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Abstract. In this paper, the performance of YOLOv5 

and YOLOv6 models is evaluated on standardized 

object classification tasks using Kaggle open-access 

cloud processing infrastructure. The performance of 

these architectures is evaluated on a balanced subset 

of COCO dataset considering precision, recall, 

mAP0.5, and mAP0.5:0.95 metrics, learning and 
processing time. Our results indicate that the choice of 

the optimal model in the rapidly evolving field of 

computer vision and machine learning is heavily 

influenced by the dataset size, complexity, and 

restrictions imposed by the data processing platform. 

It is not always advisable to select the most recent 

algorithm for all applications. The obtained results, 

program code and the implemented architectures are 

available for non-commercial use at: 

https://github.com/mhorvat/yolov5_yolov6_compariso

n  
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1 Introduction 

Identifying and categorizing objects in an image or 

video stream is a fundamental task in computer vision 

(Guo et al., 2022; Mohan et al., 2023). Recently, there 

has been significant research interest in advancing and 

refinement of deep neural network models for object 

classification tasks in different domains because of 

their superior performance compared to previous 
methods, as per example in medicine (Boaro et al., 

2022). The You Only Look Once (YOLO) model is 

unique in that it performs object recognition in a single 

pass (Redmon et al., 2016). This makes it significantly 

faster than other recognition models such as R-CNN 

and its variants (Srivastava et al., 2021). In this regard, 

the YOLO model family of deep learning networks has 

emerged as the most popular and effective open-code 

solution for various real-time computer vision tasks 

including object detection and categorization (Jiang et 

al., 2022). It's well-suited for applications such as video 

surveillance, self-driving cars, and augmented reality 

(Sukkar, Kumar & Sindha, 2021; Zaghari et al., 2021; 

Zhang et al., 2023). The YOLOv5 model, released in 
2020, achieved outstanding results on several 

benchmarks and has been widely accepted by the 

computer vision community (Jocher, 2020; Solawetz, 

2020; Jiang et al., 2022). More recently, the YOLOv6 

model was released in 2022 and has been proposed to 

further improve performance compared to its 

predecessor (Li et al., 2022). Given the advancements 

in both models, it is beneficial to conduct a thorough 

comparison between YOLOv5 and YOLOv6 to 

determine their respective strengths and weaknesses on 

a common dataset and in real-world applications. 

In our previous study, the authors investigated the 
performance of different YOLOv5 models (Horvat, 

Jelečević & Gledec, 2022). Through a comparative 

analysis using an everyday image dataset, the authors 

provided recommendations for selecting the most 

appropriate YOLOv5 model based on the specific 

problem type, helping researchers make informed 

decisions. The authors continued this line of research 

with a comparative analysis of the already accepted 

YOLOv5 and the newer YOLOv6 architecture. 

To evaluate the performance of the YOLOv5 and 

YOLOv6 models, experiments were performed on a 
subset of the COCO dataset (Lin et al., 2014). The 

performance of the models was evaluated based on 

several key metrics, including precision, recall, 

mAP0.5, and mAP0.5:0.95 metrics, as well as learning and 

processing time (Padilla et al., 2020). The analysis was 

facilitated by the open data storage and Graphical 

Processing Unit (GPU) hardware infrastructure 

provided by the online data science and machine 

learning platform Kaggle (Bojer & Meldgaard, 2021). 

In addition to the primary goal of comparing YOLOv5 

and v6 models, this research also aimed to demonstrate 
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the practicality of utilizing a modern, freely available 

cloud computing infrastructure for conducting realistic 

deep learning computer vision tasks. It demonstrates 

that high-quality research can be carried out without 

the need for expensive, dedicated hardware resources. 

The authors believe that evaluating YOLO models 

through openly accessible processing resources is 

crucial for researchers with access to limited resources. 

Advancements in computer vision methods may not be 

as beneficial for these practitioners, due to their 
inability to access high-end infrastructure and 

extensive image datasets for deep model training. 

