
Comparative Analysis of YOLOv5 and YOLOv6 Models

Performance for Object Classification on Open

Infrastructure: Insights and Recommendations

Marko Horvat, Ljudevit Jelečević, Gordan Gledec

University of Zagreb

Faculty of Electrical Engineering and Computing

Department of Applied Computing

Unska 3, HR-10000 Zagreb, Croatia

{marko.horvat3, ljudevit.jelecevic, gordan.gledec}@fer.hr

Abstract. In this paper, the performance of YOLOv5

and YOLOv6 models is evaluated on standardized

object classification tasks using Kaggle open-access

cloud processing infrastructure. The performance of

these architectures is evaluated on a balanced subset

of COCO dataset considering precision, recall,

mAP0.5, and mAP0.5:0.95 metrics, learning and
processing time. Our results indicate that the choice of

the optimal model in the rapidly evolving field of

computer vision and machine learning is heavily

influenced by the dataset size, complexity, and

restrictions imposed by the data processing platform.

It is not always advisable to select the most recent

algorithm for all applications. The obtained results,

program code and the implemented architectures are

available for non-commercial use at:

https://github.com/mhorvat/yolov5_yolov6_compariso

n

Keywords. computer vision, image classification,

deep learning, algorithm evaluation, performance

comparison, YOLO

1 Introduction

Identifying and categorizing objects in an image or

video stream is a fundamental task in computer vision

(Guo et al., 2022; Mohan et al., 2023). Recently, there

has been significant research interest in advancing and

refinement of deep neural network models for object

classification tasks in different domains because of

their superior performance compared to previous
methods, as per example in medicine (Boaro et al.,

2022). The You Only Look Once (YOLO) model is

unique in that it performs object recognition in a single

pass (Redmon et al., 2016). This makes it significantly

faster than other recognition models such as R-CNN

and its variants (Srivastava et al., 2021). In this regard,

the YOLO model family of deep learning networks has

emerged as the most popular and effective open-code

solution for various real-time computer vision tasks

including object detection and categorization (Jiang et

al., 2022). It's well-suited for applications such as video

surveillance, self-driving cars, and augmented reality

(Sukkar, Kumar & Sindha, 2021; Zaghari et al., 2021;

Zhang et al., 2023). The YOLOv5 model, released in
2020, achieved outstanding results on several

benchmarks and has been widely accepted by the

computer vision community (Jocher, 2020; Solawetz,

2020; Jiang et al., 2022). More recently, the YOLOv6

model was released in 2022 and has been proposed to

further improve performance compared to its

predecessor (Li et al., 2022). Given the advancements

in both models, it is beneficial to conduct a thorough

comparison between YOLOv5 and YOLOv6 to

determine their respective strengths and weaknesses on

a common dataset and in real-world applications.

In our previous study, the authors investigated the
performance of different YOLOv5 models (Horvat,

Jelečević & Gledec, 2022). Through a comparative

analysis using an everyday image dataset, the authors

provided recommendations for selecting the most

appropriate YOLOv5 model based on the specific

problem type, helping researchers make informed

decisions. The authors continued this line of research

with a comparative analysis of the already accepted

YOLOv5 and the newer YOLOv6 architecture.

To evaluate the performance of the YOLOv5 and

YOLOv6 models, experiments were performed on a
subset of the COCO dataset (Lin et al., 2014). The

performance of the models was evaluated based on

several key metrics, including precision, recall,

mAP0.5, and mAP0.5:0.95 metrics, as well as learning and

processing time (Padilla et al., 2020). The analysis was

facilitated by the open data storage and Graphical

Processing Unit (GPU) hardware infrastructure

provided by the online data science and machine

learning platform Kaggle (Bojer & Meldgaard, 2021).

In addition to the primary goal of comparing YOLOv5

and v6 models, this research also aimed to demonstrate

Proceedings of the Central European Conference on Information and Intelligent Systems___317

34th CECIIS, September 20-22, 2023

Dubrovnik, Croatia

the practicality of utilizing a modern, freely available

cloud computing infrastructure for conducting realistic

deep learning computer vision tasks. It demonstrates

that high-quality research can be carried out without

the need for expensive, dedicated hardware resources.

