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Abstract. This paper presents a novel approach to dig-
ital transformation simulation using agent-based mod-
elling within intelligent virtual environments. We pro-
pose a three-phase architecture integrating ontology-
based modelling, customised implementation, and
optionally-gamification-enhanced, more nuanced and
interactive simulation. Unlike traditional token-based
simulations, our approach leverages artificial agents’
social and interactive nature to provide richer feed-
back on planned business process transformations. We
demonstrate the application of our architecture using
two scenarios from a production planning and schedul-
ing use case. This method offers digital transformation
experts a powerful tool for evaluating transformation
strategies, predicting resource requirements, and ob-
serving emergent behaviours in digitised business pro-
cesses.
Keywords. digital transformation, artificial intelli-
gence, artificial agents, multiagent systems, gamifica-
tion, digital twins, simulation

1 Introduction

Digital transformation is a “thorough transformation of
business that includes innovative changes in key orga-
nizational activities, processes, products/services, and
business models, with the aim of utilizing the potential
provided by digital technologies” (Pihir et al., 2019).
It involves innovative changes in organisational activi-
ties, processes, and business models through the use of

digital technologies. A critical early step is accurately
describing the business process to be digitised. Digital
twins, representing real-life entities, serve as interme-
diate products in this transformation, providing a test
bed for proposed modifications.

Artificial agents, entities that can act upon and
receive input from their environment (Russell and
Norvig, 2022), can be considered digital twins in
multiagent systems (MASs). These systems offer prac-
tical testing grounds for simulating business processes
before real-world implementation.

The authors argue for using ontologies to describe
business processes in terms translatable to artificial
agents to facilitate this process. This enables the gen-
eration of a simulation-ready MAS blueprint, specifi-
cally an intelligent virtual environment (IVE) compris-
ing agents and interactive objects.

This paper proposes introducing artificial agents
within simulation-ready IVEs can enhance the digital
transformation process. This approach allows for more
nuanced simulations with agents behaving and interact-
ing in a dynamic environment, possibly influenced by
various gamification-based reward systems, unlike the
more abstract currently often used token-based simula-
tions.

This paper describes how formal business process
descriptions, ontologies, and agent-run ontology-based
simulation environments can be combined to provide
an active, interactive, and reactive feedback loop in the
digital transformation process.

The rest of the paper is organised as follows. Section



2 provides an overview of recent research and neces-
sary definitions in the related domains. The example
use case laid out in Sec. 3 is used to illustrate the pro-
posed agent-based simulation architecture (presented
in Sec. 4) using two scenarios described in Sec. 5. The
approach proposed in this paper is discussed in Sec. 6,
followed by plans for future research laid out in Sec. 7.

2 Related Work

2.1 Intelligent Agent
Artificial intelligent agents are systems capable of en-
vironmental perception and action to achieve speci-
fied objectives (Russell and Norvig, 2022; Wooldridge,
2009; Wooldridge and Jennings, 1995). These agents
are designed for inter-agent cooperation and infor-
mation exchange to enhance functionality. The key
characteristics of intelligent agents include social abil-
ity, autonomy, reactivity, adaptability, proactiveness,
and goal-orientated behaviour. They are frequently
employed in implementing distributed systems, social
systems, and systems with autonomous components
(Schatten et al., 2017). Modelling social dynamics
and phenomena using artificial agents provides a safe
methodology for generating valuable data without hu-
man risk (Chopra and Singh, 2018).

Multi-agent systems (MAS), consisting of multiple
intelligent agents, are gaining prominence with ongo-
ing advancements in smart cities, smart home simula-
tions and large-scale artificial intelligence models. In
MAS, intelligent agents can be organized into groups,
coordinating and delegating tasks to achieve goals.
Figure 1 depicts the definition of an intelligent agent (i)
organized into specialized MAS groups (ii) that com-
municate to achieve common goals in an intelligent vir-
tual environment (IVE), which requires different abili-
ties to achieve the goals (iii).

2.2 Intelligent Virtual Environments
Intelligent Virtual Environments (IVEs) represent a so-
phisticated fusion of high-fidelity environmental sim-
ulations and artificial intelligence (Luck and Aylett,
2000a). Central to the functionality of IVEs is the de-
ployment of intelligent agents equipped with cognitive
abilities designed to operate and interact within virtual
spaces. This combination of virtual landscapes with
intelligent agents enables the simulation of lifelike sce-
narios, enhancing the capability for complex decision-
making processes.