Consequently, such users often resort to working with 

datasets containing only a few thousand images, which 

is not ideal for achieving optimal results. By resorting 

to open, cloud-based GPU infrastructure, these users 

can effectively overcome their computational and 

financial constraints for developing deep learning 

applications. This democratizes access to advanced 

machine learning techniques and promotes innovation 

and research. 
The remainder of the paper is organized as follows: 

Section 2 describes our experimental setup, starting 

with an overview of the COCO and COCO minitrain 

in Section 2.1, followed by Section 2.2, which provides 

a comprehensive explanation of the dataset sampled 

specifically for training of the YOLOv5 and YOLOv6 

models. The specific process of training these models 

is described in Section 2.3. Then, in Section 3, the 

results of our object classification experiments are 

presented. Section 3.1 discusses the processing time 

while Section 3.2 discusses the object recognition 

results for all classes. In addition, Section 3.3 focuses 
on the recognition results for just one class. Section 4 

provides a detailed discussion of the obtained results 

and provides recommendations for choosing the best 

model for a given application. Finally, Section 5 

concludes the paper, summarizes main findings, and 

provides outlook for further research. 

2 Experimental setup 

In this section the undertaken experimental approach is 

outlined which involves four primary steps: (i) the 

construction of the experimental dataset, (ii) the 

selection of YOLOv5 and v6 models for comparative 

analysis, (iii) the deployment of the selected models on 

a cloud-based platform, and finally, and (iv) the 
training of these models. 

When deciding on an optimal dataset for testing, it 

is crucial to consider the standards set by the published 

literature. In Deep Learning (DL) and Artificial Neural 

Networks (ANNs) research, it is common to use 

purpose-built and established datasets to benchmark 

the performance of the models. One commonly 

employed dataset for DL models in the field of 

computer vision, including YOLO, is the COCO 

(Common Objects in Context) (Lin et al., 2014). 

Experimental procedures in similar studies reported 

in the published literature usually require 256 or 300 

epochs, which necessitates the use of one or more 

dedicated GPUs. A prominent example of such 

hardware is the Nvidia P100 and V100 GPUs, which 

have been specifically designed for machine learning 

(ML) applications and DL ANN training (Markidis et 

al., 2018). 

It should be noted, however, that despite the 

availability of specialized hardware, the training 
process is anything but fast. Despite the simplicity of 

some models, the time required can still be 

considerable as investigated in this study. 

2.1 COCO and COCO minitrain  

The COCO dataset is a large-scale object detection, 

segmentation, and captioning dataset often used in 

computer vision research and applications (Lin et al., 

2014). It is specifically designed for object recognition, 

segmentation, and captioning in the context of scene 

understanding. The dataset contains over 200,000 

labeled images with over 1.5 million object instances 

and 80 object categories. The dataset is notable for its 

quality, diversity and complexity, with images 

featuring objects in a wide range of orientations, sizes, 
and contexts. 

COCO minitrain is a carefully curated training set 

derived from the much larger COCO train2017 dataset, 

containing 25,000 labeled images (~20% of train2017), 

~184,000 annotations and 80 object categories (Samet, 

Hicsonmez & Akbas, 2020). This smaller dataset, and 

the accompanying data processing software support, 

was developed to enable efficient hyperparameter 

tuning and reduce the computational cost associated 

with experiments in computer vision. Designed as a 

more compact alternative to the complete COCO 

dataset, the minitrain dataset allows researchers and 
engineering to optimize their models and perform 

initial tests in a time-saving manner without 

compromising the quality of their work. A sample of 

the COCO and COCO minitrain images are shown in 

Figure 1. 

Typically, smaller datasets may be useful for rapid 

prototyping as training models on smaller datasets can 

be much faster, which allows for more iterations and 

fine-tuning of the model and its hyperparameters. Also, 

large datasets require significant computational 

resources (CPU/GPU power, memory, storage space) 
that may not always be available, especially in low-

resource environments. More compact datasets are also 

used for model architecture debugging and 

performance checking before migrating to larger 

datasets or production environments. 

