
Cognitive Load in Programming Education: Easing the

Burden on Beginners with REXX

Till Winkler, Rony G. Flatscher

Vienna University of Economics and Business

Institut für Wirtschaftsinformatik und Gesellschaft

Welthandelsplatz 1, 1020 Wien, Austria

{till.winkler, rony.flatscher}@wu.ac.at

Abstract. To learn and teach programming is very

difficult, often leads to poor results, and causes many

students to drop out or turn away from the subject.

Cognitive load theory can help to understand the

challenges students face, improve programming
education, and select an appropriate language for

instruction. In this paper, we take a theoretical look at

programming education and, in particular, language

characteristics that reduce students' cognitive load and

thus enable rapid learning and frustration-free

productivity. We introduce the REXX language and

some of its favorable characteristics that make it

possible to teach novices programming within a single

semester. In this limited time, students are empowered

to program Microsoft products (Windows, Office),

address the command line, grasp the basics of object-

oriented programming, use Java classes, and create
portable graphical user interfaces (GUIs) with

JavaFX.

Keywords. Programming education, Cognitive load

theory, Human-oriented programming, REXX,

ooRexx

1 Introduction

It has always been a topic of discussion as to which

programming language should be taught. With

Wikipedia listing 691 (“List of programming

languages,” 2023) different programming languages,

such a choice can be overwhelming. Moreover, when

beginners ask an expert, they usually get answers based
on individual preferences, which can be confusing. It

can be equally confusing to rely on popularity ratings

of programming languages. Until the mid-1980s, the

most popular choices were Fortran, Pascal, or Ada; in

the 1990s it was clearly C; in the late 2000s it was Java;

and today it is, with a 28.4% certainty, Python (“Data

is Beautiful,” 2019; PYPL, 2023). The fact that

language popularity scores nowadays are often

calculated based on the frequency of online searches,

such as for tutorials, should not be ignored (PYPL,

2023). Since we believe that it is not the amount of

support needed that matters, but the ease with which a

language can be learned, we would like to present our

experience with using REXX in programming classes.

Specifically, we will discuss how language
characteristic can place an unnecessary cognitive

burden on students. In addition, we will give

illustrative examples of REXX, a language we consider

particularly suitable for teaching.

Learning a programming language can be

challenging for beginners, as they need to grasp the

syntax, semantic and language-specific concepts such

as variables, data types, arithmetic, and others (Sands,

2019; Stachel et al., 2013). Moreover, students must

quickly apply new knowledge to solve complex and

often novel problems. It is well known that it is a

combination of students' lack of experience,
understanding new concepts, applying syntactic and

semantic rules, and solving new complex problems that

can be overwhelming (Sands, 2019). Programming

courses are generally considered difficult, with high

dropout rates and poor outcomes; some students cannot

program loops even after several semesters (Robins et

al., 2003). Many programming educators find that

students achieve poor grades or, more importantly,

become disillusioned with programming (Garner,

2002). This is in contrast to what we observe in REXX

teaching. According to the course evaluation
(WS22/23), 83.3% of students would definitely

recommend the class to others and consider the

demands to be reasonable (66.6%) or slightly taxing

(33.3%).

The second author became acquainted with REXX

on IBM mainframes in the 1980s and developed an

experimental course using the PC version of REXX. To

his surprise, it was possible to teach programming

concepts much faster compared to VBScript, a

language considered easy to learn at the time. REXX

was developed at IBM (Cowlishaw, 1987) with the

motivation of creating a "human-oriented" language—
by keeping it small—that is easy to learn, code,

remember, and maintain (Fosdick, 2005). At that time

REXX was extremely successful; Amiga OS used it as

a script language (“AmigaOS Manual: Arexx,” 2023)

Proceedings of the Central European Conference on Information and Intelligent Systems___171

34th CECIIS, September 20-22, 2023

Dubrovnik, Croatia

and several companies developed interpreters. Today,

REXX is still an integral part of IBM mainframes and

has been also formalized as an ANSI/INCITS X3.274

standard (ANSI, 1996). In the 1990s, IBM developed

an object-oriented successor to REXX called ooREXX,

which is open source and has been available for all

major systems since 2005 (ooRexx, 2023). Under

Windows, ooREXX allows the direct use of

COM/OLE, which enables direct interaction with

many Microsoft products. For applying the acquired
skills on other platforms, a Java bridge called

BSF4ooREXX is available, which disguises Java as

ooREXX and allows for the use of Java classes

(BSF4ooRexx, 2023).

