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Abstract. The Area Under the Receiver Operating
Characteristic Curve (ROC AUC) is a widely used per-
formance measure summarizing classifiers’ discrimi-
native power. Among its strengths is that it does not
depend on threshold settings. Nevertheless, machine
learning models scoring the same ROC AUC value can
display a different behavior along the curve - a char-
acteristic that may be relevant to model selection. This
paper introduces WaAUROCC, an alternative measure
that builds upon the ROC AUC and mitigates some of
its well-known weaknesses. In particular, it allows for
assessing how steep the curve is without visually in-
specting it. It thus enables the identification of mod-
els where the highest recall is achieved with the low-
est False Positive Rate. Furthermore, the metric al-
lows for contrasting the models’ performance against
performance acceptance criteria, providing insights on
whether such criteria are met and how much is out-
performed. The approach followed when creating the
WaAUROCC metric can be followed with other AUC
metrics, such as the Precision-Recall AUC. We validate
the usefulness of the proposed metric on three real-
world datasets. In addition, we illustrate its usefulness
with four synthetic scenarios.
Keywords. Metrics, Classification, Operational Per-
formance, MlOps

1 Introduction
Background The ROC AUC (Bradley, 1997) is com-
monly used to assess the discriminative power of ma-
chine learning classifiers (Halligan et al., 2015) and
select the best ones Muschelli III (2020); Carrington
et al. (2021) by comparing how the performance of a
model varies across the True Positive Rate (TPR) and
the False Positive Rate (FPR). The goal of the metric
is to achieve a perfect TPR with FPR = 0. Among
the metric strengths is that it is scale-invariant (mea-
sures how predictions are ranked, regardless of their
absolute values) and provides an aggregate measure of
performance across all possible classification thresh-
olds Hernández-Orallo et al. (2012). ROC AUC is un-
affected by dataset skew but may mask poor perfor-
mance (Jeni et al., 2013; Cook and Ramadas, 2020).
This could be because ROC AUC considers the four
quadrants of a confusion matrix (in contrast to PR

AUC, which does not consider true negatives) So-
faer et al. (2019). Multiple authors have documented
detailed analysis behind such behavior (Fawcett and
Flach, 2005; Webb and Ting, 2005; Cook and Ra-
madas, 2020).

Motivation In use cases such as defect detection
or medical diagnosis and treatment, machine learning
models are used along with a manual evaluation to pro-
duce an outcome Luzio et al. (2024); Klawonn et al.
(2011); Moons et al. (1997). For example, when deal-
ing with defect detection, we may prefer models that al-
low for business rules, such as automatically rejecting
(or accepting) products for which we are highly confi-
dent that they are defective (or not). On top of that, we
expect to have a reasonable subset of cases that can be
manually inspected where defect occurrence is highly
probable so that upon human inspection, a decision is
made whether to accept or reject the transaction. We
expect that models achieving a high Recall at a low
FPR enable greater automation, given (i) high Recall
means a high proportion of True Positives has been
identified while keeping the number of False Negatives
low and (ii) the proportion of False Positives identi-
fied is low w.r.t. the True Negatives. While the ROC
AUC is a single scalar value and doesn’t directly tell
about specific thresholds, the ROC curve (from which
the AUC is derived) can be used to compare models at
particular points. Furthermore, the ROC AUC provides
no information on whether a particular model achieves
higher Recall at a lower FPR when compared to others.
Therefore, a different metric must be considered to ac-
count for such differences and enable model selection
that takes such model behavior into account.

Limitations of the State of the Art To account for
the different weights between sensitivity and speci-
ficity, Hand (2009) proposed an alternative metric that
considers the relative misclassification cost distribu-
tion based on the assumption that cost should domi-
nate specificity in the choice of measure. Such assump-
tion contrasts with machine learning models bound to
a manual revision setting, where decisions are made
based on how many cases can undergo manual revi-
sion. Halligan et al. (2015) followed a different ratio-
nale and proposed a metric evaluating change in sen-



Figure 1: The images represent two plots that guide the evaluation of machine learning models for defect inspec-
tion: (A) ROC AUC, contrasting True Positive Rate against False Positive Rate, and (B) contrasting True Positive
Rate against the ratio of items processed.

sitivity and specificity at clinically relevant thresholds.
This approach is similar to the Precision@RecallK used
by Luzio et al. (2024). Nevertheless, both fail to pro-
vide a global perspective of the models’ performance
(summarize in a score the behavior observed across all
thresholds and observed in plots) - a key advantage of
ROC AUC.

