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Abstract. We continue here the theoretical study initi-
ated approximately twenty years ago on the possibility
of using living cells for computing. In this paper, we
reconsider the formal operations inspired by the in-
tramolecular DNA rearrangements in the evolution of
the macronucleus from the micronucleus in a group of
ciliates. After introducing the concept of a valid string,
we propose an efficient algorithm for checking this
property for a given string. Then we investigate which
of the considered operations preserve the property of
a string to be valid. We also show that just one of the
operations can be simulated by a finite transducer. The
important problem regarding the order of applying
the operations is then investigated showing that one
operation can commute with the other two. Finally,
we introduce the iterated variants and investigate a
few properties. A sort of a “normal form” for the gene
assembly in ciliates is obtained. The paper ends by
a short discussion about open problems and further
directions of research.

Keywords. Ciliate; gene assembly, valid string, in-
tramolecular operations, finite transducer.

1 Introduction

Do the cells “compute”? This seems to be one of
the main questions in the theory of computing, espe-
cially nowadays when more and more complex com-
putational problems arise in different areas. Some di-
rections of research are aimed to find exact algorithms
using current hardware architectures, while other ap-
proaches enable approximate, uncertain, tolerant so-
lutions which are mainly based on other architec-
tures than the classic ones. Many directions of re-
search (Machine learning, Fuzzy sets, Evolutionary

computing, Artificial neural networks, Expert systems,
etc.) have been emerged and vividly developed un-
der the umbrella of Soft Computing. Other approaches
have eventually formed the Unconventional Computing
paradigm that includes: Natural Computing (DNA and
cellular (in vivo) computing, biochemical networks,
etc.) and Quantum Computing, see (Kari & Rozenberg,
2008). This work is a contribution to the area of the
so-called “in-vivo” computing or the computation with
living cells. If the cells really compute, are we able
to understand the way in which they do it and which
are the problems “solved” by them? It is commonly
accepted that, most likely, they do this by reading and
modifying DNA sequences all the time. Among many
computational models based on the manipulation of
DNA, see, eg., (Păun, et al., 1998) and (Rozenberg et
al., 2012), there is a model of a rather different type that
is based on the way in which some microorganisms,
calls ciliates, are copying some protein-coding genes
from their micronucleus to their macronucleus (Ehren-
feucht et al., 2004). Ciliates are unicellular eukaryotes
having two types of nuclei: a macronucleus and a mi-
cronucleus (germline). The macronucleus, which is so-
matically active, is formed from the inactive micronu-
cleus after sexual reproduction. It seems that ciliates
have “invented” very ingenious solutions to complex
problems million years ago.

Figure 1: The arrangement of genes in the micronu-
cleus (above) and their arrangement in the macronu-
cleus (below).
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A functional copy of the genes in the macronu-
cleus is obtained by eliminating some DNA sequences,
and/or changing some gene order, and/or reverting
some inverted genes in the micronucleus. We illustrate
this situation in Figure 1, where 5̄ means that the fifth
gene is inverted. In this note, we consider the formal
variants of three intramolecular operations which were
proposed in (Ehrenfeucht et al., 2004) as formal op-
erations for the unscrambled gene assembly in ciliates,
more precisely in a group of ciliates called Stichotrichs.
These operations called ld, hi, dlad, formally define the
DNA recombination based on folds that are aligned by
pointers, some relatively short nucleotide sequences at
the intersection of MDSs (macronuclear destined se-
quences) and noncoding IESs (internally eliminated se-
quences). It is worth mentioning that the operations
considered here are intramolecular operations; how-
ever, intermolecular operations have also been defined
and investigated, see, e.g., (Kari & Rozenberg, 2008),
(Brijder et al., 2012).

Informally speaking, we may say that what ciliates
do in gene assembly is excision, inversion and inter-
change (sorting) of DNA sequences. Therefore, a hy-
pothetical computation with ciliates would mean to en-
code the given instance of a problem in an abstract mi-
cronuclear gene, leaves the ciliate to assemble it into a
macronucleus, and then filter and sequence the result.
Initially, the formal computational power of gene as-
sembly in ciliates was investigated in comparison with
that of Turing machines: (Landweber & Kari, 1998),
(Onolt-Ishdorj et al, 2007), yielding to computation-
ally complete models. Later on, there were reported
conceptual solutions to some hard problems, like the
Hamiltonian Path Problem (Alhazov et al, 2008). Such
a solution, if ever implemented in ciliates, would have
the advantage that the organisms themselves imple-
ment generally time-consuming steps of the procedure.