The COCO minitrain is a valuable resource for the 

computer vision community because it enables faster 

experimentation and model development while 

providing a representative sample of the larger COCO 

dataset. This important feature supports reproducibility 
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and simplifies validation of the obtained research by 

other teams. 

 

 
 

Figure 1. Examples of labeled and semantically 

segmented images in the COCO and COCO minitrain. 

 

The statistical distribution of object classes in the 

minitrain dataset closely mirrors those of the 

COCO2017 dataset, ensuring that the performance and 

behavior of models trained on the minitrain dataset 

generalize well to the entire dataset. To ensure the 
quality of sampling, labels within the COCO2017 

dataset are further divided into three size groups: S, M, 

and L, representing small, medium, and large object 

regions, respectively, as they appear in the images. The 

dimensions defining these size categories are defined 

by the specifications of the COCO metric (Lin et al., 

2014).  

To maintain a similar distribution, the minitrain 

images were randomly sampled from the full 

COCO2017 set while preserving the following three 

quantities as much as possible: 1) the proportion of 

object instances from each class, 2) the overall ratios 
of S, M, and L objects, and 3) the per-class ratios of S, 

M, and L objects.  

In the original COCO minitrain version, sampling 

was done by iterative random sampling while 

minimizing the fitness function – the discrepancy 

between the largest and smallest ratio of the number of 

tags in both the COCO2017 set and the sample. To 

increase the likelihood of detecting a sample whose 

distribution is very similar to the label distribution in 

the COCO2017 dataset, the penalty function was 

modified (Jelečević, 2023). The Kullback-Leibler 
divergence was used along with Laplace smoothing as 

a more effective measure of similarity between the 

distributions (Zhuang et al., 2015). This approach 

helped to ensure that the selected training sample 

accurately represents the general class distribution of 

the COCO2017 dataset. 

2.2 Dataset for YOLOv5 and YOLOv6 

models training 

The experimental dataset was generated using 

balanced sampling from the COCO train2017. The 

original dataset was sampled 200,000 times before 

generating a subset of 1,000 images with a total of 

7,587 labels that was used for model training. The 

sampling pseudocode for generating the training subset 

is given here: 

 
best_sample = none; 

for i in range(0, 200,000): 

 sample = rnd_select_sample(1000 images,  

  from COCO_train2017_dataset); 

 eval_score =  

  eval_sample_representation(sample, based 

  on label distribution); 

 if (best_sample = none or eval_score >  

   best_eval_score): 

  best_sample = sample; 

  best_eval_score = eval_score; 

 

And the actual Python code run to obtain the 

experimental dataset uses COCO minitrain libraries: 

 
!python sample_coco.py --coco_path 

"/kaggle/datasets/coco" --save_file_name 

"instances_train2017_minicoco_1k" --

save_format "json" --sample_image_count 

1000 --run_count 200000 --

allow_empty_sample_classes 

 
The statistical chi-square test was performed to 

verify the COCO train2017 dataset and the sampled 

subset had the same class distribution. The test resulted 

in a p-value p=4.2⋅10-17, well below the significance of 

α=0.05, This led to the acceptance of the null 

hypothesis, indicating a correlation between the 

distribution of the COCO train2017 dataset and the 

sampled subset. Therefore, the chi-square test 

confirmed that the COCO train2017 dataset and the 

sampled subset indeed have the same distribution.  

Also, the Pearson correlation between the 
population and the subset is r=0.9938, indicating a 

strong linear dependence between number of instances 

of all classes in the full COCO train2017 dataset and 

the sampled subset used for training. 