Key insights This paper introduces WaAUROCC 1

(/’wauôAk/) - Wasserstein Area Under the Receiver
Operating Characteristic Curve). It measures the
Wasserstein distance between a given ROC AUC and
the ideal case. By doing so, even when the ROC AUCs
have the same value, WaAUROCC allows us to identify
models with better operational performance (achieving
high TPR and low FPR while considering the fewest
samples possible).

2 WaAUROCC - how far is our
model from ideal performance?

2.1 Comparing distributions

Two cases are known to us beforehand: ideal classi-
fier performance (ROC AUC=1) and the random clas-
sifier case (ROC AUC=0.5). In addition, we can plot
the ROC of the classifier we aim to evaluate. The ROC
curve can be contrasted with the best and worst-case

1A scikit-learn compatible implementation will be made available
upon the paper’s acceptance.

scenarios to obtain a score between zero and one, re-
flecting how close the performance of the classifier un-
der consideration is to the best case. To do so, we fol-
low a similar approach as presented in Rožanec et al.
(2023): we can build bar plots that mirror the shape
of the ROC curves for the three abovementioned cases
and measure the effort required to turn one distribu-
tion into another. The bar plots are created considering
a fixed number of equal-sized bins representing FPR
values. When considering the effort required to turn
one distribution into another, we look into the Optimal
Transport mathematical problem, which aims to find
the most efficient way to move mass between distribu-
tions. In this context, the Wasserstein distance mea-
sures the similarity between two distributions. For the
WaAUROCC, we measure the distance between the ac-
tual ROC AUC curve and the optimal one.

2.2 Metric definition
We define the WaAUROCC metric for a multiclass sce-
nario in Eq. 1. Classifiers close to an ideal performance
will result in WaAUROCC values close to one, while
models with little or no discriminative power will re-
sult in values close to zero. The cases that maximize
TPR while minimizing FPR are rewarded.

2.3 WaAUROCC vs. Partial ROC plots
ROC AUC interpretation The ROC AUC has at
least three interpretations: (i) the average Recall over
all possible FPR values between zero and one, (ii) the



WaAUROCC =
n∑

i=1

1− Wi(bi,bbest)
Wi(bworst,bbest)

n
(1)

Equation 1: Wi(bi, bref ) is the Wasserstein distance
between the histogram hi (representing normalized
ROC AUC values for class i) and the reference bar
plots (bbest and bworst for best and worst cases, respec-
tively), and n is the number of classes.

probability of correctly ranking a particular class based
on the observed cases in the test set, and (iii) given
a set of classes, how different the distributions of the
predicted values are for them (relates to the Mann-
Whitney statistic) Bamber (1975).

ROC AUC drawbacks Nevertheless, given Recall
and FPR evaluate complementary aspects of the model
performance, a classifier is frequently expected to have
a high Recall and a low FPR. Furthermore, there are
many cases (e.g., medical diagnosis) where only a lim-
ited range of FPR must be considered (either due to the
values observed or some restrictions), making it unrea-
sonable to use a metric that reflects the performance of
higher FPR values Fahey et al. (1995); Scheidler et al.
(1997); Carrington et al. (2022). Therefore, attention
must be paid to the upper-left area of a ROC AUC dia-
gram Yang et al. (2021).

Overcoming ROC AUC limitations with pROCAUC
To address these ROC AUC flaws, the partial ROC
AUC has been proposed, restricting the ROC AUC
metric to a particular FPR range Walter (2005). Never-
theless, given the pAUC requires defining FPR ranges,
comparisons between tests may lack homogeneity.
Furthermore, the pROCAUC lacks the symmetry prop-
erty of the ROCAUC, and the effective use of less infor-
mation has been the source of concern about whether
it results in a loss of statistical precision compared to
the ROC AUC Obuchowski and McClish (1997); Ma
et al. (2013). To mitigate such issues, several varia-
tions have been proposed. E.g., Ma et al. (2013) sug-
gested a standardized pAUCROC by dividing the par-
tial area of the curve by the partial area of the random
case. While such a solution can estimate the quality
of the predictor between 0.5 to 1 regardless of the FPR
interval, the actual value of the AUC could increase or
decrease when changing the interval size. A different
approach was suggested by Carrington et al. (2020),
who suggests not only performing the integration over
the x-axis but a horizontal integration over the y-axis,
thereby capturing the area at the top-left corner. Such
an area provides insight into the improvement opportu-
nity for a particular model compared to the best case.
Based on the horizontal and vertical AUC, they define
the concordant partial AUC as half the sum of the ver-