Figure 2: The ld operation.

We now explain the three operations. The operation
ld excises one circular molecule, which contains non-

coding blocks only. In this way, two consecutive MDSs
are aggregated into a bigger composite MDS. More
precisely, assume that the MDSi+1 follows MDSi,
the two being separated by an IES, and the pointer Pi+1

flanks the IES. Then ld makes a fold aligned by pointer
Pi+1, excises the IES as a circular molecule, and re-
combines MDSi and MDSi+1 into a longer coding
block, as in Figure 2.

In the case of hi, the DNA sequence makes a fold
aligned by pointer Pi+1, reverts MDSi+1, and rear-
range the two MDSs in the correct order, as illustrated
in Figure 3.

Figure 3: The hi operation.

Finally, in Figure 4, the dlad is illustrated. The
molecule is double folded aligned by the pointers Pi+1

and Pi+2, and then a new molecule is obtained by the
recombination sequence shown in Figure. 4.

Figure 4: The dlad operation.

We consider here three formal operations on words
and language inspired by the operations shown in the
three figures above. We first define the gene assembly
in ciliates (gac)-scheme, the valid string with respect
to a gac-scheme, and discuss the algorithm for decid-
ing whether or not a given string is valid with respect to
a given gac-scheme. We show that this algorithm is es-
sentially based on the Aho-Corasick algorithm which
can be implemented by means of a finite automaton
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such that the language of all valid strings with respect
to a gac-scheme is regular. Then we consider a few
properties of the non-iterated versions of these oper-
ations. Thus, the ld operation can be simulated by a
finite transducer while this is not possible for the other
two operations. All the three operations preserves the
property of a string of being valid. A natural and bio-
logically motivated question is whether or not the or-
der of applying these operations does matter. We solve
completely the problem by showing that the order does
not really matter.

The iterated variants of the three operations are de-
fined and a few properties are investigated. A sort of a
”normal form” concerning the order of applying these
operations is given. Finally, a few open problems are
discussed.

2 Preliminaries
We introduce here the main concepts and definitions
which will be used in the rest of the paper. For unde-
fined notions, the reader is referred to (Rozenberg et
al., 2012).

The cardinality of a finite set A is denoted by
card(A). An alphabet V is a finite set of sym-
bols/letters, a string over V is a finite sequence of sym-
bols from V , the empty string is denoted by λ, the set
of all strings over V is denoted V ∗, while the set of all
nonempty strings over V is denoted by V +. Further on,
the length of a string x is denoted by |x|. For a string
w ∈ V ∗, Sub(w) = {x ∈ V + | w = uxv, u, v ∈ V ∗}
is the set of all substrings of w. If u or v is not
empty in this definition, then x is a proper substring
of w. Furthermore, wR denotes the mirror image of
the string w, that is wR = anan−1 . . . a1, provided
that w = a1a2 . . . an, where each ai, 1 ≤ i ≤ n,
is a symbol. For a set of strings (language) L we set
LR = {wR | w ∈ L}.

A finite transducer is a 6-tuple M =
(Q,V, U, δ, q0, F ), where Q,V, U are finite and
non-empty sets called states set,input alphabet and
output alphabet, respectively, q0 ∈ Q is the initial
state, F ⊆ Q is the set of final states, and δ is the
transition-and-output function from Q × (V ∪ {λ})
to finite subsets of Q × U∗. This function may
be extended in a natural way to Q × V ∗. Each fi-
nite transducer M as above defines a finite transduction

gM (x) = {y ∈ U∗|(q, y) ∈ δ(q0, x), q ∈ F}.

The finite transduction gM can be extended to a lan-
guage L ⊆ V ∗ as follows

gM (L) =
⋃
x∈L

gM (x).

