
Towards Application of Programming Language for
Communication Flows Specification in Multi-agent Systems

on Real-World Use Cases

Tomislav Peharda, Bogdan Okreša Ðurić, Igor Tomičić
Artificial Intelligence Laboratory

University of Zagreb
Faculty of Organization and Informatics

Pavlinska 2, 42000 Varaždin, Croatia
{tomislav.peharda, dokresa, igor.tomicic}@foi.unizg.hr

Abstract. In this work-in-progress article we focus
on the application of programming language for
communication flows specification in multi-agent
systems on real-world use cases. Agents orchestration
in multi-agent systems architecture may be very
troublesome, mainly due to agents being indepen-
dent units that may be implemented differently. The
proposed programming language for communica-
tion flows specification attempts to overcome this
challenge by providing explicit communication flows
definitions, that agents’ communications component
relies on, which enables enhanced orchestration
capabilities. Use cases that are covered in this paper
are in the domains of streaming audio, video, and
sensors data, and provide a couple of examples of
how the proposed programming language may be used.

Keywords. multiagent systems, communication flows
specification, agent orchestration

1 Introduction
It is often the case within computer science that there is
a type of task that is being executed repeatedly to either
deliver a resource or simply do a job that shall impact
the requesting party (directly or indirectly). A software
term that is used to describe such a program is agent.
The default definition of an agent (Russell and Norvig,
2022, p. 54) sets it as anything that is located in an
environment, and can perceive it, and act upon it. One
of the main characteristics of an agent, though, is its
autonomy in performing a task, which means it acts as
a standalone unit that is adequately designed to achieve
the goal without human directions or intervention.

If a task is too complex for a single agent to complete
it, the task is broken down into multiple sub-tasks, in
which case each sub-task is being executed by a sep-
arate agent. In this scenario, agents complete their
sub-tasks and communicate the results to other agents.
This way, all agents collaborate to achieve the com-

mon goal. A cluster of interconnected agents is called
a multiagent system (MAS).

Since agents are autonomous units, from a technical
standpoint, each agent might be designed and imple-
mented differently. When speaking of agent coordina-
tion and orchestration in MAS architecture, this may
bring up several challenges, one of which is incon-
sistency in communication flows (Schatten, Tomičić,
et al., 2020). For example, agent A is designed and
implemented to communicate with agent B, however,
agent B is not designed to communicate with agent A.
In this case, agent orchestration will not be successful,
as agents won’t participate in the communication and
will not be able to achieve the higher goal.

The herein proposed solution to this problem is a
new programming language based on process calculus
(Parrow, 2001, p. 481) for communication flows spec-
ification. The language shall implement concepts and
mechanisms that enhance agents orchestration capabil-
ities in MAS architecture.

The goal of this paper is to provide examples of how
programming language may be utilized in the use cases
of data streaming. Significance is also put on what pos-
sibilities would an engineer be provided with by using
the language, and how it compares to the traditional
approaches to agent design and implementation.

The rest of the paper is structured as follows. Sec-
tion 2 provides information on related work, basic con-
cepts necessary herein, and similar research. Section 3
describes the programming language proposed as a re-
sult of this research, followed by Sec. 4 where the pro-
gramming language use is exemplified in a real-world
use case. Finally, Sec. 5 provides a short discussion,
conclusion, and some ideas that provide opportunities
for future work.

2 Related Work
Regarding message transport, Corkill (Corkill, 1988)
suggests a broadcasting concept in which each agent

Proceedings of the Central European Conference on Information and Intelligent Systems___17

34th CECIIS, September 20-22, 2023

Dubrovnik, Croatia

communicates with all agents in a MAS. In this case,
the expectation is that each agent shall implement a fil-
tering mechanism on the receiving side to discard mes-
sages that are not of its interest. Although flexible, this
approach does not consider performance implications
so much.

Similarly, Goldman, and Ziberstein in (Goldman and
Zilberstein, 2003) build on top of the previously de-
scribed idea with the addition of taking into account
that external agents are not part of the observed MAS,
and likely do not have a filtering mechanism in place.
To address this, the authors propose that there is a mid-
dleware agent in the MAS to which all agents send their
messages to, and the middleware agent is responsible
for routing the received messages to the appropriate
parties.