tical partial area under the ROC curve pAUC and the
horizontal partial area under the ROC curve.

Toward a better metric: WaAUROCC As de-
scribed above, pROCAUC and the derivative metrics
suffer from several shortcomings. Nevertheless, most
of them could be overcome if a metric could (i) mea-
sure not only the ROC AUC but also how steep the
curve is through FPR on a continuous range without
defining particular segments and (ii) if a custom base-
line curve could be specified so that a comparison could
be drawn between the baseline and the performance
of the model under evaluation. WaAUROCC achieves
both by computing the Wasserstein distance between
(i) the distributions that emulate the ROC AUC curve
and the ideal case and (ii) the distributions that emulate
the ROC AUC curve and the custom baseline curve.
Through (i), the metric takes into account that lower
FPRs are preferred and penalizes curves that achieve
higher Recall at higher FPRs. Through (ii), domain
knowledge and business requirements can be intro-
duced, allowing us to measure how far the models’ per-
formance is satisfying a particular Recall and FPR lev-
els.

2.4 WaAUROCC: measuring compliance
with acceptance criteria

Intuition In Eq. 1, we show how a single metric can
summarize the classifiers’ ROC behavior, considering
the AUC and how steep such a curve is over all of
the False Positive Rate values. Similarly, acceptance
criteria could be established considering AUC and the
minimal expected curve steepness across False Posi-
tive Rate sections. Models whose WaAUROCC would
be equal or greater than the WaAUROCC of such curve
would be guaranteed to satisfy or supersede the accep-
tance criteria behavior.

How is this useful? In many real-world cases, know-
ing the models’ overall performance is insufficient.
More fine-grained insights are required to decide how
such a model should be deployed and used in produc-
tion environment settings. E.g., (i) what threshold in-
terval should be considered for automated decision-
making?, (ii) what threshold interval should be con-
sidered to seek complementary evaluation (e.g., with
a model whose inference has a higher cost)?, (iii) what
threshold interval should be considered for decision-
making that requires human intervention? WaAU-
ROCC enables drafting ROC AUC curves that reflect
the expected performance across the whole FPR con-
tinuum. The WaAUROCC score of such curves estab-
lishes a baseline against which the models can be eval-
uated.



Synthetic case Predicted values Ground truth
1 [0.1, 0.1, 0.1, 0.5, 0.7, 0.2, 0.2, 0.5, 0.55, 0.75] [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
2 [0.25, 0.25, 0.45, 0.55, 0.50, 0.5, 0.55, 0.35, 0.55, 0.75] [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
3 [0.1, 0.1, 0.1, 0.3, 0.1, 0.3, 0.1, 0.1, 0.7, 0.5] [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
4 [0.1, 0.4, 0.2, 0.25, 0.55, 0.35, 0.25, 0.75, 0.8, 0.35] [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]

Table 1: Synthetically crafted samples of predictions and ground truths. The examples result in the same ROC
AUC but display different curve shapes.

3 Operational meaning of the pro-
posed metric

Let’s consider the ROC AUC curve, which can be dis-
cretized into bins (like a bar chart), and compare two
different ROC AUC bar charts. The Wasserstein dis-
tance between both distributions measures the effort re-
quired to transform one distribution into another (e.g.,
a given ROC AUC into a perfect ROC AUC (the dis-
tribution for the latest one is always the same)). Such
effort conveys information on how early the model can
achieve a perfect True Positive Rate: the lower the dis-
tance, the smaller the difference (between our ROC
AUC and a perfect model), and the closer we are to the
perfect model. We considered an arbitrary cost (e.g.,
a cost of "one" per bin) to compute the effort required
to move cases between bins. It must be noted that the
ROC AUC is a monotonically non-decreasing function:
the True Positive Rate values can remain the same (e.g.,
a perfect ROC curve) or increase when the False Posi-
tive Rate increases.