By incorporating intelligent agents into these virtual
settings, a new layer of dynamic interaction is achieved
that transcends the limitations of static simulations.
This dynamic allows for a deeper exploration and un-
derstanding of interactions between systems, entities,
and users in a controlled digital context. Such tech-
nology is increasingly being applied in a wide range

Figure 1: Artificial agents on different grouping levels:
i) an intelligent agent; ii) a multiagent system; iii) an
intelligent virtual environment

of fields, from agricultural advancements (Gutiérrez
Cejudo et al., 2024) to sectors including robotics, the
Internet of Things (IoT), and urban development (Luck
and Aylett, 2000b).

The Flexible IVE Designer (FIVE) is an example of
a framework built on Unity and SPADE agents that
streamlines the creation of custom IVEs by facilitat-
ing the import of 3D models (Carrascosa et al., 2023).
Users can construct IVEs through modifications to text
files. This platform is equipped with a helper tool that
automatically generates 3D virtual environments by al-
lowing users to select real-world locations from an in-
teractive satellite map.

2.3 Digital Twin Definition and Back-
ground

A digital twin (DT), first proposed in 2003, is defined
as making full use of the data such as physical model,
sensor update, operation history, etc., and integrating
the simulation process with multi-disciplinary, multi-
physical quantities, multi-scale, and multi-probability
to realise the mapping that can be completed in vir-
tual space, to use it to reflect the corresponding entity
equipment life cycle process (Wang and Wu, 2020).
The concept is credited to Michael Grieves (Grieves,
2014), who pioneered its development along with John
Vickers. The digital twin is meant as the virtual and
computerised counterpart of a physical system that can
be used to simulate it for various purposes, exploiting
a real-time synchronisation of the sensed data coming
from the field; such synchronisation is possible thanks
to the enabling technologies of Industry 4.0 and, as
such, the DT is deeply linked with it (Negri, Fumagalli,
and Macchi, 2017).



2.4 Digital Transformation Journey: To-
wards a Process Digital Twin

Technological changes affect the transformation of tra-
ditional production processes and their management
(Jiang et al., 2024; Liu et al., 2020; Negri, Fumagalli,
and Macchi, 2017; Sakr et al., 2021). The era of In-
dustry 4.0 has led to the incorporation of collaborative
communication and virtual work in production engi-
neering, and one of the significant paradigms in this
domain is Cyber-Physical Systems (CPS) (Negri and
Abdel-Aty, 2023; Uhlemann et al., 2017). Produc-
tion equipment and systems are no longer just physi-
cal elements; they have become digital elements that
are just as important as representations of the physi-
cal system. The digital transformation of the produc-
tion system is based on drivers such as cloud services
and resource virtualisation, virtualisation of shop floor
devices, high availability and policy-based security in
production (Borangiu et al., 2020). In the context of
transformation, data recording, storage, and analysis
are increasingly important within the enterprise pro-
duction system, and embedded systems at the plant
level, operations, production execution and resource
planning form the basis for a digital twin in a smart
factory (Uhlemann et al., 2017). Industry 4.0 and tech-
nologies have enabled a vision for the industry of the
future based on cyber-physical production systems that
provide flexible, dynamically reconfigurable real-time
control of strongly connected processes. The informa-
tion and operational technologies of production sys-
tems are merged, and the physical reality of the fac-
tory has become a mirror to virtual counterparts, digital
twins that represent abstract entities specific to the pro-
duction domain, taking into account products, orders,
and resources (Borangiu et al., 2020).