Over the past 35 years, what was once an

experimental course has evolved into two

programming courses1 that teach students the

necessary skills to solve complex programming tasks

in a single semester (Flatscher & Müller, 2021). Within

the first two months, during "Business Programming

1" (BP1), students learn basic programming concepts,
fundamentals of object-oriented programming and

everything necessary to use COM/OLE in Windows

(BP-1, 2023; Flatscher & Müller, 2021). The following

two months, during "Business Programming 2" (BP2),

are dedicated to the Java bridge (BSF4ooRexx, 2023)

and include the use of Java classes including the

development of platform independent GUI

applications with JavaFX (BP-2, 2023; Flatscher &

Müller, 2021). Some students are even so motivated

that they write seminar papers, bachelor's and master's

theses that go far beyond what they originally learned

(WU, 2023). We believe that this learning outcome and
motivation is primarily related to language

characteristics of REXX that reduce students' cognitive

load and minimize frustration. Before looking more

closely at specific language characteristics, we will

introduce the perspective of cognitive load theory on

learning, problem solving and programming education.

2 Cognitive Load Theory

Human expertise and problem-solving skills, are based

on knowledge stored as so-called schemata in our long-

term memory (Sweller & Van Merriënboer, 2005;

Garner, 2002). A schema might be anything that can be

treated as a single element; for instance, a word, a

mathematical formula, or a particular programming
concept (Garner, 2002). During learning, multiple new

or previously disconnected pieces of information are

bundled together into a single, more complex element

or schema (Paas et al., 2003). For example, it is almost

impossible to remember all the digits of a telephone

number individually unless bundled into more complex

elements, such as, country code (two digits), area code

(four digits) and the remainder as three-digit blocks

1 In the spirit of open education, the course material

is freely available (see BP-1, 2023; BP-2, 2023).

("141" instead of "1 - 4 – 1"). In this way, a twelve

element/digit number can be remembered easily. The

same basic principle applies to any kind of learning,

including physics, mathematics, spoken languages and

programming. The general goal of teaching is to enable

the construction of increasingly complex schemata and

to facilitate their automation through practice (Paas et

al., 2003). A practiced stick driver has automated the

procedure of shifting gears to a point where he or she

no longer needs to think about it, whereas a novice
driver requires active processing of each step, which

can be tiring and frustrating. Similarly, a skilled

programmer can easily create a "selection block",

while a beginner must actively think about the

necessary structure, syntax, variables and boolean

symbols.

More complex schemata can only be built if the

brain is actively involved in the learning process, for

which free working memory capacities are needed

(Sweller & Van Merriënboer, 2005). In other words,

students must actively think about new programming
concepts. Unlike the nearly unbound long-term

memory, however, our working memory can only deal

with up to four elements or schemata at a time (Sweller

& Van Merriënboer, 2005). People who are able to

handle complicated programming tasks do not think

more sophisticatedly or process more elements, but

already have complex schemata that are treated as a

single element. In comparison, an inexperienced

programmer must process many different details

(elements) in his limited working memory. When

details or new information overwhelm the capacity of

working memory, problem-solving performance and
learning success decline (Sweller, 1988). During

programming education in particular, as in any other

problem-solving area, the cognitive load on novices

must, therefore, be carefully managed (Garner, 2002;

Paas et al., 2003). There are three different types of

cognitive load that essentially fight for the limited

resources of working memory. The intrinsic cognitive

load is caused by the learning content itself: the

programming language with its individual and

interacting elements (Sands, 2019). Extraneous

cognitive load is a burden on top of the content, that
may be caused by information search or inappropriate

teaching methods (Sweller & Van Merriënboer, 2005).

Intrinsic and extraneous cognitive load can add up to

such an extent that there is no capacity left for germane

cognitive load. Germane cognitive load is necessary

for learning through thinking about new information

and concepts (Paas et al., 2003). The chosen

programming language and teaching methods must

facilitate the construction of schemata without

overwhelming limited cognitive capacities (Garner,

2002).

172___Proceedings of the Central European Conference on Information and Intelligent Systems

34th CECIIS, September 20-22, 2023

Dubrovnik, Croatia

2.1 Intrinsic Cognitive Load

It is especially the degree of interactivity between

novel elements that can produce high intrinsic

cognitive load (Garner, 2002). Simply learning

vocabulary, for example, produces a relatively low
burden because each word—an individual element—

can be learned separately (Garner, 2002). Learning

grammar, on the other hand, produces more intrinsic

cognitive load because the words in a sentence are

connected and their interactivity must be taken into

account (Garner, 2002). In this sense, learning a

programming language is an extremely high cognitive

burden, since abstract concepts and the syntax, so to

speak, and the grammar of a language has to be learned

(Sands, 2019; Stachel et al., 2013). It is often assumed

that the intrinsic cognitive load caused by the learning

content cannot be reduced (Sands, 2019; Garner,
2002). This is not entirely true for programming, as we

can choose a language with fewer abstract concepts and

a simpler syntax, which is an advantage that other

fields do not have.