The authors believe that evaluating YOLO models

through openly accessible processing resources is

crucial for researchers with access to limited resources.

Advancements in computer vision methods may not be

as beneficial for these practitioners, due to their
inability to access high-end infrastructure and

extensive image datasets for deep model training.

Consequently, such users often resort to working with

datasets containing only a few thousand images, which

is not ideal for achieving optimal results. By resorting

to open, cloud-based GPU infrastructure, these users

can effectively overcome their computational and

financial constraints for developing deep learning

applications. This democratizes access to advanced

machine learning techniques and promotes innovation

and research.
The remainder of the paper is organized as follows:

Section 2 describes our experimental setup, starting

with an overview of the COCO and COCO minitrain

in Section 2.1, followed by Section 2.2, which provides

a comprehensive explanation of the dataset sampled

specifically for training of the YOLOv5 and YOLOv6

models. The specific process of training these models

is described in Section 2.3. Then, in Section 3, the

results of our object classification experiments are

presented. Section 3.1 discusses the processing time

while Section 3.2 discusses the object recognition

results for all classes. In addition, Section 3.3 focuses
on the recognition results for just one class. Section 4

provides a detailed discussion of the obtained results

and provides recommendations for choosing the best

model for a given application. Finally, Section 5

concludes the paper, summarizes main findings, and

provides outlook for further research.

2 Experimental setup

In this section the undertaken experimental approach is

outlined which involves four primary steps: (i) the

construction of the experimental dataset, (ii) the

selection of YOLOv5 and v6 models for comparative

analysis, (iii) the deployment of the selected models on

a cloud-based platform, and finally, and (iv) the
training of these models.

When deciding on an optimal dataset for testing, it

is crucial to consider the standards set by the published

literature. In Deep Learning (DL) and Artificial Neural

Networks (ANNs) research, it is common to use

purpose-built and established datasets to benchmark

the performance of the models. One commonly

employed dataset for DL models in the field of

computer vision, including YOLO, is the COCO

(Common Objects in Context) (Lin et al., 2014).

Experimental procedures in similar studies reported

in the published literature usually require 256 or 300

epochs, which necessitates the use of one or more

dedicated GPUs. A prominent example of such

hardware is the Nvidia P100 and V100 GPUs, which

have been specifically designed for machine learning

(ML) applications and DL ANN training (Markidis et

al., 2018).

It should be noted, however, that despite the

availability of specialized hardware, the training
process is anything but fast. Despite the simplicity of

some models, the time required can still be

considerable as investigated in this study.

2.1 COCO and COCO minitrain

The COCO dataset is a large-scale object detection,

segmentation, and captioning dataset often used in

computer vision research and applications (Lin et al.,

2014). It is specifically designed for object recognition,

segmentation, and captioning in the context of scene

understanding. The dataset contains over 200,000

labeled images with over 1.5 million object instances

and 80 object categories. The dataset is notable for its

quality, diversity and complexity, with images

featuring objects in a wide range of orientations, sizes,
and contexts.

COCO minitrain is a carefully curated training set

derived from the much larger COCO train2017 dataset,

containing 25,000 labeled images (~20% of train2017),

~184,000 annotations and 80 object categories (Samet,

Hicsonmez & Akbas, 2020). This smaller dataset, and

the accompanying data processing software support,

was developed to enable efficient hyperparameter

tuning and reduce the computational cost associated

with experiments in computer vision. Designed as a

more compact alternative to the complete COCO

dataset, the minitrain dataset allows researchers and
engineering to optimize their models and perform

initial tests in a time-saving manner without

compromising the quality of their work. A sample of

the COCO and COCO minitrain images are shown in

Figure 1.

Typically, smaller datasets may be useful for rapid

prototyping as training models on smaller datasets can

be much faster, which allows for more iterations and

fine-tuning of the model and its hyperparameters. Also,

large datasets require significant computational

resources (CPU/GPU power, memory, storage space)
that may not always be available, especially in low-

resource environments. More compact datasets are also

used for model architecture debugging and

performance checking before migrating to larger

datasets or production environments.