The application of DT in production refers to CPS
whose constant interaction and communication should
enable production flexibility (Barthelmey et al., 2019;
Jiang et al., 2024; Negri, Fumagalli, and Macchi, 2017;
Sakr et al., 2021). For CPS to fulfil its purpose, it is
necessary to merge the physical object with its repre-
sentation in the digital world (Albo et al., 2021; Jiang
et al., 2024; Rocha and Barata, 2021; Szabo et al.,
2019), that is, the previous creation of a production
DT (Barthelmey et al., 2019; Sakr et al., 2021) us-
ing different technologies such as Industrial Internet
of Things (IIoT) (Sakr et al., 2021), Big Data (Albo
et al., 2021), Cloud Computing (Liu et al., 2020), etc.,
where simulation is an indispensable part of the twins’
functioning (Liu et al., 2020; Rocha and Barata, 2021).
Simulation enables offline testing, planning and exper-
iments (Albo et al., 2021), while digital twins sup-
port the synchronous performance of activities (Liu et
al., 2020) and processes and their modification (Rocha
and Barata, 2021; Sakr et al., 2021). The aforemen-
tioned leads to complementation, optimization, mon-
itoring and control of the production process through
the digital world (Jiang et al., 2024; Liu et al., 2020;

Rocha and Barata, 2021; Sakr et al., 2021; Szabo et al.,
2019), whereby the features of the digital can be used
to enrich the physical production counterpart in parallel
(Albo et al., 2021; Liu et al., 2020). The concept of DT
is based on the two-way exchange of large amounts of
production data (Negri, Fumagalli, and Macchi, 2017;
Szabo et al., 2019) between a physical and a digital ob-
ject, whereby changes in one affect changes in the other
(Liu et al., 2020) enabling two-way synchronization
and real-time updates (Negri, Fumagalli, and Macchi,
2017). This emphasizes the ability of digital twins “to
collect and manage information about the system op-
erations, its history, its behaviour and its current state”
(Liu et al., 2020).

The production process is subject to uncertainty fac-
tors (Jiang et al., 2024; Rocha and Barata, 2021; Wang
and Wu, 2022) such as occasional material shortages,
changes in customer orders, equipment failures, or de-
viations in final product quality. Such factors will make
it impossible to execute the production process on time.
To prevent the same, digital twins can provide a kind of
technical support for production (Liu et al., 2020). In
the process of production and deployment, digital twins
have a two-sided focus – they look at what actually
happens in the process (Albo et al., 2021; Rocha and
Barata, 2021), but also enable understanding of what
may happen in the future (Rocha and Barata, 2021;
Sakr et al., 2021).

Despite the many positive aspects of DT, the authors
warn of increasing cybersecurity vulnerabilities such as
physical tampering, supply chain attacks and sabotage
(Jiang et al., 2024), which requires special attention.
For this reason, digital twins can be used to find vulner-
abilities in the production system (Rocha and Barata,
2021) and simulate attacks to strengthen the cyber se-
curity of the production sector (Jiang et al., 2024).

2.5 Digital Twin Classification

Since digital twins are virtual synchronised represen-
tations of physical entities that aim to mirror their
real-world counterparts as closely as possible, they be-
come novel tools for industries (Purcell and Neubauer,
2023), promising real-time insights and improved
decision-making for physical assets.

According to Kritzinger et al. (2018), there are three
distinct levels of integration in the implementation of
DT, each characterised by the depth and directionality
of data flow: digital model (DM), digital shadow (DS),
and digital twin (DT). Figure 2 illustrates the difference
between them.

A digital model exhibits no automated data transfer
between the physical entity and its virtual model. In-
teraction is manual, limiting the potential for real-time
analytics and adaptation. Data of a digital shadow
flow unidirectionally and automatically from the phys-
ical entity to the virtual model at this stage. This allows
for some level of monitoring and simulation based on



Figure 2: i) digital model; ii) digital shadow; iii) digital twin

real-time data, but without reciprocal interaction from
the virtual to the physical. A digital twin represents the
most integrated level, where data exchange is bidirec-
tional. Changes in the virtual model are immediately
reflected in the physical entity and vice versa. This
dual interaction facilitates enhanced simulation, real-
time feedback, and preemptive decision-making.