Many educators—here referring to C and

VisualBasic.NET—see “...the excessive amount of

class time spent on teaching the language syntax…”

(Al-Imamy et al., 2006, p. 280) as a major issue. While

a C-style syntax has influenced languages such as Java,

PHP, Go, or Swift, it is challenging for beginners

(Denny et al., 2011; Stefik & Siebert, 2013). Since
learning syntax is a common challenge, tools and

languages have been developed to bypass syntax

altogether, but even so, general-purpose programming

languages are still predominantly used in classrooms

(Stefik & Siebert, 2013).

Some syntactic choices made by language

designers are perceived as easier to understand because

they are more similar to knowledge or schemata from

other domains (Stefik & Siebert, 2013). Unfortunately,

most languages require consideration of unnecessary

elements and interactions that students take time to

learn. In Java, for example, a keyword specifying the
data type is required before the name of a variable is

stated in the declaration (Sands, 2019). While an

experienced Java programmer doesn't have to think

about it—having automated schemata—this can be a

burden for beginners. In general, strictly typed variable

declarations pose a major challenge for beginners, with

dynamically typed languages being perceived as more

intuitive (Stefik & Siebert, 2013). From a cognitive

load perspective, omitting such declarations reduces

the number of elements and interactions a novice must

consider in working memory, thereby freeing up
capacity.

While experienced programmers are already

familiar with abstract characteristics of programming

languages, beginners tend to find aspects that are not

literal or are rooted neither in English or mathematics

difficult to understand (Stefik & Siebert, 2013). For

instance, novices are able to use statements like repeat

ten times more accurately than traditional C-style

looping syntax (Stefik & Siebert, 2013). The word

repeat, or loop is simply more common in English and

can be understood literally, as opposed to for.

Moreover, the use of a single equal sign is perceived

by beginners as easier to grasp than that of a double

equal sign (Stefik & Siebert, 2013). The meaning of a

single equal sign is a schema developed in mathematics

education, while a double equal sign is rather

uncommon. An intuitive language should be designed

so that prior, non-programming knowledge can be

applied as expected (McIver & Conway, 1996). When
choosing a language to teach, we need to put ourselves

in the beginner's shoes and recognize how many new

aspects are necessary to understand, and what existing

schemata from other fields can be useful. This is

recognized by many teachers who choose a language

primarily for pedagogical reasons rather than

popularity or industry relevance (Mason et al., 2012).

In terms of students’ future and cognitive load theory,

it makes sense to focus on a general-purpose language

because it is much easier to transfer schemata from one

general-purpose language to another. It is simply not
possible to predict which language will be popular or

desired when students start working in the industry.

Therefore, we must enable students to master one

language without frustrating them, as they can easily

switch to another language later if needed.

Learning success is of course also strongly

influenced by the teaching methods, which should aim

to keep the extraneous cognitive load as low as possible

in order to free up cognitive processing resources for

learning (Sweller & Van Merriënboer, 2005).

2.2 Extraneous Cognitive Load

Extraneous cognitive load is an additional burden that

is not required for learning (germane load) and is not

directly related to the content (intrinsic load) (Sands,

2019). Such a cognitive burden can, for instance, be
caused by redundant, unnecessary or too frequently

expressed information (redundancy effect) (Sweller &

Van Merriënboer, 2005). Additionally, extraneous

cognitive load may be imposed by lengthy web

searches for information needed to complete a task, or

by spreading relevant information across multiple

lessons, textbooks or reference manuals (locations or

times) (Sands, 2019). Various methods such as pair

programming or presenting worked or nutshell

examples are known to reduce cognitive burden.

During pair-programming learners can split minimally
demanding tasks—typing, navigation, or file

management—and highly demanding tasks—syntax

development or solution search—among themselves,

thereby reducing the cognitive burden (Sands, 2019).

Presenting practical—worked or nutshell—examples

where students are shown a solution step-by-step from

start to finish, helps to break down a complex and novel

problem into meaningful steps and provide scaffolding

for other problems (Sands, 2019; Stachel et al., 2013).