If M reads exactly one symbol at each transition and
U is ignored (i.e. M has no output), we have a finite

automaton. Moreover, M is called deterministic, if δ
is a function from Q× V into Q× U∗.

A gac-scheme (gene assembly in ciliates) is a pair
σ = (V, P ), where V is an alphabet and P is a finite
subset of V +, whose elements are called pointers, such
that PR = P .

We now introduce the three formal operations on
strings suggested by the gene assembly in ciliates il-
lustrated in Figures 2, 3, and 4.

Given a gac-scheme σ = (V, P ) and a string w ∈
V +, we formally define the ld operation as follows.

ldσ(w) = {xαz | w = xαyαz, x, z ∈ V ∗,

y ∈ V +, α ∈ P, Sub(y) ∩ P = ∅}.

We consider here that the circular molecule obtained
in Figure 2 is no longer the micronuclear precursor for
another assembly, so we keep only the linear molecule.
Note that, as mentioned before, the segment y must not
contain any pointer.

Given a gac-scheme σ = (V, P ) and a string w ∈
V +, we formally define the hi operation as follows.

hiσ(w) = {xαyRαRz | w = xαyαRz, x, z ∈ V ∗,

y ∈ V +, α ∈ P}.

The dlad operation is applicable to those strings which
have an alternating direct repeat pair of pointers. This
string can be folded into two loops, each of which is
aligned by one pair of pointers, as illustrated in Figure
4. Formally, given a gac-scheme σ = (V, P ) we define

dladσ(w) = {uαyβxαvβz | w = uαvβxαyβz,

v, x, y ∈ V +, u, z ∈ V ∗, α, β ∈ P}.

It is worth noting that simpler variants have been
considered in (Harju et al., 2006), too. This means the
followings: in the case of hi and dld each fold, and
consequently each rearranged sequence, contains just
one MDS. It is obvious that there are sequences such
that no simple operation is applicable while the vari-
ants considered here can be applied. For instance, take
the string

w = x032x110x267x389x445x567x623x745x8,

where all the pointers are underlined, and none of the
substrings xi, 0 ≤ i ≤ 8 contains any digit. Clearly, w
is a valid string but no simple operation is applicable to
this string. On the other hand, both hi and dld can be
applied. Indeed,

x032x
R
6 76x

R
5 54x

R
4 98x

R
3 76x

R
2 01x

R
1 23x745x8 ∈ hi(w),

and

x032x110x267x623x745x567x389x445x8 ∈ dld(w).
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3 Results
Given a gac-scheme σ = (V, P ), we say that a string
w ∈ V ∗ is valid with respect to σ, if w admits a unique
decomposition as follows:

w = w0α1w1α2 . . . wk−1αkwk,

with k ≥ 0, αi ∈ P, 1 ≤ i ≤ k, and Sub(wj)∩P = ∅,
for all 0 ≤ j ≤ k.

This definition appears also in (Vaszil, 2020).

Theorem 1. Given a gac-scheme σ = (V, P ), one can
algorithmically decide whether or not a given string
w ∈ V ∗ is valid in O(n + m), where n = |w| and
m =

∑
α∈P

|α|.

Proof. The algorithm is essentially the algorithm pro-
posed by Aho and Corasick in (Aho & Corasick, 1975)
for finding all occurrences of a finite set of strings in a
given string. We actually use the algorithm for finding
all occurrences of the pointers from P in w. The fol-
lowing conditions must be satisfied in order to validate
w:

• At any position i in w, there is at most one pointer
that can appear. In other words, there are no two
pointers that appear at the same position in w.

• If a pointer α appears at the position i in w, and j
is the next position in w, where a pointer appears,
j > i+ |α| − 1.

Note that the complexity of the algorithm is the same to
that of Aho-Corasick without the number of the output
matches.

As the Aho-Corasick is based on the construction of
a special type of a finite automaton, we may also state:

Corollary 1. Given a gac-scheme σ = (V, P ), the lan-
guage of all valid strings over V with respect to σ is
regular.