Figure 2 shows the distribution of the 30 most 

frequent classes in the sampled dataset and in the 

original COCO train2017 dataset. The 30 most 

common object categories and their IDs are: Person 

(1), Car (3), Chair (62), Book (84), Dining table (67), 

Bottle (44), Cup (47), Umbrella (28), Bowl (51), Carrot 

(57), Horse (19), Kite (38), Handbag (31), Banana (52), 
and Potted plant (64). Some classes are repeated in 

different image sizes (S, M, or L). 

2.3 YOLOv5 and YOLOv6 training 

process 

Each YOLO model was trained on the entire training 

subset stored on the online platform Kaggle using the 
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virtualized Nvidia P100 GPU available in the 

programming environment1. 

 

 

Figure 2. The distribution of the 30 most frequent 

classes in the COCO2017 and the experimental 

subsample. 

 

Three pairs of mutually equivalent models were 

chosen for the training process: YOLOv5s and 
YOLOv6-N, YOLOv5m6 and YOLOv6-M, as well as 

YOLOv5x and YOLOv6-M6. Each pair consists of one 

model from the YOLOv5 and one from the YOLOv6 

series. 

Each training session lasted for 300 epochs, 

meaning that the Kaggle early stopping feature was not 

activated, which would halt the training if no progress 

was made in the last 100 epochs. Early stopping is a 

form of regularization method used to prevent 

overfitting in an iterative training. Thanks to the early 

stopping feature, at least some learning took place 
across all the models during the initial 200 epochs. 

The scripts for training the YOLOv5 and YOLOv6 

models were run with the following parameters: 

 
!python train.py --data coco.yaml --epochs 

300 --weights '' --cache --cfg 

yolov5m6.yaml  --batch-size 16 

 

!python tools/train.py --img 640 --batch 16 

--epochs 300 --conf configs/yolov6n.py --

data data/coco.yaml 

 

Tables 1 and 2 show the training durations, 
indicated in hours (h) and minutes (m), as well as the 

training speeds, denoted in the number of parameters 

per second (N/s), for the selected S, M, and L pairs of 

YOLOv5 and YOLOv6 models. The better results are 

highlighted in green. 

 

Table 1. The duration of YOLO models training in 

hours and minutes 

 

 YOLOv5 YOLOv6 

 Model Duration Model Duration 

S YOLOv5s 05h 50m YOLOv6-N 07h 26m 

M YOLOv5m6 09h 12m YOLOv6-M 10h 21m 

L YOLOv5x 17h 20m YOLOv6-M6 11h 18m 

 

                                                
1 Kaggle, https://www.kaggle.com/ . 

Table 2. The speed of YOLO models training in 

parameters per second 

 

 YOLOv5 YOLOv6 

 Model N/s Model N/s 

S YOLOv5s 19.05 YOLOv6-N 9.76 

M YOLOv5m6 59.88 YOLOv6-M 52.04 

L YOLOv5x 76.57 YOLOv6-M6 108.71 

 
As expected, the more complex models require a 

longer training period. However, as can be seen in 

Table 2, complex models prove to be more efficient 

during training, effectively training more parameters in 

the same amount of time. Of all the models, YOLOv6-

M6 stands out as the most efficient in terms of training. 

3 Object classification results 

As already explained, for the comparative analysis and 

benchmarking of YOLOv5 and YOLOv6 models the 

COCO val2017 dataset was used which includes a total 

of 5,000 images. It should be emphasized that the 

sampled training dataset with 1,000 images is not a 

subset of COCO val2017 thus ensuring a 
comprehensive testing process. 

It should be noted that the experimental results 

were obtained without the use of Nvidia TensorRT, an 

SDK for high-performance inference runtime 

optimizer that delivers low latency and higher 

throughput for DL applications (Markidis et al., 2018; 

Shafi et al, 2021). However, the TensorRT SDK is 

commonly used in reference literature for YOLOv6 

benchmarking (Li et al., 2022). This SDK is available 

as an optional feature on the Kaggle platform and, as 

reported in the published literature, can improve 

processing speed by three times (Markidis et al., 2018; 
Shafi et al, 2021). 