The COCO minitrain is a valuable resource for the

computer vision community because it enables faster

experimentation and model development while

providing a representative sample of the larger COCO

dataset. This important feature supports reproducibility

318___Proceedings of the Central European Conference on Information and Intelligent Systems

34th CECIIS, September 20-22, 2023

Dubrovnik, Croatia

and simplifies validation of the obtained research by

other teams.

Figure 1. Examples of labeled and semantically

segmented images in the COCO and COCO minitrain.

The statistical distribution of object classes in the

minitrain dataset closely mirrors those of the

COCO2017 dataset, ensuring that the performance and

behavior of models trained on the minitrain dataset

generalize well to the entire dataset. To ensure the
quality of sampling, labels within the COCO2017

dataset are further divided into three size groups: S, M,

and L, representing small, medium, and large object

regions, respectively, as they appear in the images. The

dimensions defining these size categories are defined

by the specifications of the COCO metric (Lin et al.,

2014).

To maintain a similar distribution, the minitrain

images were randomly sampled from the full

COCO2017 set while preserving the following three

quantities as much as possible: 1) the proportion of

object instances from each class, 2) the overall ratios
of S, M, and L objects, and 3) the per-class ratios of S,

M, and L objects.

In the original COCO minitrain version, sampling

was done by iterative random sampling while

minimizing the fitness function – the discrepancy

between the largest and smallest ratio of the number of

tags in both the COCO2017 set and the sample. To

increase the likelihood of detecting a sample whose

distribution is very similar to the label distribution in

the COCO2017 dataset, the penalty function was

modified (Jelečević, 2023). The Kullback-Leibler
divergence was used along with Laplace smoothing as

a more effective measure of similarity between the

distributions (Zhuang et al., 2015). This approach

helped to ensure that the selected training sample

accurately represents the general class distribution of

the COCO2017 dataset.

2.2 Dataset for YOLOv5 and YOLOv6

models training

The experimental dataset was generated using

balanced sampling from the COCO train2017. The

original dataset was sampled 200,000 times before

generating a subset of 1,000 images with a total of

7,587 labels that was used for model training. The

sampling pseudocode for generating the training subset

is given here:

best_sample = none;

for i in range(0, 200,000):

 sample = rnd_select_sample(1000 images,

 from COCO_train2017_dataset);

 eval_score =

 eval_sample_representation(sample, based

 on label distribution);

 if (best_sample = none or eval_score >

 best_eval_score):

 best_sample = sample;

 best_eval_score = eval_score;

And the actual Python code run to obtain the

experimental dataset uses COCO minitrain libraries:

!python sample_coco.py --coco_path

"/kaggle/datasets/coco" --save_file_name

"instances_train2017_minicoco_1k" --

save_format "json" --sample_image_count

1000 --run_count 200000 --

allow_empty_sample_classes

The statistical chi-square test was performed to

verify the COCO train2017 dataset and the sampled

subset had the same class distribution. The test resulted

in a p-value p=4.2⋅10-17, well below the significance of

α=0.05, This led to the acceptance of the null

hypothesis, indicating a correlation between the

distribution of the COCO train2017 dataset and the

sampled subset. Therefore, the chi-square test

confirmed that the COCO train2017 dataset and the

sampled subset indeed have the same distribution.

Also, the Pearson correlation between the
population and the subset is r=0.9938, indicating a

strong linear dependence between number of instances

of all classes in the full COCO train2017 dataset and

the sampled subset used for training.

Figure 2 shows the distribution of the 30 most

frequent classes in the sampled dataset and in the

original COCO train2017 dataset. The 30 most

common object categories and their IDs are: Person

(1), Car (3), Chair (62), Book (84), Dining table (67),

Bottle (44), Cup (47), Umbrella (28), Bowl (51), Carrot

(57), Horse (19), Kite (38), Handbag (31), Banana (52),
and Potted plant (64). Some classes are repeated in

different image sizes (S, M, or L).

2.3 YOLOv5 and YOLOv6 training

process

Each YOLO model was trained on the entire training

subset stored on the online platform Kaggle using the

Proceedings of the Central European Conference on Information and Intelligent Systems___319

34th CECIIS, September 20-22, 2023

Dubrovnik, Croatia

virtualized Nvidia P100 GPU available in the

programming environment1.

Figure 2. The distribution of the 30 most frequent

classes in the COCO2017 and the experimental

subsample.