Computing the proposed metric is not equivalent
to computing the ROC AUC: the synthetic exam-
ples presented in Section 6 show that curves with the
same ROC AUC result in different values of the pro-
posed metric, which can be associated with a particu-
lar behavior (lower metric values correspond to models
achieving higher True Positive Rate at a lower False
Positive Rate) as confirmed by visual analysis.

To compute the abovementioned metric, we propose
normalizing the ROC AUC histograms to ensure the
area under the curve is always the same. By doing this,
we lose information regarding the original area under
the curve. Nevertheless, we keep information regard-
ing the curve shape - a key aspect of our metric. We
can estimate the effort required to reshape the distribu-
tion to the ideal case by keeping the shape. The lower
the required effort, the better the model: the model will
achieve a higher True Positive Rate at a low False Pos-
itive Rate.

3.1 Putting it all together: WaAUROCC
explained through the defect detection
use case

When evaluating machine learning models for defect
detection, we are interested in identifying the models
that help us capture the highest percentage of True Pos-

itives while keeping False Positives low to avoid a bad
user experience. This can be done by comparing the
ROC AUC across models: models with a higher ROC
AUC score display such characteristics. Nevertheless,
there may be cases where models with an identical
ROC AUC score display a different behavior along the
curve. For such cases, we propose the WaAUROCC
metric, where at an equal ROC AUC score, a higher
WaAUROCC score will be assigned to models with
a higher True Positive Rate at a lower False Positive
Rate. Therefore, the WaAUROCC metric score could
be used to select a subset of models. Once such se-
lection is performed, we consider there are at least two
plots of interest (see Fig. 1):

(A) ROC AUC helps us understand how the model
performs along different thresholds when compar-
ing the tradeoff between the True Positive Rate
(Recall) and the False Positive Rate. This plot
is of primary importance in defining the thresh-
old for automated rejections: for a set of items,
we may reject the ones we are most confident are
defective, tolerating a small number of false posi-
tives. The amount of false positives to be tolerated
is a business criterion.

(B) Recall vs. inspection rate, which helps us under-
stand the number of items that fall within a par-
ticular Recall range. This plot is particularly rel-
evant to defining the thresholds for cases under-
going manual revision. Usually, the manual revi-
sion capacity is fixed; therefore, we seek models
that allow the widest possible Recall range for the
same capacity.

Considering the same rationale as the one followed
when creating the partial ROC plots and the fact that
some business criteria may fix a False Positive Rate
threshold, we may evaluate the models considering a
partial ROC AUC and the corresponding WaAUROCC
score. Furthermore, an analogous metric could be com-
puted to identify the most promising models for the
threshold range for manual revision.



Figure 2: The plots correspond to the three cases reported in Table 2 where the measured ROC AUC values for
the models are the same, but the resulting curves are different. In particular, the cases correspond to the following
datasets: (a) DEFECTS, (b) SUPPORT2, and (c) CANCER.

USE CASE MODEL FOLDS
1 2 3 4 5 6 7 8 9 10

DEFECTS
KNN 0,8794 0,9073 0,8592 0,9054 0,8249 0,8943 0,8554 0,8833 0,9096 0,8496
MLP 0,9076 0,9304 0,9306 0,9568 0,8984 0,9118 0,9306 0,9364 0,9480 0,9039
RF 0,8653 0,8836 0,8980 0,9395 0,8364 0,8949 0,8856 0,8406 0,9186 0,8626

SUPPORT2
KNN 0,6732 0,6753 0,6445 0,6830 0,6291 0,6830 0,6697 0,6157 0,6523 0,6856
MLP 0,7605 0,7718 0,7912 0,7704 0,7506 0,7581 0,7971 0,7755 0,7824 0,7908
RF 0,7416 0,7538 0,7643 0,7631 0,7456 0,7418 0,7799 0,7696 0,7721 0,7598

CANCER
KNN 0,9414 0,9750 0,9930 0,9792 0,9554 0,9784 0,9992 0,9836 0,9864 0,9465
MLP 0,9801 0,9850 0,9937 0,9973 0,9622 0,9972 1,0000 0,9943 0,9946 0,9924
RF 0,9587 0,9866 0,9854 0,9937 0,9527 0,9914 0,9973 0,9972 0,9924 0,9960

Table 2: ROC AUC scores obtained for the use cases presented by machine learning model and fold. Bolded
values correspond to cases where the models resulted in the same ROC AUC score for that particular dataset.