Berna-Koes, Nourbakhsh, and Sycara in their re-
search (Berna-Koes et al., 2004) focus on transporting
non-textual messages such as video, audio, or other
media types, which are not adequately supported by
most MAS frameworks as they primarily rely on tex-
tual messages. Their research proposes the introduc-
tion of backchannels, enabling agents to exchange mes-
sages of these media types.

On the other hand, service orchestration providers
are also relevant to the subject of this research. Some
of these providers are Kubernetes, and Docker Swarm.
Basically, what these providers enable is infrastruc-
ture for the coordination of a larger number of ser-
vices at once. However, the infrastructure support these
providers enable is on a high level and refers to en-
abling services to share resources, storage, network,
and enable communication (Powell, 2023). Essentially,
it is about characteristics that all services share, regard-
less of their purpose or type. Since communication
(protocol, language, etc.) differs from one service type
to another, it is considered a low-level component, thus
is something that these providers do not take into ac-
count.

In the research presented in (Schatten, Tomičić, et
al., 2020), the authors describe a conceptual model for
the orchestration platform for hybrid artificial intelli-
gence methods that is based on a MAS architecture.
The idea is that the platform enables orchestration of
various game engines via application programming in-
terfaces (APIs). Essentially, APIs are used for external
users to start up game engines that they wish to use,
while these game engines are being treated as agents.

Holonic systems (Rodriguez et al., 2011) in MAS ar-
chitecture refer to an entity that may be observed as a
standalone autonomous agent or as a piece of a larger
system. As a standalone agent, holon has built-in busi-
ness logic by which it acts independently and corre-
spondingly communicates with other external agents.
In the context of a larger system, it is collaborating with
other internal peer agents to achieve a common goal.
Such hierarchy enables the construction of a more com-
plex organizational structure which has proved to be

helpful when a complex task needs to be broken down
into multiple sub-tasks.

Process calculus (Parrow, 2001) stands for a family
of approaches for modeling concurrent systems with
a focus on describing interaction, communication, and
synchronization between agents. The main features
that all approaches within process calculus share are
message-passing between the independent processes
that represent interactions, the use of a small number of
primitives, operators to describe processes, and specific
algebraic rules for process operators. Reduction rules
are an essential aspect of process calculus as they help
achieve the explicit description of communication that
takes into account parallel composition, sequentializa-
tion, and transformation of some input into an output.
Process calculus provides a formal backdrop for mod-
eling complex distributed systems and shall be used as
a theoretical foundation for the research at hand. π-
calculus, which is part of the Process calculus family
is used as a formal backdrop for the construction of the
programming language.

3 Programming Language for Com-
munication Flows Specification

To solve the problem of agents orchestration in MAS,
the proposal is to use a programming language for
communication flows specification that adds support
for consistent flows specification across all agents. The
high-level idea behind the programming language is
that by creating communication flows specification,
which essentially describes what pairs of agents engage
in communication, each agent is provided with a list of
communication flows it needs to implement.

The programming language, which is still being de-
veloped, is based on process calculus. Process calculus
is used as a foundation for this programming language,
as it embodies characteristics for communication spec-
ification, which takes into account parallelism, sequen-
tization, and input-to-output transformation, which fit
very well with the communication flows specification.

With the programming language comes a declara-
tive engine, which is capable of processing communi-
cation flows specification. Once communication flows
specification is parsed, each agent is provided with a
list of communication flows it shall implement, which
ensures proper agent orchestration capabilities. Ul-
timately, this solves the problem of communication
flows inconsistency between agents, where for exam-
ple, agent A might be designed to communicate with
agent B, but agent B is not designed to communicate
with agent A. By adding safeguard in the agent code-
base, it can be easy to identify if an agent is not imple-
menting some of the communication flows, which may
especially come handy if communication flows speci-
fication gets updated in the future.

Another valuable feature of the communication

18___Proceedings of the Central European Conference on Information and Intelligent Systems

34th CECIIS, September 20-22, 2023

Dubrovnik, Croatia

flows specification is that it can serve as a source of
truth for describing all communication flows in an ob-
served MAS. Without communication flows specifica-
tion, to get an idea of all communication flows in MAS,
one should look into every agent codebase individually
to determine its communication flows.