Three pairs of mutually equivalent models were

chosen for the training process: YOLOv5s and
YOLOv6-N, YOLOv5m6 and YOLOv6-M, as well as

YOLOv5x and YOLOv6-M6. Each pair consists of one

model from the YOLOv5 and one from the YOLOv6

series.

Each training session lasted for 300 epochs,

meaning that the Kaggle early stopping feature was not

activated, which would halt the training if no progress

was made in the last 100 epochs. Early stopping is a

form of regularization method used to prevent

overfitting in an iterative training. Thanks to the early

stopping feature, at least some learning took place
across all the models during the initial 200 epochs.

The scripts for training the YOLOv5 and YOLOv6

models were run with the following parameters:

!python train.py --data coco.yaml --epochs

300 --weights '' --cache --cfg

yolov5m6.yaml --batch-size 16

!python tools/train.py --img 640 --batch 16

--epochs 300 --conf configs/yolov6n.py --

data data/coco.yaml

Tables 1 and 2 show the training durations,
indicated in hours (h) and minutes (m), as well as the

training speeds, denoted in the number of parameters

per second (N/s), for the selected S, M, and L pairs of

YOLOv5 and YOLOv6 models. The better results are

highlighted in green.

Table 1. The duration of YOLO models training in

hours and minutes

 YOLOv5 YOLOv6

 Model Duration Model Duration

S YOLOv5s 05h 50m YOLOv6-N 07h 26m

M YOLOv5m6 09h 12m YOLOv6-M 10h 21m

L YOLOv5x 17h 20m YOLOv6-M6 11h 18m

1 Kaggle, https://www.kaggle.com/ .

Table 2. The speed of YOLO models training in

parameters per second

 YOLOv5 YOLOv6

 Model N/s Model N/s

S YOLOv5s 19.05 YOLOv6-N 9.76

M YOLOv5m6 59.88 YOLOv6-M 52.04

L YOLOv5x 76.57 YOLOv6-M6 108.71

As expected, the more complex models require a

longer training period. However, as can be seen in

Table 2, complex models prove to be more efficient

during training, effectively training more parameters in

the same amount of time. Of all the models, YOLOv6-

M6 stands out as the most efficient in terms of training.

3 Object classification results

As already explained, for the comparative analysis and

benchmarking of YOLOv5 and YOLOv6 models the

COCO val2017 dataset was used which includes a total

of 5,000 images. It should be emphasized that the

sampled training dataset with 1,000 images is not a

subset of COCO val2017 thus ensuring a
comprehensive testing process.

It should be noted that the experimental results

were obtained without the use of Nvidia TensorRT, an

SDK for high-performance inference runtime

optimizer that delivers low latency and higher

throughput for DL applications (Markidis et al., 2018;

Shafi et al, 2021). However, the TensorRT SDK is

commonly used in reference literature for YOLOv6

benchmarking (Li et al., 2022). This SDK is available

as an optional feature on the Kaggle platform and, as

reported in the published literature, can improve

processing speed by three times (Markidis et al., 2018;
Shafi et al, 2021).

Given the large number of image classes in the

COCO2017 dataset, the relatively limited size of the

evaluation dataset, and the significant proportion of the

class “Person”, which accounts for one-third of all

labels in the test subset, object classes detection results

are presented separately in two parts: performance

metrics calculated for all classes in the subset, and only

to the “Person” class, in sections 3.2 and 3.3,

respectively. This approach was chosen because of the

unique characteristics and challenges presented by the
size and class distribution of the evaluation subset.

3.1 Processing time

In the YOLO architecture, an input image goes through
three different processing stages, each of which

contributes significantly to the speed and accuracy of

the output (Diwan, Anirudh & Tembhurne, 2023; Jiang

et al., 2022).

320___Proceedings of the Central European Conference on Information and Intelligent Systems

34th CECIIS, September 20-22, 2023

Dubrovnik, Croatia

Preprocessing is the first stage in which the input

image is prepared for further processing. This includes

resizing the image to the required dimensions,

depending on the YOLO version, and normalizing the

pixel values. During normalization, the pixel

intensities are usually scaled to a range between 0 and

1 or -1 and 1 so that the model converges faster during

training.