3.1 Properties of the Non-iterated Versions
Theorem 2. Let σ = (V, P ) be a gac-scheme.
1. There is a finite transducer M such that ldσ(w) =
gM (w) for every w ∈ V ∗.
2. There is no finite transducer M such that hiσ(w) =
gM (w) for every w ∈ V ∗.
3. There is no finite transducer M such that
dladσ(w) = gM (w) for every w ∈ V ∗.

Proof. 1. Instead of giving the formal construction of
the finite transducer M , we prefer to explain how it
works on the input string w. Its computations have four
phases:

• Phase 1. The transducer scans a prefix of w and
writes each symbol read. In a nondeterministic way,
it passes to Phase 2.

• Phase 2. Now, M checks whether a pointer follows
in w and memorize it. If there are more pointers that
appears in w at the same position (note that w is not
necessarily valid), M chooses one nondeterministi-
cally. The pointer is printed out. Then it passes to
Phase 3.

• Phase 3. Now M checks the presence of the sec-
ond occurrence of the memorized pointer. If the
pointer does not appear anymore, the computation
is blocked. If the pointer appears, it checks also the
presence of another pointer that does not overlap with
the occurrences of the memorized symbol. If this
is the case, the computation is blocked again. Dur-
ing this Phase, no symbol is written to output. If the
checking process has been successful, the transducer
passes to Phase 4, the last one.

• Phase 4. M writes the rest of the input string (after
the second occurrence of the memorized pointer) to
the output.

By these explanations, it immediately follows that
ldσ(w) = gM (w).

2. Assume by contradiction that there exists a fi-
nite transducer M such that hiσ(w) = gM (w) for
every w ∈ V ∗. Let us consider the linear lan-
guage L = {wcwRc | w ∈ {a, b}+} and the gac-
scheme σ = (V, {c}). By our assumption, hiσ(L) =⋃
w∈L

hiσ(w) = {wcw | w ∈ {a, b}+}. This implies

that gM (L) = {wcw | w ∈ {a, b}+}. But this is not
possible because the language {wcw | w ∈ {a, b}+} is
not context-free and the class of context-free languages
is closed under finite transducer mappings.

3. A similar argument may be used for the third
statement. We consider the context-free language L =
{ancbncbcbmcam | n,m ≥ 1} and the gac-scheme
σ = ({a, b, c}, {c}). Thus, we get dladσ(L) =
{ancbmcbn+1am | n,m ≥ 1}, which is not context-
free anymore.

As an immediate consequence, it follows that the
class of regular languages is closed under the operation
ld, while the class of context-free languages is closed
under none of the other two operations. Note that a
similar result is also proved in (Freund et al., 2002).

One important question is: Which of the three oper-
ations preserves the validity property? The next state-
ment answer this question.

Theorem 3. Let σ = (V, P ) be a gac-scheme. If w is
valid with respect to σ, then each of the sets ldσ(w),
hiσ(w), and dladσ(w) contains valid strings only.

Proof. If w is a valid string with w = xαyαz, and
Sub(y)∩P = ∅, then the string u produced by ld, that
is u = xαz, is also valid. Indeed, if two pointers were
overlapping in the prefix xα of u, they would overlap
in the same prefix of w, which is not possible. The
situation is similar if two pointers were overlapping in
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the suffix αz of u, hence u is valid with respect to σ. It
follows that ld preserves the validity property.

We now assume that w = xαyαRz and prove that
u = xαyRαRz is also valid. Assume the contrary; we
distinguish three cases which are to be analyzed in the
sequel. Let us assume that α = γδ and y = y1y2, such
that δyR2 is a pointer. By the definition of P , y2δ must
be also a pointer. But this is not possible as w is valid.

Now, let us assume that α = γδ and y = y1y2, such
that yR1 δ

R is a pointer. This implies that δy1 is a pointer
and this contradicts again the validity of w.

Finally, let α = γδ and y = y1y2, such that δyRδR

is a pointer. It follows that δyδR is also a pointer which
is also a contradiction. Consequently, the hi operation
preserves the validity property.

We now assume that w = uαvβxαyβz and prove
that uαyβxαvβz is also valid. This immediately fol-
lows as soon as we notice that the underlined segments
uαvβxαyβz in w are interchanged by the dlad opera-
tions.