While extraneous cognitive load can mostly be

reduced by suitable teaching methods and materials,

Proceedings of the Central European Conference on Information and Intelligent Systems___173

34th CECIIS, September 20-22, 2023

Dubrovnik, Croatia

part of the load is also caused by the programming

language. For example, when a language forces to use

an unfamiliar operating system or a complex IDE,

basic tasks such as typing, file management, or

navigation become an unnecessary additional cognitive

burden.

2.3 Germane Cognitive Load

To learn, novices must actively invest free cognitive

resources; that is, an appropriate germane cognitive

load should be elicited (Sweller & Van Merriënboer,

2005). Freeing up working memory capacity by

reducing intrinsic and extraneous cognitive load is only

effective if students are motivated to actively invest
cognitive effort in schemata construction (Paas et al.,

2003). For this, it is important that students are not

frustrated with the teacher, grading, or programming in

general. In many classes, a common problem is that

students use a passive elaboration strategy; they do not

use free capacities to self-elaborate new concepts

(Sweller & Van Merriënboer, 2005). Common

teaching methods to promote active elaboration in class

are to have students annotate worked examples or

complete missing code from a well-structured program

(Garner, 2002).
It is well-known that practicing programming

concepts in variable situations has a positive effect on

schemata building and educational transfer (Paas et al.,

2003). In order to have enough time to practice, the

chosen programming language should have

characteristics that are easy to understand and therefore

do not take up unnecessary time in class.

3 Language Characteristics

REXX coding can be achieved with a simple editor

(e.g., Notepad, gedit) or more complex IDEs (e.g.,

IntelliJ). While gedit is equipped with REXX syntax

highlighting by default, Intellij requires a readily

available plugin (Seik, 2023). This allows students to

select a tool with which they are most familiar, thereby
reducing extraneous cognitive load. While for most

languages a simple editor is sufficient, for Python it is

advisable to use an IDE, as it is necessary to create

intended blocks or include and manage packages for

basic functions.

REXX was developed with the goal of creating a

“human-oriented” language that is small, as well as

being easy to learn, code, remember, and maintain

(Fosdick, 2005). In the limited time available for

teaching, large languages such as C++ or Java can only

be taught by focusing on a subset of the entire
language, and intentionally ignoring important aspects

(McIver & Conway, 1996). This can be confusing

because textbooks or online tutorials rarely adhere to

the same subset, and beginners may encounter features

that were intentionally not taught. In comparison,

REXX is a small but powerful language that can be

taught in a short time. All necessary knowledge is

bundled in a single reference manual (ooRexx, 2023).

This eliminates the tedious search for information and

thereby reduces extraneous cognitive load (Sands,

2019). In addition, the reference manual itself provides

brief and meaningful explanations, syntax diagrams

and nutshell examples. Figure 1 shows a syntax

diagram for the Strip method; such diagrams are used

for all methods and functions in the reference manual

(ooRexx, 2023). With its multimodal presentation
(description and visualization) of key knowledge and

its nutshell examples, the manual does a good job of

reducing unnecessary cognitive load (cf. Sands, 2019;

Stachel et al., 2013).

Figure 1. Syntax diagram (ooRexx, 2023, p. 206)

Many believe that making and correcting mistakes

is the best way to learn. However, the inadequacy of

error messages is a problem that dates back to COBOL,

but is still a problematic in C++ or Java (Becker et al.,
2016). Errors and related messages of a compiler or

interpreter should be understandable without knowing

technical jargon (McIver & Conway, 1996).

Unfortunately, error messages are often “… terse,

confusing, too numerous, misleading, and sometimes

seemingly wrong...”, this way “...they become a source

of frustration and discouragement” (Becker et al.,

2016, p. 21). We consider the error messages of the

ooRexx interpreter to be clear and, above all, precisely

pointing to the source of an error. Most importantly,

REXX's free-form syntax, its case-insensitive nature,
and its use of dynamic data types avoid many common

errors from the outset. Avoiding such errors helps

reduce frustration or disillusionment with

programming, which can motivate students to invest

the cognitive load required to construct schemata and

automate these through practicing (Garner, 2002; Paas

et al., 2003).

3.1 Free-form Syntax

REXX has a free-form syntax where the positioning of

the code is irrelevant. By default, the interpreter merges

multiple blanks into a single one before execution. If

this behavior is not desired, quotation marks (“ or ’)

can be placed directly next to each other or two vertical

bars can be used directly as concentration operators (||).

Strings in REXX can be merged by listing them one
after another in a single expression and delimiting them

with blanks. A string encapsulated by quotation marks

is not changed. Figure 2 provides examples of this.