Inference is the core stage where the model makes

predictions on the preprocessed image and the actual
object recognition takes place. The preprocessed image

is passed through the YOLO neural network, which

outputs a three-dimensional tensor. This tensor

contains the bounding box coordinates, class

probabilities, and object scores for each grid cell in the

image.

Non-Maximum Suppression (NMS) is the final

stage that refines the results of the inference phase and

helps to reduce the number of overlapping detections.

The YOLO model can predict multiple bounding boxes

for the same object, and NMS helps eliminate
redundancies. To do this, first all bounding boxes

whose objectness score is below a certain threshold are

discarded. Then, for the remaining boxes, the box with

the highest score is selected and all other boxes with a

high overlap – measured by the Intersection over

Union (IoU) metric – with the selected box are

eliminated. This process is repeated until all boxes

have either been selected or discarded. In Table 3 the

duration of preprocessing of all input images in the

evaluation dataset on the Kaggle’s Nvidia P100 cloud

infrastructure is shown in milliseconds [ms], separately

for all three stages and in total. The best scores are
highlighted in green.

Table 3. Duration required for processing all input

images utilizing the Nvidia P100 cloud infrastructure

Preprocessing

[ms]

Inference

[ms]

NMS

[ms]

Total

[ms]

YOLOv5s 0.20 2.80 1.90 4.90

YOLOv5m6 0.20 6.90 1.70 8.80

YOLOv5x 0.20 18.10 1.90 20.20

YOLOv6-N 0.12 1.57 18.40 20.09

YOLOv6-M 0.12 7.96 28.16 36.24

YOLOv6-M6 0.15 9.47 31.65 41.27

From Table 3, it can be seen that the preprocessing

times are relatively consistent across all models,

ranging from 0.12 ms to 0.2 ms. However, there are

significant differences in the inference times and the

Non-Maximum Suppression (NMS) times. The

YOLOv5s model has the shortest total processing time

of 4.9 ms, which is primarily due to the low inference
time of 2.8 ms. On the other hand, the YOLOv6-M6

model has the longest total processing time of 41.27

ms, with the NMS stage taking up a significant portion

of this time (31.65 ms).

Figure 3 shows the expected approximate number

of frames per second (FPS) for each model. The

YOLOv5s model outperforms all others with 204 FPS

score, which is consistent with its shortest total

processing time in Table 3. This is a very significant

difference that results in the YOLOv5x processing

video signals at twice as many frames per second as the

YOLOv6-M6 model with the same complexity.

However, the YOLOv6-M6 model still achieves 24

FPS despite its longer processing time which is

marginally enough for real-time applications.

Figure 3. Approximate number of frames per second

(FPS) for each model achieved on the Nvidia P100

cloud infrastructure

3.2 All class detection results

Table 4 shows precision, recall, mAP0.5, and mAP0.5:0.95

results for object detection of all COCO2017 classes in

the evaluation dataset. The best results are again

highlighted green.

Table 4. Object detection results for all COCO2017

classes in the evaluation dataset

 Precision Recall mAP0.5 mAP0.5:0.95

YOLOv5s 21.9 10.8 7.79 3.48

YOLOv5m6 24.8 12.7 9.28 4.52

YOLOv5x 22.1 12.5 9.10 4.59

YOLOv6-N 14.6 17.0 6.74 3.47

YOLOv6-M 15.9 20.0 8.51 4.81

YOLOv6-M6 15.2 20.0 8.14 4.59

From Table 4 it can be observed that the

YOLOv5m6 model has the highest precision,

indicating that it has the highest accuracy in detecting

objects among all models. However, the YOLOv6-M

and YOLOv6-M6 models have the highest recall,

suggesting they are the most capable of identifying all

relevant instances. In terms of mAP0.5, the YOLOv5m6

and YOLOv5x models perform comparably well, with

scores of 9.28 and 9.10 respectively. However, the

YOLOv6-M model outperforms all others in the
mAP0.5:0.95 metric with a score of 4.81, indicating its

superior performance across a range of IoU thresholds.