Given the large number of image classes in the 

COCO2017 dataset, the relatively limited size of the 

evaluation dataset, and the significant proportion of the 

class “Person”, which accounts for one-third of all 

labels in the test subset, object classes detection results 

are presented separately in two parts: performance 

metrics calculated for all classes in the subset, and only 

to the “Person” class, in sections 3.2 and 3.3, 

respectively. This approach was chosen because of the 

unique characteristics and challenges presented by the 
size and class distribution of the evaluation subset. 

3.1 Processing time 

In the YOLO architecture, an input image goes through 
three different processing stages, each of which 

contributes significantly to the speed and accuracy of 

the output (Diwan, Anirudh & Tembhurne, 2023; Jiang 

et al., 2022). 
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Preprocessing is the first stage in which the input 

image is prepared for further processing. This includes 

resizing the image to the required dimensions, 

depending on the YOLO version, and normalizing the 

pixel values. During normalization, the pixel 

intensities are usually scaled to a range between 0 and 

1 or -1 and 1 so that the model converges faster during 

training. 

Inference is the core stage where the model makes 

predictions on the preprocessed image and the actual 
object recognition takes place. The preprocessed image 

is passed through the YOLO neural network, which 

outputs a three-dimensional tensor. This tensor 

contains the bounding box coordinates, class 

probabilities, and object scores for each grid cell in the 

image. 

Non-Maximum Suppression (NMS) is the final 

stage that refines the results of the inference phase and 

helps to reduce the number of overlapping detections. 

The YOLO model can predict multiple bounding boxes 

for the same object, and NMS helps eliminate 
redundancies. To do this, first all bounding boxes 

whose objectness score is below a certain threshold are 

discarded. Then, for the remaining boxes, the box with 

the highest score is selected and all other boxes with a 

high overlap – measured by the Intersection over 

Union (IoU) metric – with the selected box are 

eliminated. This process is repeated until all boxes 

have either been selected or discarded. In Table 3 the 

duration of preprocessing of all input images in the 

evaluation dataset on the Kaggle’s Nvidia P100 cloud 

infrastructure is shown in milliseconds [ms], separately 

for all three stages and in total. The best scores are 
highlighted in green. 

 

Table 3. Duration required for processing all input 

images utilizing the Nvidia P100 cloud infrastructure 

 

 
Preprocessing 

[ms] 

Inference 

[ms] 

NMS 

[ms] 

Total 

[ms] 

YOLOv5s 0.20 2.80 1.90 4.90 

YOLOv5m6 0.20 6.90 1.70 8.80 

YOLOv5x 0.20 18.10 1.90 20.20 

YOLOv6-N 0.12 1.57 18.40 20.09 

YOLOv6-M 0.12 7.96 28.16 36.24 

YOLOv6-M6 0.15 9.47 31.65 41.27 

 

From Table 3, it can be seen that the preprocessing 

times are relatively consistent across all models, 

ranging from 0.12 ms to 0.2 ms. However, there are 

significant differences in the inference times and the 

Non-Maximum Suppression (NMS) times. The 

YOLOv5s model has the shortest total processing time 

of 4.9 ms, which is primarily due to the low inference 
time of 2.8 ms. On the other hand, the YOLOv6-M6 

model has the longest total processing time of 41.27 

ms, with the NMS stage taking up a significant portion 

of this time (31.65 ms). 

Figure 3 shows the expected approximate number 

of frames per second (FPS) for each model. The 

YOLOv5s model outperforms all others with 204 FPS 

score, which is consistent with its shortest total 

processing time in Table 3. This is a very significant 

difference that results in the YOLOv5x processing 

video signals at twice as many frames per second as the 

YOLOv6-M6 model with the same complexity. 

However, the YOLOv6-M6 model still achieves 24 

FPS despite its longer processing time which is 

marginally enough for real-time applications. 