Three aspects of communication that the program-
ming language is set to enhance are (a) specifying
pairs of agents that communicate, (b) communication
protocol, and (c) expected input and output. These
aspects provide great grounds for building more ad-
vanced communication channels. Specifying pairs of
agents enables a description of one-way communica-
tion between two pairs of agents. Each agent might
have multiple communication flows defined where in
some cases it might be in the role of a receiving party,
while in others it may be in the role of the sender party.
By using different symbols for indication of communi-
cation between agents, it is possible to specify what
type of protocols shall be used for the communica-
tion. Currently, transmission control protocol (TCP)
and user datagram protocol (UDP) protocols are sup-
ported. Lastly, defining expected input can be useful to
announce that a particular agent is only capable of pro-
cessing messages received in a particular format, which
is helpful from the perspective of data integrity and
validation. Similarly, defining expected output makes
sure that other agents are acknowledged in what format
should the incoming message be.

Types of agents that are supported by the program-
ming language are: basic agent, channel agent, and
holon agent. The basic agent may only send and re-
ceive messages from the channel agent and the holon
agent. The channel agent serves as a proxy, with ca-
pabilities to filter and transform input to output. The
holon agent is conceptually designed to serve as a gate-
way to agents outside the observed MAS. The holon
agent is anticipated for communication with agents
outside the observed MAS.

4 Application of Programming Lan-
guage to Real-world Use Cases

In this section, we provide a description of how to
the application of the programming language could be
used to specify communication flows in a MAS.

4.1 Communicating Sensors

The use case is as follows: there are three basic agents,
agent B, C, and D, which are sensors capturing tem-
perature value every 5 minutes. These three sensors
are located within the same area, however, within 5
kilometers radius. The idea is that by looking at the
average value of the captured temperatures from these
3 agents, we can gain insight into the temperature of
the observed area.

The three agents are solely responsible for captur-
ing temperature. Data they collect they send to the
agent A which is a channel. In the programming lan-
guage, each basic agent interface utilizes the reduction
rule to specify the sender and the receiver in the for-
mat sender → receiver. If the basic agent specification,
keyword self is used for implication of the currently ob-
served agent. If the keyword self is used as a sender in
the communication flow specification, that implies that
the currently observed agent shall send a message to
the receiving counter-party. As previously said, within
the programming language, channels are used to op-
tionally transform and proxy data to the interested par-
ties. Each of the sensors agents send a message in the
JSON format {"temperature": <numeric value
↪→ >, "location": <name of location>}. That
being said, the input of the channel is also defined to
take an input in this exact format. This is defined by
the reduction rule in the format input → output which
indicates the transformation. If a message of a differ-
ent format is received, it will be dropped. Whenever
the channel receives a message in the adequate format,
it parses the message and extracts out only the value,
which also indicates it drops the location attribute. The
channel sends out the transformed message.

In this use case, there is a basic agent D which is
listening to any messages emitted by the channel A.
Agent D is responsible for creating an average value
of temperature values it receives in the window of 5
minutes and sharing the reckoned value to the audi-
ence. For example, this could be achieved by sending
an email, posting a message on a messaging applica-
tion, or similar.

The snippet provided below is a description of the
communication flows specification in the described
multi-agent systems architecture-based use case in the
proposed programming language. Figure 1 provides a
visual representation of the communication flows in the
described MAS.

channel A:
json({"temperature": ?temp, "location

↪→ ": ?loc}) --> ?temp

agent B:
self -> A

agent C:
self -> A

agent D:
self -> A

agent E:
A -> self

Proceedings of the Central European Conference on Information and Intelligent Systems___19

34th CECIIS, September 20-22, 2023

Dubrovnik, Croatia

Figure 1: Communications flows

4.2 Streaming Game Platform

The second use case presented here uses a streamed
holographic 3D game engine described in more detail
in (Schatten, Okreša Ðurić, et al., 2022). The game en-
gine described therein makes it possible for players to
stream games over a 3D holographic gaming console.
The game engine, as well as the implementation of the
gaming console, is implemented using a MAS, since
the required level of synchronisation and complexity
fits tightly into the observable natural application do-
mains of systems comprising agents.

The above referenced streamed holographic 3D
game engine’s prototype architecture, shown in Fig. 2,
features at least three types of agents: (a) a game agent,
(b) a game streaming agent, (c) a videoconferencing
agent. The game agent is running the game, and mak-
ing sure the camera transformer is used correctly, so
the game is shown as intended on the holographic 3D
gaming console. The game streaming agent makes sure
that the game is streamed towards the player, i.e. that
the streaming channel is established and maintained to-
wards the player, and that the player is provided with
the satisfying gaming experience. The videoconfer-
encing agent implements a group videoconferencing
option that provides the player with the possibility of
sharing a link towards the public or a select number
of individuals, who could watch the stream, join in
a group discussion on the player’s performance, and
watch the player’s camera stream alongside the game
stream.