In teaching, the free form of REXX allows for the

creation of readable, consistent, and intentionally eye-

catching syntax that helps to convey new concepts to

174___Proceedings of the Central European Conference on Information and Intelligent Systems

34th CECIIS, September 20-22, 2023

Dubrovnik, Croatia

novices who typically have difficulty grasping the

signals of novel concepts (McIver & Conway, 1996).

1 say "Hello World!" /* output: Hello World! */

2 say " This" 'is' "REXX!" /* output: This is REXX! */

3 say "Good""bye" || '!' /* output: Goodbye! */

Figure 2. Free-from syntax and string merge

Such flexibility is also important for learning

success, since fewer syntactic rules, details, or

elements are relevant, and this therefore imposes a
lower intrinsic cognitive load. In contrast to this

flexibility, spaces or indentations have a semantic

meaning in Python (e.g., for conditional statements).

Although it was probably a good intention to eliminate

grouping constructs, which reduces the number of

elements (e.g., parentheses, do, end, …) and enforces

structure, students do not seem to be able to master the

concept of consistent indentation (McIver & Conway,

1996). This Python characteristic is contrary to non-

programming knowledge that novices typically have,

and can be considered to be a case of excessive
cleverness (McIver & Conway, 1996). A text written

in a natural language is understandable even with

random indentations, and this is how beginners

implicitly expect a programming language to behave.

REXX's free-form syntax ensures that this reasonable

expectation is met. Such violations of non-

programming expectations, as committed by Python,

are probably the "worst pedagogical sin" a

programming language can commit (McIver &

Conway, 1996, p. 4).

3.2 Case-insensitivity

Unlike in most programming languages, the case of

symbols used in REXX is irrelevant. It does not

"bother" the interpreter whether a beginner writes do,

Do, dO or DO by mistake or on purpose. The REXX
interpreter will uppercase all characters outside of

quoted strings before executing them. This applies

equally to all aspects of the language, including

variable names, statements, functions, methods,

method options, and so on. Figure 3 provides an

example of this. While the strip method (see Figure 1)

removes leading and trailing characters by default this

behavior can be changed by an option, and a character

can also be specified to replace blanks. For example, if

you write “Leading”, “leading”, “LeaDing”, “l” or

“L”, which all give the same result, only the leading
blanks will be removed. This example shows that in

addition to being case-insensitive, an option can also

be spelled out, which makes its effect literally

understandable. Such literal comprehensibility, further

reduces the amount of learning (intrinsic cognitive

load) for novices. A Python beginner, on the other

hand, must first learn the meaning of strip(), rstrip(),

or lsrtip() and build up the schema that an "l" here is an

abbreviation for “leading”. While it is obviously clever

to use abbreviations, forcing such behavior is another

case of excessive cleverness.

1 a = " This" 'is' "REXX!" /* a merged string */

2 Say A /* output: This is REXX! */

3 SAY a~Strip("LEADing") /* output: This is REXX! */

4 say A~strip("l") /* output: This is REXX! */

Figure 3. Case-insensitivity

Considering variables, a Python novice must be

careful when naming or referring to these, because a

single case difference makes them distinct; Oranges

and oranges in this case are in fact two different things

(variables). Such a distinction between cases is an

additional element or rule that novices must learn,

which unnecessarily increases the intrinsic cognitive
load and may lead to frustrating syntax errors. Case

dependence also violates the expectation of natural

language schemata that an Orange remains an orange

regardless of its case.

If someone new to a natural language makes a

grammatical error—analogous to a syntax error—he or

she can still accomplish the intended task of

communication if the other person has a basic level of

generosity and flexibility. However, a typical compiler

or interpreter is by no means generous or flexible, but

will mercilessly reject any slight deviation. This can be
frustrating for students because they cannot achieve

their goal of creating an executable program. The free-

form and case-insensitive nature of REXX makes the

interpreter more generous and flexible, and allows

students to write a form of pseudo-code without

frustration.

3.3 Data Type and Arithmetic

The REXX language has a single data type, a string

value, which is immutable. Arithmetic is possible if the

string contains numbers. The REXX interpreter defines

the datatype implicitly with assignment or in the

context of instructions. Compared to strictly typed

languages, this eases the intrinsic cognitive load on

students (Stefik & Siebert, 2013). When assigning
variables, REXX students must consider fewer

elements (e.g., no declaration of integer, float, ...) and

their interaction with the rest of the program. It is not

necessary to think about the required calculation

precision in advance, as is the case in mathematics

classes.