 

Figure 3. Approximate number of frames per second 

(FPS) for each model achieved on the Nvidia P100 

cloud infrastructure 

3.2 All class detection results 

Table 4 shows precision, recall, mAP0.5, and mAP0.5:0.95 

results for object detection of all COCO2017 classes in 

the evaluation dataset. The best results are again 

highlighted green.  

 

Table 4. Object detection results for all COCO2017 

classes in the evaluation dataset 

 

 Precision Recall mAP0.5 mAP0.5:0.95 

YOLOv5s 21.9 10.8 7.79 3.48 

YOLOv5m6 24.8 12.7 9.28 4.52 

YOLOv5x 22.1 12.5 9.10 4.59 

YOLOv6-N 14.6 17.0 6.74 3.47 

YOLOv6-M 15.9 20.0 8.51 4.81 

YOLOv6-M6 15.2 20.0 8.14 4.59 

 

From Table 4 it can be observed that the 

YOLOv5m6 model has the highest precision, 

indicating that it has the highest accuracy in detecting 

objects among all models. However, the YOLOv6-M 

and YOLOv6-M6 models have the highest recall, 

suggesting they are the most capable of identifying all 

relevant instances. In terms of mAP0.5, the YOLOv5m6 

and YOLOv5x models perform comparably well, with 

scores of 9.28 and 9.10 respectively. However, the 

YOLOv6-M model outperforms all others in the 
mAP0.5:0.95 metric with a score of 4.81, indicating its 

superior performance across a range of IoU thresholds. 

Figure 4 presents a comprehensive analysis of the 

relationships concerning the detection of all classes 

within the evaluation dataset. The top diagram in 

Figure 4 shows the relationship between mAP50:95 and 
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the number of model parameters. This relationship is 

significant because it provides insight into how the 

complexity of the model, indicated by the number of 

parameters, influences its precision performance. The 

bottom diagram illustrates the correlation concerning 

mAP50:95 and the duration of image processing. This 

correlation is crucial because it shows the balance 

between the precision of the model and the processing 

speed. Essentially, it provides an understanding of how 

fast the model can process images without 

compromising its precision. 

 

 

Figure 4. Relationships between mAP50:95 and the 

number of model parameters (top), and mAP50:95 and 

the duration of image processing (bottom) for 

detection of all classes 

3.3 One class detection results 

Table 5 presents object detection results only of 

“Person” class in the evaluation dataset. 
 

Table 5. Object detection results only for class 

“Person” in the evaluation dataset 

 

 Precision Recall AP0.5 AP0.5:0.95 

YOLOv5s 39.6 45.4 39.8 16.9 

YOLOv5m6 42.6 48.3 44.2 20.4 

YOLOv5x 45.1 47.7 43.1 20.7 

YOLOv6-N 54.6 41.0 41.9 19.7 

YOLOv6-M 60.3 46.0 49.1 25.2 

YOLOv6-M6 62.7 44.0 48.1 24.6 

 

Figure 5 shows relationships between mAP50:95 and 

the number of model parameters, and mAP50:95 and the 

duration of image processing in the top and bottom 

diagrams, respectively, for object detection of only one 

class “Person” in the evaluation dataset. 

 

 

Figure 5. Relationships between mAP50:95 and the 

number of model parameters (top), and mAP50:95 and 

the duration of image processing (bottom) for 

detection of only one class “Person” 

 

Based on the detection results for the "Person" class 

alone, the YOLOv6-M model outperforms others, 

irrespective of whether the evaluation is based on the 
constant Jaccard index metric (AP0.5) or the metric that 

considers a range of index values (AP0.5:0.95). This 

indicates that the YOLOv5 model is better at handling 

unbalanced labels, while the YOLOv6 performs better 

in object localization.  

An important difference compared to the results for 

detection of all classes (in Section 3.2) is the 

significantly stronger correlation between the time 

required for image processing and the number of 

parameters in both the YOLOv5 and YOLOv6 models. 