3 Example Use Case
The process of production planning and production ca-
pacity scheduling in typical production organisations
includes the activities of the production, procurement,
and storage departments. Process is intertwined with a
series of activities in the above mentioned departments.
Roughly presented by the authors, production planning
and capacity scheduling can be divided into four fun-
damental phases that include multiple activities and, in
a digital context, the creation of algorithms (Figure 3):

Phase 1: Planning involves scheduling production
processes, raw materials, and resources to produce
products for consumers within predetermined time
frames. It determines what needs to be produced and
how much work should be done. The goal is to ensure
that products are processed efficiently and on time. Ef-
fective production planning impacts critical parts of a
manufacturing organisation, such as capacity planning,
supply chain management, production lead time, and
material requirements planning. This phase includes
processing input data (data store) based on the planned
needs of the established demand, information on the
product’s technical characteristics, and the basis for
setting up algorithms for planning needs for purchase
and production. Phase input is a data store (inventory
status, final product inventory status, planned incoming
inputs, bill of materials, etc.) consisting of: 1. Stan-
dardisation of material factors: defining and establish-
ing all the settings of the products that are planned to
be produced, respecting the quality standards of the
resources that are obtained for production purposes;
2. Technical documentation preparation: checking and
determining the correctness of the technical documen-
tation of the products that are planned to be produced,
taking into account documents such as bills of material
for products; 3. Orders generation: material require-
ment planning algorithm. Phase outputs are documents
(work orders, purchase orders, recommendations for
replanning purchase or production).

Phase 2: Preparation includes collecting all neces-
sary documents for production planning and determin-
ing the current state of the production process. Phase
input: Documents (work orders, purchase orders, rec-
ommendations for replanning purchase or production)
containing: 1. Draft production planning: defining the
time period for which the plan is made, collecting work
orders, determining the approximate needs for mate-
rials; 2. Final production planning: defining the final
production needs in the planned periods, defining the
type, quantity, and terms of purchase of materials, and
creating the final production plan. Phase output: Doc-
uments (production plan, purchase plan).

Phase 3: Scheduling of production focuses on plan-
ning how many capabilities (production resources) are
needed and when they must be ready for production.
It specifies who will perform the operations and when
those operations will take place. By combining pro-
duction needs with available resources cost-effectively,
production scheduling ensures that the manufacturing
process runs as smoothly as possible. Phase input:
Documents (production plan, purchase plan) contains
data on: 1. Checking the status of production capaci-
ties: within this activity, the available resources (such
as machinery, labour, and materials) are allocated to
meet production demands. Capacity planning ensures
the right resources are in place to handle the work-
load. It considers factors like production capacity, lead
times, and resource availability; 2. Planning produc-
tion capacities occupation: Production schedules are
created once the resources are allocated. This involves
determining the sequence of production orders, assign-
ing time slots for each operation, and coordinating ac-
tivities across different departments. The goal is to op-
timise production flow and minimise idle time. Phase
output: Document (occupation plan on capacities).

Phase 4: Implementation of production activities
is carried out according to the schedules during the im-
plementation phase. Capacities are occupied with work
orders, and production activities have started. Man-
agers monitor progress, track performance metrics, and
make adjustments as needed. Phase input: Document
(occupation plan on capacities) detailing: 1. Execution
of orders on production capacities: work orders are
scheduled on capacities based on the occupation plan,
and they are processed during the production time.
Phase output: Database updates (inventory status, final
product inventory status, etc.).



Figure 3: Diagram of the four phases in production planning and capacity scheduling.

Figure 4: Conceptual model of the agent-based sim-
ulation architecture for digital transformation, lever-
aging ontologies and artificial agents to simulate real-
world scenarios.

4 Proposed Architecture
This paper proposes a conceptual model of the non-
specified work-in-progress architecture of an agent-
based approach to simulation for the digital transfor-
mation process that uses entities in intelligent virtual
environments. This approach is divided into the fol-
lowing phases: i) setup phase, ii) customised imple-
mentation phase, iii) execution phase (Figure 4).

In the setup phase, real-world elements are matched
to intelligent virtual environment components using
an ontology being developed based on (Okreša Ðurić
et al., 2019). This ontology aims for necessary ex-
pressiveness without over-constraining applicability.
The phase models the real-world scenario using IVE
concepts, ensuring initial validity. Validation occurs
through the initial simulation run post-implementation,
with the setup phase repeated if deemed invalid. The
modelled system is valid if the outcomes match the ex-
pected behaviour of the real-world system. In the con-
text of digital transformation of business processes, this
involves abstracting processes as agents or introducing
actor agents that perform the modelled processes. A
novel approach of modelling agents as processes for
specifying inter-agent communication flow (Peharda et
al., 2023) could be applied to convert business pro-
cesses to artificial agents or facilitate their communi-

cation.