Figure 4 presents a comprehensive analysis of the

relationships concerning the detection of all classes

within the evaluation dataset. The top diagram in

Figure 4 shows the relationship between mAP50:95 and

Proceedings of the Central European Conference on Information and Intelligent Systems___321

34th CECIIS, September 20-22, 2023

Dubrovnik, Croatia

the number of model parameters. This relationship is

significant because it provides insight into how the

complexity of the model, indicated by the number of

parameters, influences its precision performance. The

bottom diagram illustrates the correlation concerning

mAP50:95 and the duration of image processing. This

correlation is crucial because it shows the balance

between the precision of the model and the processing

speed. Essentially, it provides an understanding of how

fast the model can process images without

compromising its precision.

Figure 4. Relationships between mAP50:95 and the

number of model parameters (top), and mAP50:95 and

the duration of image processing (bottom) for

detection of all classes

3.3 One class detection results

Table 5 presents object detection results only of

“Person” class in the evaluation dataset.

Table 5. Object detection results only for class

“Person” in the evaluation dataset

 Precision Recall AP0.5 AP0.5:0.95

YOLOv5s 39.6 45.4 39.8 16.9

YOLOv5m6 42.6 48.3 44.2 20.4

YOLOv5x 45.1 47.7 43.1 20.7

YOLOv6-N 54.6 41.0 41.9 19.7

YOLOv6-M 60.3 46.0 49.1 25.2

YOLOv6-M6 62.7 44.0 48.1 24.6

Figure 5 shows relationships between mAP50:95 and

the number of model parameters, and mAP50:95 and the

duration of image processing in the top and bottom

diagrams, respectively, for object detection of only one

class “Person” in the evaluation dataset.

Figure 5. Relationships between mAP50:95 and the

number of model parameters (top), and mAP50:95 and

the duration of image processing (bottom) for

detection of only one class “Person”

Based on the detection results for the "Person" class

alone, the YOLOv6-M model outperforms others,

irrespective of whether the evaluation is based on the
constant Jaccard index metric (AP0.5) or the metric that

considers a range of index values (AP0.5:0.95). This

indicates that the YOLOv5 model is better at handling

unbalanced labels, while the YOLOv6 performs better

in object localization.

An important difference compared to the results for

detection of all classes (in Section 3.2) is the

significantly stronger correlation between the time

required for image processing and the number of

parameters in both the YOLOv5 and YOLOv6 models.

This suggests that the computational efficiency of the

YOLOv5 and YOLOv6 models is significantly
positively affected by the number of parameters used,

due to the complexity introduced by a larger parameter

space. The increased time requirement could

potentially impact the real-time capability of the

models. Consequently, optimizing the number of

parameters can significantly improve the processing

time and overall performance of these models without

sacrificing object detection accuracy.

4 Discussion

It is tempting to believe that a more recent deep

learning architecture is always the preferable choice for

322___Proceedings of the Central European Conference on Information and Intelligent Systems

34th CECIIS, September 20-22, 2023

Dubrovnik, Croatia

any research or software platform, but selecting the

optimal data processing model is more delicate than

that. To make an informed and correct decision, it is

necessary to consider three crucial factors: 1) the

YOLO model intended function, 2) available

hardware, and 3) training time limits.

When using a pretrained model for image

processing and processing time is not an issue, opting

for the most complex model with the highest possible

accuracy is a viable option. However, for real-time
video signal processing involving localization and

classification with multiple labels, the YOLOv5m6

model is recommended because it demonstrates a

favorable speed-accuracy ratio. If the task is less

demanding with fewer labels and the focus is on

localization, the YOLOv6-M6 model is a more suitable

alternative.

On the other hand, in scenarios where training time

is limited, the YOLOv6 network is a better choice

compared to the marginally slower YOLOv5,

especially when working with multi-class models.
YOLOv6, with its more advanced architecture, is

designed to efficiently process complex object

detection tasks, offering a balance between speed and

accuracy.

Although this paper provides initial guidelines for

choosing a suitable YOLOv5 or YOLOv6 model, it is

advisable for researchers to adapt their selection to

their specific requirements and use-cases. This can be

achieved by consecutively testing different YOLO

models on a subset of their data and evaluating the

performance on the intended hardware after

deployment. By conducting such iterative
experimental assessments on a limited dataset,

researchers can gather the necessary insights to make

an informed decision about the most suitable YOLO

model for their specific needs.

