
An Overview of Modern Cross-platform Mobile

Development Frameworks

Jelica Stanojević, Uroš Šošević, Miroslav Minović, Miloš Milovanović

Faculty of Organizational Sciences

University of Belgrade

Jove Ilića 154, 11010 Belgrade, Serbia

{jelica.stanojevic, uros.sosevic, miroslav.minovic, milos.milovanovic}@fon.bg.ac.rs

Abstract. Interest and usage of Cross-platform mobile

development frameworks (CMDF) is growing over the

years. This paper outlines trends in the field of mobile

development, specifically in CMDFs area which is
rapidly evolving with new emerging approaches for

creating mobile applications. The most popular cross-

platform mobile frameworks today are Flutter, React

Native, Cordova, Ionic and Xamarin, respectively.

Mentioned frameworks cover both predominant mobile

operating systems (Android and iOS) and also provide

support for desktop and web applications. The aim of

this paper is to shed light on currently (2022) most

popular CMDFs in order for academia to follow the

rapid industry development in this field.

Keywords. Mobile development, Cross-platform,

Flutter, React Native, Cordova, Ionic, Xamarin

1 Introduction

In dynamic environments where the proper timing of

application market entry is of great importance

building applications with a Write Once, Run

Anywhere mobile application tools (Shah, Sinha, &

Mishra, 2019) could be beneficial in contrast to

building native apps targeting each platform separately

which will increase time, effort and cost in order to

satisfy predominant operating systems. This is

especially important in the case of early stage startups

where the efforts are focused towards building the

Most Viable Product in a short time span. In such
situations where time, effort, cost and cross-platform

compatibility are important, developers tend to choose

CMDF approach rather than native approach for

developing applications (Shah et al., 2019). On the

other hand, developers need to understand if and which

CMDF could meet their needs.

An analysis from 2015 shows that 3.73% out of

about 12000 mobile applications available on Google

Play Store, were created using CMDF hybrid approach

1 https://flutter.dev/
2 https://reactnative.dev/
3 https://cordova.apache.org/

(Malavolta, Ruberto, Soru, & Terragni, 2015). A study

from 2022, which was done on a dataset consisting of

about 650 thousand mobile applications, shows a higher

value of 8,67%. This could indicate a growth in interest
in the hybrid development approach (Biørn-Hansen,

Grønli, Majchrzak, Kaindl, & Ghinea, 2022). Regardless

of the approach, all mobile applications made with

CMDFs occupy 15% of the dataset which was analyzed

by (Biørn-Hansen et al., 2022).

According to the worldwide survey conducted by

JetBrains, and which included over 32000 software

developers, predominant cross-platform mobile

frameworks in 2021 were Flutter1, React Native2,

Cordova3, Ionic4 and Xamarin5 (JetBrains, 2022). These

results are in line with Google Trends search queries for
these technologies over the past few years, specifically

2020-2022 (“Google Trends Comparison (React Native

vs. Flutter vs. Ionic vs. Xamarin vs. Cordova),” 2022).

Android and iOS represent the two most dominant

mobile phone operating systems with a total market share

of about 70% and 25% respectively (Laricchia, 2022).

Mentioned frameworks cover both predominant mobile

operating systems and also give a solution for desktop

and web applications.

There aren’t many research papers that include and

compare the majority of the top 5 most popular CMDFs

nowadays which are previously mentioned in this paper.
Deciding from various options of CMDF with different

underlying paradigms that offer different functionalities

and performance based on use cases isn’t always

straight-forward. That is why it is important to conduct

their in-depth analysis and comparison in order to

include more important parameters in making this

decision.

2 Methodology

The aim of this paper is to shed light on currently (2022)

most popular CMDFs in order for academia to follow the

rapid industry development in this field. Explanation of

4 https://ionicframework.com/
5 https://dotnet.microsoft.com/en-us/apps/xamarin

Proceedings of the Central European Conference on Information and Intelligent Systems ___ 489

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

different types of applications that CMDFs produce

will be given and mostly used frameworks will be

categorized on this basis. Different possible

taxonomies will be mentioned. Main characteristics of

predominant CMDFs will be described. Lastly,
discussion regarding already mentioned CMDFs based

on existing research in this area will be realized and

conclusions will be made. Google Scholar was the

main database used in research of existing work on this

topic. Papers included in the Related Work section are

relatively new Journals, Magazines and Conference

Proceedings published during 2018-2022 with a focus

on review and comparison of modern CMDFs.