REXX's arithmetic, defined in ANSI/INCITS

X3.274, formed the basis for the definition of

ISO/IEC/IEEE standards that have been used to

implement decimal arithmetic in languages such as

Java, Python, and others (ANSI, 1996; Cowlishaw,

2022). By default, nine significant digits are used for
the calculation, but this precision can be adjusted if

desired. In REXX, variable names can start with a

letter, an underscore, an exclamation mark or a

question mark, followed by the same set of symbols

and additional numbers and dots. All variables that

Proceedings of the Central European Conference on Information and Intelligent Systems___175

34th CECIIS, September 20-22, 2023

Dubrovnik, Croatia

contain a dot become compound variables, which can

be used to represent associative arrays. In this way,

associative arrays can be declared without much effort

and can be used like a typical variable. An example of

this can be seen in Figure 4.

1 var = 6 * 7 /* assign and evaluate 6 * 7 */

2 say var /* output: 42 */

3 stem.1 = 4 /* assign 4 to compount variable */

4 say var - stem.1 / 0.7 /* output: 36.2857143 */

5 numeric digits 20 /* now use 22 digit precision */

6 say var - stem.1 / 0.7 /* output: 36.285714285714285714 */

Figure 4. Basic arithmetic and stem variables

3.4 Instructions

The ANSI/INCITS REXX standard defines

assignment, keyword and command as three distinct

instruction types (ANSI, 1996). An assignment
instruction in REXX consists of a variable name, a

single equal sign (=) as assignment operator, and an

expression that contains the string that is assigned. The

assignment “var = 6 * 7” would evaluate the

expression (a multiplication) and assign the result 42 to

the variable var (line 1 in Figure 4).

A keyword statement begins with a keyword; for

example, address, say, if, call, do, loop, parse and

others. Note that these keywords reflect their meaning

in literal English. In this way, students can further draw

on the schemata they have acquired in English classes.
For illustration, Figure 5 shows a REXX program and

Figure 6 shows a Python program with the same

functionality.

1 /* an assignment instruction: */

2 a = "Hello World!" /* assigns "Hello World!" to a */

3 /* an assignment instruction: */

4 say a /* output: Hello World! */

5 /* an command instruction: */

6 "dir a.txt" /* command: list the file a.txt */

7 /* variable RC contains the command's return code */

8 if rc = 0 then say "found!" /* 0 means success */

9 else say "some problem occurred, rc="rc /* shows rc */

Figure 5. Instructions in REXX

A quoted string, including a variable or an

expression evaluated as a string, is recognized by the

REXX interpreter as a command instruction (line 6 in
Figure 5). By default, the command is executed as if it

were typed in a command line. The return code is made

available immediately via the rc variable (line 8 in

Figure 5). This feature made REXX popular on

mainframes as it facilitates addressing the operating

system, editors and utilities. If experience with the

command line is available, solutions can be found with

the existing system functions even without great

programming knowledge.

Figure 5 contains the if keyword instruction with a

dependent then and an else keyword instruction (line 8f

in Figure 5). Depending on the programmer's

preference, these instructions can be on separate lines.

The indentation here is a preference decision and does

not change the semantics of an instruction. In

comparison, indentions in Python (see Figure 6) have

semantic meaning and are mandatory, which limits

flexibility and dictates programmer preferences. To

understand or even write the Python program in Figure

6, many more details must be considered. For example,

a module called subprocess must be imported (line 6 in

Figure 6), its run() method called to submit the
command to the system (line 8 in Figure 6), and the

strictly int-typed return code fetched (line 9 in Figure

6). It should also be noted that two equal signs (==)

represent an equality and one sign (=) represents an

assignment operator (line 10 in Figure 6). Also, the

built-in function str() must be known if concentration

is desired (line 11 in Figure 6). Only if the students then

also manage to put the colons (:) and the indentation

correctly do they achieve a working program.

1 # an assignment instruction

2 a="Hello Word!" # assigns "Hello World!" to a

3 # no keyword instruction, using built-in function()

4 print(a)

5 # no command instruction, using module subprocess instead

6 import subprocess

7 # execute command

8 completedProcess=subprocess.run("dir a.txt", shell=True)

9 rc=completedProcess.returncode # fetch return code, an int

10 if rc==0:

11 print("found!") # indentation mandatory

12 else:

13 print("some problem occurred, rc="+str(rc)) # to string

Figure 6. Instructions in Python

The amount of time required to explain all the
necessary Python concepts in class before students can

productively write such a program is enormous. This is

not only problematic given the limited time in class,

but also puts a strain on student cognitive capacity and

motivation. From the perspective of cognitive load

theory, a much greater intrinsic cognitive load is

generated, straining the limited resources of working

memory for the necessary germane cognitive load.