5 Conclusion

The YOLO framework deployed in cloud environment

provides an out-of-the-box solution that offers great

benefits to engineers and researchers who may lack

extensive experience in computer vision algorithms

and access to high-end processing infrastructure.

However, to improve the efficiency of object

recognition without delving into optimization of deep

learning and machine learning algorithms, it would be
recommended to improve the understanding of the

scene. One possible method to improve classification

performance is to neglect redundant image sections and

focus exclusively on authentic regions of interest

before integrating the image into the YOLO workflow.

The use of knowledge graphs and ontologies, together

with automated reasoning services such as expert

systems is strongly recommended to obtain a truly

semantically rich scene description. These methods

facilitate a comprehensive understanding of the

semantic regions detected in the image and their

conceptual relationships (Horvat, Grbin & Gledec,

2013a; Horvat, Grbin & Gledec, 2013b).

In conclusion, the choice of a DL architecture such

as YOLOv5 or YOLOv6 depends on several factors,

including the intended function, available hardware,

and time constraints for training. For image processing

tasks where time is not an issue, more complex models

with high accuracy can be used. For real-time video

processing requiring classification and localization

with multiple labels, YOLOv5m6 is recommended due
to its optimal speed-to-accuracy ratio. For tasks with

fewer labels where localization is the primary concern,

YOLOv6-M6 is recommended. When training time is

limited, YOLOv6 outperforms the slightly slower

YOLOv5, especially for multiclass models, by

providing a balance between speed and accuracy.

Despite these guidelines, it is recommended that

researchers tailor their selection to specific needs by

testing different YOLO models on a subset of data and

evaluating performance on the intended hardware after

deployment. This iterative testing allows for informed
decisions about the most appropriate YOLO model for

their unique requirements.

References

Boaro, A., Kaczmarzyk, J. R., Kavouridis, V. K.,

Harary, M., Mammi, M., Dawood, H., Shea, A.,

Cho, E. Y., Juvekar, P., Noh, T., Rana, A., Ghosh,

S., & Arnaout, O. (2022). Deep neural networks

allow expert-level brain meningioma segmentation

and present potential for improvement of clinical

practice. Scientific Reports, 12(1), 1–3.

https://doi.org/10.1038/s41598-022-19356-5

Bojer, C. S., & Meldgaard, J. P. (2021). Kaggle

forecasting competitions: An overlooked learning

opportunity. International Journal of
Forecasting, 37(2), 587-603.

https://doi.org/10.1016/j.ijforecast.2020.07.007

Diwan, T., Anirudh, G., & Tembhurne, J. V. (2023).

Object detection using YOLO: Challenges,

architectural successors, datasets and

applications. Multimedia Tools and

Applications, 82(6), 9243-9275.

https://doi.org/10.1007/s11042-022-13644-y

Guo, M. H., Xu, T. X., Liu, J. J., Liu, Z. N., Jiang, P.

T., Mu, T. J., Zhang, S. H., Martin, R. R., Cheng,

M. M., & Hu, S. M. (2022). Attention mechanisms
in computer vision: A survey. Computational

Visual Media, 8(3), 331–368.

https://doi.org/10.1007/s41095-022-0271-y

Horvat, M., Grbin, A., & Gledec, G. (2013). WNtags:

A web-based tool for image labeling and retrieval

with lexical ontologies. Frontiers in artificial

intelligence and applications, 243, 585–594.

https://doi.org/10.3233/978-1-61499-105-2-585

Proceedings of the Central European Conference on Information and Intelligent Systems___323

34th CECIIS, September 20-22, 2023

Dubrovnik, Croatia

Horvat, M., Grbin, A., & Gledec, G. (2013). Labeling

and retrieval of emotionally-annotated images

using WordNet. International Journal of

Knowledge-based and Intelligent Engineering

Systems, 17(2), 157–166.

https://doi.org/10.3233/KES-130269

Horvat, M., Jelečević, Lj., & Gledec, G. (2022). A

Comparative study of YOLOv5 models

performance for image classification. In

Proceedings of the 33rd Central European
Conference on Information and Intelligent System

(CECIIS 2022). (pp. 349–356).