Based on the above description, every single player’s
experience can be described as being the result of a pro-
cess realised as a group effort of a combination of mul-
tiple agents, i.e. a multiagent system. As such, it can be
described using the programming language described
earlier in this paper, in terms of communication flows
specification. In describing this example in the con-
text of the programming language for communication
flows specification, only a single communication flow
is considered: a signal is sent from the user interface
towards the game streaming agent, forwarded towards
the game agent. Furthermore, a specific example of in-
teracting with the game is observed in more detail, in

User interface

Game instance Videoconf. instance

Player

Videoconf. agentGame streaming agent

Pool of game agents

Figure 2: Architecture prototype of the streamed holo-
graphic 3D game engine (Schatten, Okreša Ðurić, et
al., 2022)

order to keep the example in the constraints appropriate
for this paper.

Therefore, three agents can be observed: the user
interface (agent UI), the game streaming agent (agent
S), and the game agent (agent G). User interface can
be modelled as an agent for the purposes of modelling
the system using the proposed programming language,
even though the implementation may not follow this
specification, and the user interface is not implemented
as a standalone agent similar to the other two, but as
a more abstract form of a reactive agent that is not au-
tonomous.

Agent UI sends player-activated controls from a con-
troller to agent S. The game streaming agent (agent
S) takes input from the user interface, and translates it
into the correct command that is expected by the game
agent. Usually, the game agent is expecting one of the
commands in a predefined set of inputs that are used
for controlling the player or other in-game elements,
written in a configuration file, referenced as config
in the listing below. Translation is performed using a
list of expected input values and the appropriate output
values, such as is shown here, where the event from the
controller is listed as the key, and the appropriate action
is listed as the value of the key-value pair:

{
"controls":

{
"UP": "up",
"DOWN": "down",
"LEFT": "left",
"RIGHT": "right",

20___Proceedings of the Central European Conference on Information and Intelligent Systems

34th CECIIS, September 20-22, 2023

Dubrovnik, Croatia

"SELECT": "esc",
"START": "enter",
"A": "space",
"B": "enter"

}
}

The communication flow described above can be
modelled using two channels (UIS and SG), and three
agents (UI, S, G). The first channel is used by agent UI
to send user input to agent S (channel UIS), and the sec-
ond channel is used to send the appropriate command
from agent S to agent G (channel SG). Translation of
the received user input can be performed either as a part
of an agent, or as a part of a channel. Since a channel
is implemented as a specific form of an agent, trans-
lation action can be given to the channel, as is shown
for the purposes of this example. The channel trans-
lates the input into the command based on both of the
received values, and the applicable configuration file.
The listing below can be used to describe the example:

channel UIS:
json({"key": ?key, "player": ?player})

↪→ --> json({"key": ?key})

channel SG:
json({"game": ?game, "key": ?key}) -->

↪→ config[?game][?key]

agent UI:
self -> UIS

agent S:
UIS -> self & self -> SG

agent G:
SG -> self

5 Conclusion and Future work
The proposed programming language, and the corre-
sponding declarative engine are taking a holistic ap-
proach to solving the problem of agent orchestration
and coordination in the multi-agent systems archi-
tecture. The programming language’s main focus is
put on enhancing communication flows specification,
which in the context of MAS implies to agent or-
chestration. Some of the identified flaws of the tradi-
tional approaches to the communications flows specifi-
cation primarily deal with communication flows incon-
sistency across different agents, which leads to chal-
lenges in the orchestration.

Programming language based on π-calculus is de-
signed to solve this problem by introducing communi-
cation flows specification, which shall provide descrip-
tion of communication flows of the entire MAS in a
single specification flow. This also gives visibility into

all communication flows present in MAS, which would
otherwise be impossible, as one would need to look
into each agent separately to determine communication
flows. The declarative engine, which is essentially in
the role of a parser extracts out valuable information
for each agent separately, so that each agent might be
provided with the list of communication flows it needs
to implement.