As we have seen above, during the process of obtain-
ing its macronucleus, the ciliate removes some DNA
sequences, and/or change some gene order, and/or re-
verts some inverted genes in the micronucleus. A nat-
ural question is whether or not the order of this evolu-
tionary steps is important. More precisely, is it possible
to obtain the same sequences if the order of applying
the three operations is changed? This is solved by the
following statement.

Theorem 4. Let σ = (V, P ) be a gac-scheme, and x
be a valid string in V +. Then the followings hold:
1. ldσ(hiσ(x)) = hiσ(ldσ(x)).
2. ldσ(dldσ(x)) = dldσ(ldσ(x)).
3. There are valid strings y such that dldσ(hiσ(y)) ̸=
hiσ(dldσ(y)).

Proof. 1. Let z ∈ hiσ(ldσ(x)); this means that there
exists y ∈ ldσ(x) such that z ∈ hiσ(y). It follows
that y = x0αx2, provided that x = x0αx1αx2, with
α ∈ P and Sub(x1) ∩ P = ∅. We distinguish three
cases depending on the substring of y that is modified
by the hi operation:

Case (i). The modified substring is x0α. Two subcases
must be considered: (i1) x0 = uβvβRq, β ∈ P , and
(i2) x0 = uαRv (note that x is a valid string). In the
subcase (i1), z = uβvRβRqαx2 holds. We infer that
z ∈ ldσ(y

′), where y′ = uβvRβRqαx1αx2, hence
y′ ∈ hiσ(x). In the subcase (i2), z = uαRvRαx2

holds. We now infer that z ∈ ldσ(y
′), where

y′ = uαRvRαx1αx2, hence y′ ∈ hiσ(x).

Case (ii). The modified substring is αx2. This
may be treated analogously to Case (i).

Case (iii). The pointer α is a proper substring, that is
neither a prefix nor a suffix, of the modified string.
Formally, x0 = uβv, x2 = qβRt, for some u, v, q, t.

It follows that z = uβqRαRvRβRt. We deduce that
z ∈ ldσ(y

′), where y′ = uβqRαRxR
1 α

RvRβRt,
therefore y′ ∈ hiσ(x). Thus, we have proved that
ldσ(hiσ(x)) ⊇ hiσ(ldσ(x)) holds.

For the converse inclusion, let z ∈ ldσ(hiσ(x)).
There exists y ∈ hiσ(x) such that z ∈ ldσ(y). We
may consider that y = x1βx

R
2 β

Rx3, provided that
x = x1βx2β

Rx3. It is easy to notice that the substrings
of y that can be modified by the ld operation are: (i)
x1β, (ii) βxR

2 , (iii) xR
2 β

R, and (iv) βRx3. By the defi-
nition of ld which imposes that the loop does not con-
tain any pointer, we immediately conclude that z can be
obtained by applying first the ld operation to the sub-
strings of x: x1β, βx2, x2β

R, and βRx3, respectively,
and then the hi operation guided by the pointers β and
βR.

2. Let q ∈ ldσ(dldσ(x)). We consider that
x = uαvβwαyβz; there exists t = uαyβwαvβz ∈
dldσ(x) such that q ∈ ldσ(t). The possible site for the
application of the ld operation to t could be one of the
following substrings (i) uα, (ii) αyβ, (iii) βwα, (iv) the
subαvβ, and (v) βz. No matter which site is chosen,
the two operations can be interchanged. It follows that
ldσ(dldσ(x)) ⊆ dldσ(ldσ(x)).

Now, let q ∈ dldσ(ldσ(x)). We consider that x =
uαvαw; there exists t = uαw ∈ ldσ(x) such that
q ∈ dldσ(t). Obviously, by the definition of ld, any
application of dld to t can be applied to the same sub-
string of x with just one exception, namely the sub-
string that includes α, when the substring of x includes
αvα. Consequently, ldσ(dldσ(x)) = dldσ(ldσ(x))
holds.