The implementation phase consists of translating
the ontology-based model of the first phase into an
implementation blueprint. This phase uses the in-
development framework to translate selected concepts
of the chosen ontology into Python implementation
blueprints. This blueprint contains the basic implemen-
tation of the modelled system, similar to the process
described in (Okreša Ðurić, 2017). The blueprint is
expected to be further specified by a developer based
on the domain of the observed real-world system, the
goals and guidelines of digital transformation, and the
expected comprehensiveness of the simulation, which
is the crucial part of phase iii).

Once the IVE and the incorporated agents repre-
senting the modelled elements of the world are imple-
mented, system data inputs are used during the simula-
tion phase to describe the real world and to perform the
tasks for which the agents were commissioned. There-
fore, the agents and objects within the simulation can
be observed as digital twins. Furthermore, based on
the customised implementation phase, the agents can
be observed on any of the three levels of digital twin
integration presented in Sec. 2.5. We consider the ever-
evolving nature of the digital twin to match and refine
the required functionalities, which requires an iterative
process where, for each new version, the setup phase
may need to be re-run to execute the new environment
being deployed.

Gamification techniques are proposed to enhance the
natural interaction of simulated agents, complementing
their core features. By implementing gamification be-
yond basic points and badges, agents’ behaviour can
be subtly modified to reflect nuanced changes in real-
world human behaviour. Techniques such as rewarding
goal-oriented interaction, encouraging grouping, and
incentivising efficiency can be applied depending on
simulation requirements. While these essentially form
reward systems for agents, framing them as gamifica-
tion concepts facilitates their application and transla-
tion to real-world human agents.



Figure 5: Integration of the proposed agent-based sim-
ulation architecture to illustrate the application of the
digital transformation process.

5 Applying the Proposed Architec-
ture to the Example Use Case

Digital transformation of the process described in Sec.
3 is presented here in two distinct possible scenar-
ios: i) digital transformation of Planning (phase 1) and
Preparation (phase 2) production process; ii) digital
transformation of Scheduling (phase 3) and Implemen-
tation (phase 4) production process (Figure 5). Only
the simulation stage of the digital transformation pro-
cess is described in this section, following the three
phases of the agent-based approach presented in Sec.
4. The setup phase is the same in both scenarios since
both scenarios are observed within the same system.

5.1 The First Scenario
In phase 1 (Planning), customer orders are received,
which serve as the basis for production planning. Upon
the arrival of customer orders, work orders are gener-
ated and forwarded in digital form to phase 2 (Prepa-
ration). With digital transformation, inputs (material
stocks) are synchronised in real time and allocated to
work orders. All documents are digital, updated in
real-time, and forwarded to subsequent stages. Addi-
tionally, due to changes in the inventory status, ma-
terial requirements are generated in real-time, ensur-
ing constant updates on how much to order from sup-
pliers. The production plan is digitally synchronised
in real-time, making production requirements dynami-
cally swiftly to changing market conditions, minimis-
ing bottlenecks, and achieving higher efficiency.

The setup phase of this scenario should be cus-
tomised with additional agents and artefacts related to
the observed concepts that play the leading roles of this
scenario. For example, should the digital transforma-
tion expert wish for a detailed and highly customisable
simulation, they may choose to model both customer
and work orders as separate agents. Furthermore, an
overseer agent can be modelled to oversee the two de-
scribed phases of the business process. The process
of forecasting production needs can be modelled as a
separate agent. Inventory status, material stocks, and

material requirements can be modelled as simple data
inputs or IVE artefacts within the system. Ultimately,
suppliers may be modelled as agents, as other entities,
or as simple data flows, depending on the desired ab-
straction and interaction level.

Various behaviours can be implemented in the cus-
tomised implementation phase, granting different lev-
els of intelligence and autonomy to the included agents;
e.g., additional agents may be included that behave
as forecasting agents. When the simulation is run,
the behaviour of the observed system can be deduced
from the individual and emergent interactions of the
included agents. Running the simulation is expected
to give the digital transformation expert an estimate of,
for example, various resource consumption. Such data
is predicted to be valuable in the digital transformation
decision-making process.

