout of
spreadsheet stickers following working day due to
other priorities. To confirm correctness of determined
changes by our proposed ABAC model, we manually
review results for all 65 laboratory spreadsheets.

6 Conclusion and Future Research

In this paper we have presented initial results of our
research on conceptual modelling of access control for
spreadsheets. We structured our research around
Design Science paradigm and two formulated research
questions. We believe that proposed Attribute-Based
Access Control metamodel for spreadsheets and results
of its evaluation provides initial answers to formulated
research questions. Our initial evaluation in analytical
laboratory provided valuable feedback for proposed
ABAC metamodel. However, our evaluation is limited
to one use case and in our future research we will
conduct model evaluation in more comprehensive case

studies and large multi-user environments. We will
also explore opportunities to apply formal verification
techniques for model requirements and correctness of
access mode determination and rule conflict resolution.
Based on valuable feedback from evaluation
participants, we noticed that generation of machine-
readable access rules and translation from users’ roles
documented in natural language is challenging process.
We will explore opportunities to automate this process
with minimal manual intervention and represent access
rules with standardized formats. We focused our initial
research on key components of ABAC metamodel, and
deployment aspects documented in NIST Special
Publication 100-162 (Hu et al., 2014) were out of scope
in this research.

Acknowledgments

The author would like to thank Prof. dr. sc. Markus
Schatten from Artificial Intelligence Laboratory, for
valuable comments and suggestions.

References

Abraham, R., & Erwig, M. (2006, July). Type
inference for spreadsheets. In Proceedings of the
8th ACM SIGPLAN international conference on
Principles and practice of declarative
programming (pp. 73-84).

Bartholomew, P. (2023). Excel as a Turing-complete
Functional Programming Environment. arXiv
preprint arXiv:2309.00115.

Boadu, E. O., & Armah, G. K. (2014). Role-based
access control (RBAC) based in hospital
management. Int. J. Softw. Eng. Knowl. Eng, 3,
53-67.

Dholakia, Y. (2017). Mandatory Access Control –
Problems in it and propose a model which
overcomes them. International Research Journal
of Engineering and Technology (IRJET), (4)4,
pp.2031-2035

Downs, D. D., Rub, J. R., Kung, K. C., & Jordan, C.
S. (1985, April). Issues in discretionary access
control. In 1985 IEEE symposium on security and
privacy (pp. 208-208). IEEE.

European Spreadsheet Risk Interest Group. (2023).
EuSpRIG Horror Stories.
https://eusprig.org/research-info/horror-stories/
(June 10, 2024)

Gross, C. (2021). Announcing LAMBDA Helper
Functions: Lambdas as arguments and more.
https://techcommunity.microsoft.com/t5/excel-
blog/announcing-lambda-helper-functions-

lambdas-as-arguments-and-more/ba-p/2576648
(June 10, 2024)

Hatmaker, C. (2023). Reducing Errors in Excel
Models with Component-Based Software
Engineering. arXiv preprint arXiv:2309.00650.

Hevner, A. R., March, S. T., Park, J., & Ram, S.
(2004). Design Science-Hevner. Design Science in
Information Systems Research. MIS Quarterly, 28
(1), 75–105.

Hu, V. C., Ferraiolo, D., Kuhn, R., Schnitzer, A.,
Sandlin, K., & Scarfone, K. (2014). Sp 800-162.
guide to attribute based access control (abac)
definitions and considerations. Nat’l Inst.
Standards and Technology, 800-162.

Isakowitz, T., Schocken, S., & Lucas Jr, H. C. (1995).
Toward a logical/physical theory of spreadsheet
modeling. ACM Transactions on Information
Systems (TOIS), 13(1), 1-37.

Jannach, D., Schmitz, T., Hofer, B., & Wotawa, F.
(2014). Avoiding, finding and fixing spreadsheet
errors–a survey of automated approaches for
spreadsheet QA. Journal of Systems and Software,
94, 129-150.

Kashmar, N., Adda, M., Atieh, M., & Ibrahim, H.
(2021). A review of access control metamodels.
Procedia Computer Science, 184, 445-452.

Korman, M., Lagerström, R., & Ekstedt, M. (2016).
Modeling enterprise authorization: a unified
metamodel and initial validation. Complex
Systems Informatics and Modeling Quarterly, (7),
1-24.

Microsoft Excel. (2023). Announcing Python in
Excel: Combining the power of Python and the
flexibility of Excel.
https://techcommunity.microsoft.com/t5/excel-
blog/announcing-python-in-excel-combining-the-
power-of-python-and-the/ba-p/3893439 (June 10,
2024)

Panko, R. R. (2008). Spreadsheet errors: What we
know. what we think we can do. arXiv preprint
arXiv:0802.3457.

Panko, R. R., & Ordway, N. (2008). Sarbanes-oxley:
What about all the spreadsheets?. arXiv preprint
arXiv:0804.0797.

Powell, S. G., Baker, K. R., & Lawson, B. (2008). A
critical review of the literature on spreadsheet
errors. Decision Support Systems, 46(1), 128-138.

Reschenhofer, T., Waltl, B., Shumaiev, K., &
Matthes, F. (2017). A conceptual model for
measuring the complexity of spreadsheets. arXiv
preprint arXiv:1704.01147.

S Scaffidi, C., Shaw, M., & Myers, B. (2005,
September). Estimating the numbers of end users
and end user programmers. In 2005 IEEE

Symposium on Visual Languages and Human-
Centric Computing (VL/HCC'05) (pp. 207-214).
IEEE.

Van Rossum, G., & Drake, F. L. (2009). Python 3
Reference Manual. CreateSpace.

Zdilar, M. (2023). Towards Automated Detection of
Qualitative Spreadsheet Errors in Multi-user
Environments. In Central European Conference
on Information and Intelligent Systems (pp. 419-
424). Faculty of Organization and Informatics
Varaždin.

Zumstein, F. (2021). Python for Excel: A Modern
Environment for Automation and Data Analysis
(pp. 155-179). O’Reilly Media.