This suggests that the computational efficiency of the 

YOLOv5 and YOLOv6 models is significantly 
positively affected by the number of parameters used, 

due to the complexity introduced by a larger parameter 

space. The increased time requirement could 

potentially impact the real-time capability of the 

models. Consequently, optimizing the number of 

parameters can significantly improve the processing 

time and overall performance of these models without 

sacrificing object detection accuracy. 

4 Discussion  

It is tempting to believe that a more recent deep 

learning architecture is always the preferable choice for 
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any research or software platform, but selecting the 

optimal data processing model is more delicate than 

that. To make an informed and correct decision, it is 

necessary to consider three crucial factors: 1) the 

YOLO model intended function, 2) available 

hardware, and 3) training time limits. 

When using a pretrained model for image 

processing and processing time is not an issue, opting 

for the most complex model with the highest possible 

accuracy is a viable option. However, for real-time 
video signal processing involving localization and 

classification with multiple labels, the YOLOv5m6 

model is recommended because it demonstrates a 

favorable speed-accuracy ratio. If the task is less 

demanding with fewer labels and the focus is on 

localization, the YOLOv6-M6 model is a more suitable 

alternative.  

On the other hand, in scenarios where training time 

is limited, the YOLOv6 network is a better choice 

compared to the marginally slower YOLOv5, 

especially when working with multi-class models. 
YOLOv6, with its more advanced architecture, is 

designed to efficiently process complex object 

detection tasks, offering a balance between speed and 

accuracy. 

Although this paper provides initial guidelines for 

choosing a suitable YOLOv5 or YOLOv6 model, it is 

advisable for researchers to adapt their selection to 

their specific requirements and use-cases. This can be 

achieved by consecutively testing different YOLO 

models on a subset of their data and evaluating the 

performance on the intended hardware after 

deployment. By conducting such iterative 
experimental assessments on a limited dataset, 

researchers can gather the necessary insights to make 

an informed decision about the most suitable YOLO 

model for their specific needs. 

5 Conclusion 

The YOLO framework deployed in cloud environment 

provides an out-of-the-box solution that offers great 

benefits to engineers and researchers who may lack 

extensive experience in computer vision algorithms 

and access to high-end processing infrastructure. 

However, to improve the efficiency of object 

recognition without delving into optimization of deep 

learning and machine learning algorithms, it would be 
recommended to improve the understanding of the 

scene. One possible method to improve classification 

performance is to neglect redundant image sections and 

focus exclusively on authentic regions of interest 

before integrating the image into the YOLO workflow. 

The use of knowledge graphs and ontologies, together 

with automated reasoning services such as expert 

systems is strongly recommended to obtain a truly 

semantically rich scene description. These methods 

facilitate a comprehensive understanding of the 

semantic regions detected in the image and their 

conceptual relationships (Horvat, Grbin & Gledec, 

2013a; Horvat, Grbin & Gledec, 2013b). 

In conclusion, the choice of a DL architecture such 

as YOLOv5 or YOLOv6 depends on several factors, 

including the intended function, available hardware, 

and time constraints for training. For image processing 

tasks where time is not an issue, more complex models 

with high accuracy can be used. For real-time video 

processing requiring classification and localization 

with multiple labels, YOLOv5m6 is recommended due 
to its optimal speed-to-accuracy ratio. For tasks with 

fewer labels where localization is the primary concern, 

YOLOv6-M6 is recommended. When training time is 

limited, YOLOv6 outperforms the slightly slower 

YOLOv5, especially for multiclass models, by 

providing a balance between speed and accuracy. 

Despite these guidelines, it is recommended that 

researchers tailor their selection to specific needs by 

testing different YOLO models on a subset of data and 

evaluating performance on the intended hardware after 

deployment. This iterative testing allows for informed 
decisions about the most appropriate YOLO model for 

their unique requirements. 
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