The above is one of the benefits of the implemen-
tation approach using the proposed programming lan-
guage, as opposed to the traditional approaches to
agent design and implementation. Therein, there is a
high possibility for a higher degree of code redundancy
and duplication, especially with regard to the commu-
nication component, as each agent is required to imple-
ment it individually. Additionally, there is a possibil-
ity for inconsistency in communication flows between
agents.

By being provided with per-agent-parsed list of com-
munication flows to implement, each agent is in a
good spot to achieve proper orchestration within the
MAS it resides in. By implementing communication
mechanism for all the required communication flows,
all agent communication shall be consistent, as there
should be no discrepancies where one agent might be
designed to send message to another one, while the
other is not designed for receiving the message.

Using the described example in the domain of sen-
sors capturing temperature, we have shown how the
utilization of different types of agents supported by
the programming language may conceptually lead to
proper orchestration, and ease of communication flows
specification. The example also touches on the flexibil-
ity of agents business logic, as agents may have differ-
ent purpose, which implies that the programming lan-
guage in no way attempts to limit the business logic,
but only to enhance the communication component.
This is further emphasised using the second provided
example.

The future work of this research is in the direc-
tion of designing and developing an orchestration plat-
form that utilizes the communication flows specifica-
tion, and starts up agents based on it. The platform
intends to take the current work a step further, as with
the programming language solely, agents are provided
with the communication flows that are needed to be im-
plemented. The idea around the orchestration platform
is that whole agent communication would be covered
by the platform itself by implementing the communica-
tion layer around an agent. This essentially means that
with the communication flows specification being in
the place, the only needed part for agent to work prop-
erly would be to specify what business logic should an
agent do.

Proceedings of the Central European Conference on Information and Intelligent Systems___21

34th CECIIS, September 20-22, 2023

Dubrovnik, Croatia

Acknowledgement
This work has been fully supported by the Croatian
Science Foundation under the project number IP-2019-
04-5824.

References
Berna-Koes, M., Nourbakhsh, I., & Sycara, K. (2004).

Communication efficiency in multi-agent systems.
IEEE International Conference on Robotics and
Automation, 2004. Proceedings. ICRA’04. 2004, 3,
2129–2134.

Corkill, D. D. (1988). Design alternatives for parallel
and distributed blackboard systems. University of
Massachusetts at Amherst. Computer; Information
Science [COINS].

Goldman, C. V., & Zilberstein, S. (2003). Optimizing
information exchange in cooperative multi-agent
systems. Proceedings of the second international
joint conference on Autonomous agents and multi-
agent systems, 137–144.

Parrow, J. (2001). An Introduction to the π-Calculus.
In J. A. Bergstra, A. Ponse, & S. A. Smolka (Eds.),
Handbook of Process Algebra (1st ed., pp. 479–
542). Elsevier.

Powell, R. (2023). Docker Swarm vs Kubernetes: How
to choose a container orchestration tool. CircleCI.
Retrieved June 28, 2023, from https://circleci.com/
blog/docker-swarm-vs-kubernetes/

Rodriguez, S., Hilaire, V., Gaud, N., Galland, S.,
& Koukam, A. (2011). Holonic multi-agent sys-
tems. In Self-organising software (pp. 251–279).
Springer.

Russell, S. J., & Norvig, P. (Eds.). (2022). Artificial In-
telligence: A Modern Approach (4th ed.). Pearson
Education Limited.

Schatten, M., Okreša Ðurić, B., & Peharda, T. (2022).
Towards a Streamed Holographic 3D Game En-
gine. In N. Vrček, L. Guàrdia, & P. Grd (Eds.),
Proceedings of the Central European Conference
on Information and Intelligent Systems (pp. 17–22).
Faculty of Organization and Informatics.

Schatten, M., Tomičić, I., & Okreša Ðurić, B. (2020).
Orchestration Platforms for Hybrid Artificial In-
telligence in Computer Games – A Conceptual
Model. In V. Strahonja, W. Steingartner, & V.
Kirinić (Eds.), Central European Conference on In-
formation and Intelligent Systems (pp. 3–8). Fac-
ulty of Organization and Informatics, University of
Zagreb.

22___Proceedings of the Central European Conference on Information and Intelligent Systems

34th CECIIS, September 20-22, 2023

Dubrovnik, Croatia

https://circleci.com/blog/docker-swarm-vs-kubernetes/
https://circleci.com/blog/docker-swarm-vs-kubernetes/