3. We take the string y = a12a34a21a56a34a56a,
where the substrings of digits represent pointers.
On the one hand, t = a12a34a56a34a21a56a ∈
dldσ(x). Actually, t is the only string in dldσ(x).
Then, hiσ(t) is also a singleton that contains q =
a12a43a65a43a21a56a. Therefore, q ∈ hiσ(dldσ(y).
On the other hand, the unique string in hiσ(y) is r =
a12a43a21a56a34a56a, but dldσ(r) = ∅. Now the
proof is complete.

Clearly, the first two statements of this theorem are
valid for the simple variants. If we restrict to the simple
variants, the equality dldσ(hiσ(y)) = hiσ(dldσ(y))
holds for any valid string y.

3.2 Properties of the Iterated Versions
In this section, all the strings considered are valid
strings. Given a gac-scheme σ = (V, P ), and τ ∈
{ldσ, hiσ, dladσ} we define:

(i) τ0(w) = {w},
(ii) τ i+1(w) =

⋃
x∈τ i(w)

τ(x),

(iii) τ∗(w) =
⋃
i≥0

τ i(w).
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Given a gac-scheme σ = (V, P ), we say that a string
w is an ldσ-macronuclear string if ld∗σ(w) = {w}.
The set of all ldσ-macronuclear strings evolved from
a string x is denoted by mldσ(x) and is defined by

mldσ(x) = {w | w ∈ ld∗σ(x) and w is
ldσ −macronuclear.}

An ldσ-macronuclear string may be viewed as a for-
mal description of a protein-coding gene structure in a
chromosome of a ciliate macronucleus. Before sexual
reproduction the genomic copies of these genes in the
micronucleus are separated by the presence of inter-
nally eliminated non-protein-coding DNA sequences
which must be removed during sexual reproduction.

Theorem 5. Let σ = (V, P ) be a gac-scheme. There
exists a finite transducer M such that mldσ(w) =
gM (w) for every string w over V .

Proof. We consider a finite transducer M that imple-
ments the following nondeterminstic algorithm.
Step 1. M finds the first occurrence of a pointer in P ,
say α. All symbols read up to the occurrence of α as
well as α are left unchanged. The pointer α is memo-
rized in the current state.
Step 2. Nondeterministically, M chooses one of the
next two ways for continuing the computation:
Step 2.1. It “guesses“ that the next pointer is also α.
Then it deletes all the symbols of the input string from
the current position of α up to the next one, as well as
the found occurrence of α. If its guess was wrong, the
computation is blocked. Note that M can do this as it
saved α. Now, M goes back to Step 2..
Step 2.2. M “guesses” that the next pointer is different
than α. Then M leaves unchanged all the read sym-
bols until the next occurrence of a pointer is met. If
this pointer is α, then the computation is blocked. If it
is not α, M writes the new pointer on the output tape,
replace α in the memory by the new pointer and goes
back to Step 2.

The finite transducer defined above actually applies
all the possible iterations of ldσ to w.

As the set of all valid strings is regular, by the previ-
ous theorem it follows that

Corollary 2. For any gac-scheme σ = (V, P ), the set
of all ldσ-macronuclear strings is regular.

Given a gac-scheme σ = (V, P ), and a string w ∈
V ∗, we define

(hi/dlad)σ(w) = hiσ(w) ∪ dladσ(w),

gacσ(w) = (hi/dlad)σ(w) ∪ ldσ(w),

and iterate these operations as follows

(i) τ0σ(w) = {w},
(ii) τ i+1

σ (w) =
⋃

x∈τ i
σ(w)

τσ(x),

(iii) τ∗σ(w) =
⋃
i≥0

τ iσ(w),

where τ ∈ {gac, (hi/dlad)}. As a consequence of
Theorem 4, we have this result as a normal form of the
gene assembly in ciliates.

Theorem 6. Given a gac-scheme σ = (V, P ), and a
string w ∈ V ∗, gac∗σ(w) = ld∗σ(hi/dlad)

∗
σ(w)) =

(hi/dlad)∗σ(ld
∗
σ(w)) holds.