5.2 The Second Scenario
In phase 3 (Scheduling), digital work orders are allo-
cated to capacities, i.e., included in the occupation plan
of work orders on capacities. The plan is digital and
changes in real time, according to the enterprise’s de-
fined algorithms (rules). At any moment, the current
workload, available capacities, their status, and the ca-
pacity requirements for the working day are known. As
a result, the need for overtime work and additional hu-
man resources is determined. In phase 4 (Implemen-
tation), digital work orders are distributed to capacities
(machines), and the production preparation time, the
production flow, and the completion of the production
are determined. In the event of a potential failure or
other incidents that affect the normal production flow,
the digital process allows feedback on previous stages
and enables replanning according to new requirements.
The role of the human factor is reduced to a minimum
in the entire process, i.e., the human has only a control-
ling role.

The setup phase of this scenario should include
agents that can play the role of work orders and ca-
pacities. Based on the desired level of interaction and
precision, the amount of work, overtime work, and hu-
man resources could be modelled as simple data flows.
The forecasting process can be implemented as an in-
dividual agent.

Various behaviours can be implemented as avail-
able to the simulation agents, e.g., the forecasting
agent forecasts daily production capacity, determines
the need for extra shifts, and calculates the required
workforce for task completion. Upon running the sim-
ulation, the results of the agent interaction provide the
digital transformation expert with valuable input.

6 Discussion
The approach presented in this paper is expected to pro-
vide digital transformation experts with valuable feed-



back on the benefits of the planned transformation of
the initial business process. These benefits may be ob-
served, e.g., as quantified results, emergent behaviour,
or relative change of used resources compared to the
initial real-world process. The benefit of utilising ar-
tificial agents in a simulation instead of the traditional
toke-based simulations is the social and interactive na-
ture of the concept of intelligent artificial agents by de-
fault.

Interaction that stems from the fundamental features
of artificial agents is argued here to be able to provide
different and possibly much more valuable feedback
than token-based simulations. Furthermore, imple-
menting intelligent agents is a way of introducing mod-
ern methods and algorithms of artificial intelligence
into the equation of digital transformation and trans-
formation suggestions or guidelines. Finally, influenc-
ing agents’ behaviour using gamification techniques
can allow digital transformation experts to observe the
seemingly natural evolution of the initial model.

7 Conclusion & Future Research
The agent-based approach to digital transformation
simulation presented in this paper offers several ad-
vantages over traditional methods. By utilising intelli-
gent artificial agents within IVEs, our architecture en-
ables more dynamic and interactive simulations that
better reflect the complexities of real-world business
processes.

Key contributions of this work include 1. a flexible
three-phase architecture that combines ontology-based
modelling, customised implementation, and gamifica-
tion-enhanced simulation; 2. integration of artificial
intelligence and multiagent systems into the digital
transformation process, allowing for more sophisti-
cated modelling of business processes and human fac-
tors; 3. the use of gamification techniques to influence
agent behaviour, providing a novel way to simulate
subtle changes in human behaviour within transformed
business processes; 4. a demonstration of the architec-
ture’s applicability through two scenarios in a produc-
tion planning and scheduling use case.

Our approach addresses the limitations of token-
based simulations by incorporating the social and in-
teractive nature of intelligent agents. The stated allows
digital transformation experts to observe emergent be-
haviours, quantify resource requirements, and compre-
hensively evaluate planned transformations’ potential
benefits.

Future research directions include, but are not lim-
ited to, further development and refinement of the
ontology for describing business processes and IVE
components, expansion of the gamification techniques
applied to agent behaviour to model more complex
human factors, integration of machine learning algo-
rithms to enhance agent decision-making and adapt-
ability within simulations, empirical validation of the

proposed architecture through real-world case studies
across various industries, development of visualisation
tools to better represent simulation outcomes and aid in
decision-making for digital transformation strategies.

By providing a more nuanced and interactive simu-
lation environment, our agent-based approach has the
potential to significantly improve the planning and im-
plementation of digital transformation initiatives across
diverse business domains.
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A Review on Application Domains of Large-Scale
Multiagent Systems. In V. Strahonja & V. Kirinić
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