3.5 Built-in and External Functions

REXX defines about 80 built-in functions, the number

of which has been kept stable over the last 40 years.

Even though the number of built-in functions may

seem limited, they are powerful and more than enough
to be productive. For example, functions that require

additional packages in Python, such as root

calculations (e.g., sqrt()), are already integrated.

REXX can be extended with external functional

libraries using the ::requires directive. Such libraries

are easy to write and are usually organized around

domain-specific functions and are only included on a

per-program basis.

176___Proceedings of the Central European Conference on Information and Intelligent Systems

34th CECIIS, September 20-22, 2023

Dubrovnik, Croatia

As with the strip method (see Figures 1 and Figure

3), most built-in functions have a default behavior that

can be changed by options. The date() function, for

instance, returns the date as a “6 Mar 2023” string,

while date(‘s’) returns the string suitable for sorting as

“20230306”. In teaching, we consider it helpful that

built-in functions and methods work without

specifying options, so that you can use them from the

beginning without worrying about details.

Mastering Java syntax is often seen as a major
obstacle even for good students (Denny et al., 2011).

The BSF4ooREXX Java bridge (BSF4ooRexx, 2023)

enables students to use these functions without having

to deal with the demanding Java syntax. Figure 7 shows

a simple example, where BSF4ooREXX is included as

if it were an external function (line 6 in Figure 7) and

the javax.swing.JFrame class is invoked and the

message show sent to it (line 1 in Figure 7).

1 frame=.bsf~new("javax.swing.JFrame", "Hello, my beloved
 world - from ooRexx!")

2 frame~setSize(410,20) /* set width and height */

3 frame~visible=.true /* make JFrame visible */

4 call SysSleep 10 /* sleep for ten seconds */

5

6 ::requires "BSF.CLS" /* get access to Java bridge */

Figure 7. Invoke javax.swing.JFrame class

The result is a user interface frame titled “Hello, my

beloved world - from ooRexx!”. The output can be seen
in Figure 8, which shows how easy it can be to create

GUI programs for any modern operating system. The

ease with which external functions can be written and

included, and the simplicity of how the operating

system can be addressed and COM/OLE objects or

Java classes can be used, makes REXX more than

"just" a language for beginners.

Linux

MacOS

Window
s

Figure 8. Result of code in Figure 7

3.6 Object-oriented

As an object-oriented language, useful base classes,

data encapsulation, polymorphism, class hierarchy,
method inheritance and concurrency are provided in

ooRexx (ooRexx, 2023). ooRexx, the object-oriented

paradigm of REXX, uses the tilde (~) as an explicit

message operator. The programmer communicates

with objects by sending them messages that name a

method with potential options (or arguments). The

receiving object looks for this method, invokes it on

behalf of the programmer, and returns all the results

that this method and its options may lead to. This

explanation suffices to have students understand the

concepts of insulation and inheritance. Without

introduction, the object-oriented paradigm was already

used in Figure 3, where the String object received the

message ~strip("leading"), which returned the string

without leading spaces. Even with object-oriented

programming, the ooRexx concepts manage to help

beginners get started without unnecessary teaching

time and cognitive load.

4 Conclusion

We consider cognitive load theory as a useful

perspective to improve programming education and to
choose an appropriate language. We see REXX's

language characteristics to be the most important

success factor in enabling students to learn productive

programming quickly—within a few months—by

minimizing unnecessary cognitive burden. These

characteristics prevent troublesome errors and reduce

the frustration associated with teaching and learning

programming. Our experience has shown that students

who have learned REXX subsequently learn other

languages considered relevant by the industry, such as

Visual Basic, Python, and especially Java, much more
quickly and efficiently (Flatscher, 2023). We hope that

this article will encourage future research on cognitive

load in programming education and a consideration of

REXX as an introductory language.

References

AmigaOS Manual: Arexx. (2023, May 27). In

AmigaOS Wikipedia.

https://wiki.amigaos.net/wiki/AmigaOS_Manual:_

Arexx.

ANSI. (1996). ANSI X3.274-1996—Programming

Language REXX. Retrieved from

https://www.rexxla.org/rexxlang/standards/.

Becker, B. A., Glanville, G., Iwashima, R.,

McDonnell, C., Goslin, K., & Mooney, C. (2016).
Effective compiler error message enhancement for

novice programming students. Computer Science

Education, 26(2-3), 148-175.

BP-1. (2023, February, 16). Business Programming 1.

Retrieved from

https://wi.wu.ac.at/rgf/wu/lehre/autowin/material/f

oils/.