Proof. Obviously, both inclusions
ld∗σ(hi/dlad)

∗
σ(w)) ⊆ gac∗σ(w)

and
(hi/dlad)∗σ(ld

∗
σ(w)) ⊆ gac∗σ(w)

hold.
We now prove the inclusion gac∗σ(w) ⊆

ld∗σ(hi/dlad)
∗
σ(w)), while the other inclusion,

namely gac∗σ(w) = (hi/dlad)∗σ(ld
∗
σ(w)) may be

proved analogously. The argument is the induction
on the number of gac steps. More precisely, let
z ∈ gackσ(w), for some k ≥ 0. If k = 0, then
z = w, hence z ∈ ld0σ(hi/dlad)

0
σ(w)). Assume

that gackσ(w) ⊆ ld∗σ(hi/dlad)
∗
σ(w)) holds, and take

z ∈ gack+1
σ (w). This implies that z ∈ gacσ(y) for

some y ∈ gackσ(w). By the induction hypothesis,
y ∈ ld∗σ(hi/dlad)

∗
σ(w)). We distinguish three cases

depending on the operation applied to y in order to get
z: ld, hi, and dlad.

If z ∈ ldσ(y), then z ∈ ldσ(ld
∗
σ(hi/dlad)

∗
σ(w))) ⊆

ld∗σ(hi/dlad)
∗
σ(w)).

If z ∈ hiσ(y), then z ∈ hiσ(ld
∗
σ(hi/dlad)

∗
σ(w))).

This means that z ∈ hiσ(ld
q
σ(hi/dlad)

r
σ(w))), for

some q, r ≥ 0, but not both being null. If q = 0, we are
done. Otherwise, by Theorem 4, we can interchange
q times the operations hi and ld from left to right and
yield that z ∈ ldqσ(hi/dlad)

r+1
σ (w)).

As the operations ld and dlad can also be inter-
chaged by Theorem 4, the case z ∈ dladσ(y) is treated
analogously.

This theorem says that instead of iteratively applying
the three operations in an arbitrary order, one can iter-
atively apply first the ld operation, which decrease the
length of the string, and then the other two operations.

4 Final Remarks

We have reconsidered the three formal operations on
strings suggested by the intramolecular gene assembly
in ciliates. Properties of both non-iterated and iterated
variants have been investigated. We shortly discuss
here a few other properties that appear to be interest-
ing to us and were not considered in this paper.

Note that the operations hi and dlad are reversible
(but not the ld operation), that is for any gac-scheme
σ = (V, P ) and τ ∈ {hiσ, dladσ}, x ∈ τ(w) if and
and only if w ∈ τ(x). This leads to the following defi-
nition of an equivalence relation ∼τ :

x ∼τ y if x ∈ τ∗(y).
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It immediately follows that the relation is indeed an
equivalence relation, being reflexive, symmetric and
transitive.

Note that the problem “Does x ∈ ld∗σ(y) holds, for
any given strings x and y?” is decidable in linear time.
Indeed, by scanning both strings x and y, when a mis-
match is met, try to apply the ld operation to remove
the mismatch. If this is possible, continue the scanning
process, otherwise the answer is negative.

Proposition 1. Let σ = (V, P ) be a gac-scheme and
τ ∈ {hiσ, dladσ}.
1. The problem of whether x ∼τ y, for two strings
x, y ∈ V +, is decidable.
2. If hi and dld are simple, then the problem of whether
x ∼τ y, for two strings x, y ∈ V +, is decidable in
linear time.

The proof of the first statement is immediate as any
of the equivalence classes defined above are finite. The
second statement follows from the fact that a single si-
multaneous scan of x and y (as that explained above
for ld) suffices for taking the decision.

Here a few open problems naturally arise: Is it a
more time efficient algorithm for solving the first state-
ment, than the brute force one? What is its complexity?
Have both problems (for hi and dlad) the same com-
plexity?

Given σ = (V, P ) a gac-scheme, x, y ∈ V ∗, and
τ ∈ {ldσ, (hi/dlad)σ, gacσ} defined above, we define
the partial mapping

dτ (x, y) =

 min{k | x ∈ τk(y) or y ∈ τk(x)},
if such a k exists,

not defined, otherwise.

Clearly, dτ is computable for any τ ∈ {ldσ ,
(hi/dlad)σ , gacσ}. While dldσ

is computable in linear
time, the complexity of computing the other functions
remains an open problem.
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