USE CASE MODEL FOLDS
1 2 3 4 5 6 7 8 9 10

DEFECTS
KNN 0,7535 0,8111 0,7135 0,8071 0,6451 0,7826 0,7059 0,7602 0,8133 0,6945
MLP 0,8103 0,8564 0,8576 0,9101 0,7925 0,8188 0,8580 0,8683 0,8931 0,8038
RF 0,7265 0,7640 0,7923 0,8756 0,6693 0,7855 0,7671 0,6770 0,8345 0,7212

SUPPORT2
KNN 0,3432 0,3473 0,2865 0,3626 0,2558 0,3628 0,3362 0,2295 0,3018 0,3677
MLP 0,5162 0,5390 0,5770 0,5358 0,4966 0,5113 0,5883 0,5459 0,5594 0,5766
RF 0,4788 0,5032 0,5236 0,5214 0,4867 0,4790 0,5547 0,5341 0,5392 0,5150

CANCER
KNN 0,8749 0,9420 0,9848 0,9505 0,9032 0,9489 0,9982 0,9671 0,9711 0,8850
MLP 0,9572 0,9665 0,9867 0,9941 0,9202 0,9941 1,0000 0,9881 0,9887 0,9832
RF 0,9083 0,9713 0,9699 0,9861 0,9036 0,9828 0,9941 0,9941 0,9832 0,9911

Table 3: WaAUROCC scores obtained for the use cases, presented by machine learning model and fold. Bolded
values correspond to cases where the models resulted in the same ROC AUC score for that particular dataset.

Figure 3: The images correspond to four synthetic scenarios with the same ROC AUC (0.74) but different WaAU-
ROCC. The plots are sorted in ascending order based on WaAUROCC values. The dotted line indicates the chance
level.

4 Methodology and experimental
setup

4.1 Real-world datasets
We considered ten-fold stratified cross-validation, de-
voting nine folds to train K-Nearest Neighbors (KNN),



Multi-Layer Perceptron (MLP), and Random Forest
(RF) classifiers, and one fold to test them. We ex-
perimented on three datasets: (i) a dataset introduced
by Connors et al. (1995), predicting death in hospi-
tal (SUPPORT2), (ii) the breast cancer dataset Street
et al. (1993) (CANCER), and (iii) a real-world dataset
of printed logos on shaver images provided by an in-
dustrial partner within project cooperation to research
automated defect inspection (DEFECTS). Images were
converted into feature vectors by leveraging ResNet-18
embeddings. Non-numerical features were removed,
and features selection considering top K ranking fea-
tures based on mutual information and a maximum of√
N , with N equal to the number of instances in the

training set. We executed the abovementioned setup
multiple times considering different seed numbers, un-
til getting cases where the models’ performance would
result in the same ROC AUC values. We then focused
on those cases and analyzed whether did the WaAU-
ROCC provide a better intuition behind them.

4.2 Synthetic samples
In addition to the real-world datasets, we crafted four
synthetic samples of predictions and expected ground
truth to showcase different scenarios in which the ROC
AUC would result in the same value despite a different
curve shape, but the WaAUROCC would detect such
discrepancies. We showcase the examples in Table 1.

5 Results

5.1 Real-world datasets
We detail the results obtained in Table 2 and Table
3. The tables present the results obtained by measur-
ing ROC AUC and WaAUROCC across datasets and
machine learning models over ten folds of a cross-
validation setting. When performing the experiments,
we could find one case per dataset where the machine
learning models resulted in the same ROC AUC score,
but the curves were noticeably different. For ease of
analysis, those cases are bolded in the abovementioned
tables and we plot their ROC curves in Fig. 2.