BP-2. (2023, February, 16). Business Programming 2.

Retrieved from

https://wi.wu.ac.at/rgf/wu/lehre/autojava/material/

foils/.

BSF4ooRexx. (2023, May, 26). Makes all of Java

directly available to ooRexx and vice versa.

Proceedings of the Central European Conference on Information and Intelligent Systems___177

34th CECIIS, September 20-22, 2023

Dubrovnik, Croatia

Retrieved from

https://sourceforge.net/projects/bsf4oorexx/.

Cowlishaw, M. (2022). General Decimal Arithmetic.

Retrieved from https://speleotrove.com/decimal/.

Cowlishaw, M. (1987). The design of the REXX

language. ACM SIGPLAN Notices, 22(2), 26-35.

Data is Beautiful. (2019, October 7). Most Popular

Programming Languages 1965 – 2019 [Video

file]. Youtube.

https://www.youtube.com/watch?v=Og847HVwR

SI.

Denny, P., Luxton-Reilly, A., Tempero, E., &

Hendrickx, J. (2011, June). Understanding the

syntax barrier for novices. In Proceedings of the

16th annual joint conference on Innovation and

technology in computer science education (pp.

208-212).

Flatscher, R.G., (2023). Proposing ooRexx and

BSF4ooRexx for Teaching Programming and

Fundamental Programming Concepts. In

Proceedings of ISECON 2023. Forthcoming.

Plano.

Flatscher, R. G., & Müller, G. (2021). " Business

Programming"–Critical Factors from Zero to

Portable GUI Programming in Four Hours.

Fosdick, H. (2005). Rexx programmer's reference.

John Wiley & Sons.

Garner, S. (2002). Reducing the cognitive load on

novice programmers (pp. 578-583). Association

for the Advancement of Computing in Education

(AACE).

List of programming languages. (2023, May 27). In

Wikipedia.
https://en.wikipedia.org/wiki/List_of_programmin

g_languages.

Mason, R., Cooper, G., & de Raadt, M. (2012,

January). Trends in Introductory Programming

Courses in Australian Universities–Languages,

Environments and Pedagogy. In Proceedings of

the Fourteenth Australasian Computing Education

Conference (Vol. 123, pp. 33-42).

McIver, L., & Conway, D. (1996, January). Seven

deadly sins of introductory programming language

design. In Proceedings 1996 International

Conference Software Engineering: Education and

Practice (pp. 309-316). IEEE.

ooRexx. (2023, April 19). ooRexx (Open Object

Rexx) Files. Retrieved from

https://sourceforge.net/projects/oorexx/files/oorex

x/.

Paas, F., Tuovinen, J. E., Tabbers, H., & Van Gerven,

P. W. (2003). Cognitive load measurement as a

means to advance cognitive load theory.

Educational psychologist, 38(1), 63-71.

PYPL. (2023). PYPL PopularitY of Programming

Language. Retrieved from

https://pypl.github.io/PYPL.html.

Robins, A., Rountree, J., & Rountree, N. (2003).

Learning and teaching programming: A review

and discussion. Computer science education,

13(2), 137-172.

Sands, P. (2019). Addressing cognitive load in the

computer science classroom. Acm Inroads, 10(1),

44-51.

Seik, A., (2023, February, 12). ooRexx Plugin for
IntelliJ IDEA and ooRexxDoc. Retrieved from

https://sourceforge.net/projects/bsf4oorexx/files/S

andbox/aseik/ooRexxIDEA/GA/2.1.0/.

Stachel, J., Marghitu, D., Brahim, T. B., Sims, R.,

Reynolds, L., & Czelusniak, V. (2013). Managing

cognitive load in introductory programming

courses: A cognitive aware scaffolding tool.

Journal of Integrated Design and Process Science,

17(1), 37-54.

Stefik, A., & Siebert, S. (2013). An empirical

investigation into programming language syntax.

ACM Transactions on Computing Education

(TOCE), 13(4), 1-40.

Sweller, J. (1988). Cognitive load during problem

solving: Effects on learning. Cognitive science,

12(2), 257-285.

Sweller, J., & Van Merriënboer, J. J. G. (2005).

Cognitive load theory and complex learning:

Recent developments and future directions.

Educational Psychology Review, 53(3), 147-177.

WU (2023, February, 16). Selected Seminar,

Diploma, Bachelor and Master Theses. Retrieved

from https://wi.wu.ac.at/rgf/diplomarbeiten/.

178___Proceedings of the Central European Conference on Information and Intelligent Systems

34th CECIIS, September 20-22, 2023

Dubrovnik, Croatia