Jelečević, Lj. (2023). Modified COCO minitrain.

Retrieved from https://github.com/thelcrysis/coco-

minitrain

Jiang, P., Ergu, D., Liu, F., Cai, Y., & Ma, B. (2022).

A Review of Yolo algorithm

developments. Procedia Computer Science, 199,

1066–1073.

https://doi.org/10.1016/j.procs.2022.01.135

Jocher, G. (2020). YOLOv5. Retrieved from

https://github.com/ultralytics/yolov5

Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., ...

& Wei, X. (2022). YOLOv6: A single-stage object

detection framework for industrial

applications. arXiv preprint arXiv:2209.02976.

Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona,

P., Ramanan, D., ... & Zitnick, C. L. (2014,

September). Microsoft coco: Common objects in

context. In European conference on computer

vision (pp. 740–755). Springer, Cham.

Markidis, S., Der Chien, S. W., Laure, E., Peng, I. B.,

& Vetter, J. S. (2018, May). Nvidia tensor core
programmability, performance & precision.

In 2018 IEEE international parallel and

distributed processing symposium workshops

(IPDPSW) (pp. 522-531). IEEE.

https://doi.org/10.1109/IPDPSW.2018.00091

Mohan, R., Elsken, T., Zela, A., Metzen, J. H.,

Staffler, B., Brox, T., Valada, A., & Hutter, F.

(2023). Neural Architecture Search for Dense

Prediction Tasks in Computer Vision.

International Journal of Computer Vision, 1–24.

https://doi.org/10.1007/s11263-023-01785-y

Padilla, R., Netto, S. L., & Da Silva, E. A. (2020,

July). A survey on performance metrics for object-

detection algorithms. In 2020 international

conference on systems, signals and image

processing (IWSSIP) (pp. 237–242). IEEE.

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A.

(2016). You only look once: Unified, real-time

object detection. In Proceedings of the IEEE

conference on computer vision and pattern

recognition (pp. 779–788).

Samet, N., Hicsonmez, S., & Akbas, E. (2020).

Houghnet: Integrating near and long-range

evidence for bottom-up object detection.

In Computer Vision–ECCV 2020: 16th European

Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XXV 16 (pp. 406-423). Springer

International Publishing.

Shafi, O., Rai, C., Sen, R., & Ananthanarayanan, G.

(2021, November). Demystifying tensorrt:

Characterizing neural network inference engine on

nvidia edge devices. In 2021 IEEE International

Symposium on Workload Characterization

(IISWC) (pp. 226-237). IEEE.

Solawetz, J. (2020). Yolov5 new version-

improvements and evaluation. Roboflow. Seach

date. Retrieved from
https://blog.roboflow.com/yolov5-improvements-

and-evaluation/

Srivastava, S., Divekar, A. V., Anilkumar, C., Naik,

I., Kulkarni, V., & Pattabiraman, V. (2021).

Comparative analysis of deep learning image

detection algorithms. Journal of Big Data, 8(1), 1-

27.

Sukkar, M., Kumar, D., & Sindha, J. (2021, July).

Real-Time Pedestrians Detection by YOLOv5.

In 2021 12th International Conference on

Computing Communication and Networking

Technologies (ICCCNT) (pp. 01–06). IEEE.

Zaghari, N., Fathy, M., Jameii, S. M., & Shahverdy,

M. (2021). The improvement in obstacle detection

in autonomous vehicles using YOLO non-

maximum suppression fuzzy algorithm. The

Journal of Supercomputing, 77(11), 13421-13446.

Zhang, L., Xu, F., Liu, Y., Zhang, D., Gui, L., & Zuo,

D. (2023). A posture detection method for

augmented reality–aided assembly based on

YOLO-6D. The International Journal of

Advanced Manufacturing Technology, 125(7-8),

3385-3399.

Zhuang, F., Cheng, X., Luo, P., Pan, S. J., & He, Q.

(2015, June). Supervised representation learning:

Transfer learning with deep autoencoders.

In Twenty-fourth international joint conference on

artificial intelligence

324___Proceedings of the Central European Conference on Information and Intelligent Systems

34th CECIIS, September 20-22, 2023

Dubrovnik, Croatia