Same ROC AUC, different operational perfor-
mance. For the DEFECTS dataset, we found that the
MLP model reported the same ROC AUC value at third
and seventh fold, but the WaAUROCC scores showed
the model tested at the seventh fold would achieve a
higher Recall at a lower FPR. This is validated with
the plot at Fig. 2 (a). A similar case is observed for
the SUPPORT2 dataset but for the KNN model: while
the ROC AUC score for the fourth and sixth folds is
the same, the WaAUROCC score indicates the model
tested at the sixth fold achieves a higher TPR for the
same FPR at least until a FPR of 0.2 (see Fig. 2 (b)).
Finally, for the CANCER dataset, the same ROC AUC

is reported by two different kinds of models at differ-
ent test folds: MLP at the third fold shows the same
performance as the RF model at the fourth fold. Nev-
ertheless, the WaAUROCC score shows a preference
for the MLP model tested at the third fold - which is
consistent with the ROC curves in 2 (c).

5.2 Synthetic samples
We detail the results obtained for the synthetic sam-
ples in Fig. 3. By analyzing the plots, we observe that
(a) has a low initial TPR but gradually improves and
reaches 0.8 TPR at 0.4 FPR. In contrast, (b) and (c)
have a higher initial TPR. While both reach a 0.8 TPR
at 0.4 FPR, (b) has a flat 0.4 TPR between 0 and 0.4
FPR, while (c) shows a mild increasing slope in that
same range. Among the three models, (c) is preferable,
given it achieves the highest TPR at the lowest FPR.

Same ROC AUC, different operational perfor-
mance. Four synthetic scenarios were considered,
ensuring the same ROC AUC values but different oper-
ational performances (see Fig. 3). Considering overall
performance, (c) and (d) are preferable, given that they
achieve the highest TPR at the lowest FPR when con-
sidering the whole FPR range.

Partial ROC plots. Nevertheless, (c) and (d) dis-
play a different operational performance if consider-
ing a specific region of the ROC plot. If we constrain
the metric computation to the FPR [0 − 0.2] range,
the WaAUROCC values change ((a)=0.11, (b)=0.28,
(c)=0.44, and (d)=0.33), showing that model (c) is pre-
ferred to the rest and that model (b) is preferred to (a).
Such insights could be particularly relevant, e.g., if in-
terested in automating decisions for ranges with a high
TPR and FPR below a certain threshold.

6 Discussion and conclusion
Contribution The ROC AUC can sometimes mask
critical performance differences between models, es-
pecially regarding Recall and False Positive Rates. To
address this issue, we propose the WaAUROCC met-
ric. By framing the ideal and actual ROC AUC curves
as two distributions, we can compute the Wasserstein
distance between the ideal scenario and the actual one.
Doing so provides insights into the ROC curve steep-
ness (higher Recall at a lower FPR), enabling a bet-
ter model selection based on operational performance
criteria. We showcase the usefulness of the proposed
metric by evaluating machine learning models on three
real-world datasets. Furthermore, we also crafted four
synthetic scenarios where each ROC curve has a dis-
tinct shape but results in the same ROC AUC scores. In
all cases, the WaAUROCC metric correctly identifies
which curves are steeper at the beginning of the curve.



Finally, we show the WaAUROCC metric could also be
applied for partial ROC curves, leading to scores that
are analogous to pROCAUC while correctly preferring
curves with higher initial steepness.

Limitations The proposed metric has certain limita-
tions, among which we should mention the fact that (i)
the ROC plot is discretized into bins and (ii) an arbi-
trary cost is established to compute the effort required
to move cases between bins, under the assumption that
the same cost is incurred to move an instance to a better
score as to a lower score. Nevertheless, it must be no-
ticed that strongly misclassified instances will finally
incur a high cost, given they must be moved a longer
way to guarantee a perfect Recall without False Posi-
tives. Another limitation of this work is the assumption
that the classifiers operate within the convex hull of
their ROC curve. While it is possible to find nonlinear
combinations of classifiers producing ROC curves that
exceed their particular convex hulls Scott et al. (1998),
we consider such ensembles to be a different model on
their own.

Future work We plan to contribute the implementa-
tion of this metric to the scikit-learn repository. Our
future work will explore means to mitigate the limita-
tions of the proposed metric, such as the costs of the
misclassified cases being moved through bins.
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