3 Cross-platform Mobile

Development Frameworks

Beside native approach in which Android apps are

created using Java or Kotlin and iOS apps using Swift

or Objective-C programming language, one of the

approaches for developing mobile applications is using

cross-platform mobile development frameworks.
Types of applications produced by CMDF could be

grouped into following categories (Xanthopoulos &

Xinogalos, 2013):

• Web Apps,

• Hybrid Apps,

• Interpreted Apps and

• Generated Apps.

The new taxonomy presented by Nunkesser in

2018, expands previously noted groups, categorizing

mobile applications as:

• Pandemic, which are subdivided as
o Web App

o Hybrid Web App - Cordova and Ionic

o Hybrid Bridged App - React Native and

Flutter

o System Language App,

• Endemic (native apps) and

• Ecdemic/Foreign Language App (like Xamarin),

which can be

o Interpreted App,

o Generated App,

o VM App.

Hybrid Web Apps is a match for Hybrid Apps in
(Xanthopoulos & Xinogalos, 2013) categorization and

Ionic and Cordova belong to this category without any

disagreement in academic papers or industry. That isn’t

the case for the rest of the top 5 CMDFs. This is mainly

because the term hybrid, in industry and academia, is

used for approaches that utilize web technology but

without building a strictly defined hybrid app

(Martinez, 2019; Singh & Shobha, 2021; Vishal &

Kushwaha, 2018).

In 2018, two predominant approaches were Hybrid

and Interpreted (Biørn-Hansen & Ghinea, 2018), which

6 https://developer.android.com/reference/android/webkit/WebView

can now be appended with Cross-compiled, Widget-

based approach like Flutter.

M-site is another approach for creating mobile apps

which results with web applications, applications that are

created using widespread web technologies (e.g. HTML,
CSS and JavaScript) and users access them through a

web browser (Zohud & Zein, 2021). Since the main goal

of this paper is to research CMDF that produce mobile

applications which can be downloaded and installed on

mobile devices from Google Play Store or App Store,

and interact with native devices APIs, this type of apps

isn’t going to be in the focus of this paper.

CMDF which produces hybrid types of applications,

leverages the common feature of different mobile

operating systems, the mobile browser accessible from

the native code (Charland & Leroux, 2011). Hybrid

applications are built based on web technologies, HTML,
CSS and JavaScript, which are browser-supported

languages, and are wrapped as native apps inside a

special native container (Que, Guo, & Zhu, 2016; Zohud

& Zein, 2021) called WebView6 in Android OS and

WKWebView7 in iOS. The name hybrid comes from a

combination of native and web applications features

(Que et al., 2016).

The WebView, which deals with user interface and

gives better access to device capabilities, and the Plugins,

which are intended to deal with native device features

(e.g. storage, camera etc.) could be considered as main
characteristics of hybrid apps CMDFs (Shah et al., 2019;

Zohud & Zein, 2021). Plugins bind device APIs to the

application, which makes it easy to be invoked simply by

using JavaScript that provides developers with a generic

API for each feature to bridge all the service requests

from the web-based code to the corresponding platform

API, abstracting away device specific APIs (Pinto &

Coutinho, 2018; Shah et al., 2019). Examples of Hybrid

CMDF that are currently popular (2022) are Cordova and

Ionic.

Logic in interpreted applications is implemented in a

platform-independent way, while their native code is
automatically generated to implement the user interface

with platform-specific native UI elements (Nunkesser,

2018; Xanthopoulos & Xinogalos, 2013). The native

features are provided by an abstract layer that interprets

the code on runtime across different platforms to access

the native APIs (Latif, Lakhrissi, Nfaoui, & Es-Sbai,

2017). These types of apps provide the look and feel of

native applications because of native user interfaces

(S.Thakare, Shirodkar, Parween, & Parween, 2014). On

the downside, new platform-specific features, like new

user interface features of a new android version, can be
available to apps only when supported by the

development environment so there is the complete

dependence on the software development environment

(S.Thakare et al., 2014). React Native is nowadays

(2022) an actual CMDF that produces interpreted apps

(Biørn-Hansen & Ghinea, 2018; Huber, Demetz, &

Felderer, 2020; Shah et al., 2019).

7 https://developer.apple.com/documentation/webkit/wkwebview

490 ___ Proceedings of the Central European Conference on Information and Intelligent Systems

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

As for generated applications, which are also called

cross-compiled (S.Thakare et al., 2014), their code,

also written in common programming languages, is

compiled to a specific native code for each targeted

platform (Latif et al., 2017; Xanthopoulos &
Xinogalos, 2013). Because of the generated native code

these types of apps achieve high overall performance

(S.Thakare et al., 2014). Xamarin is currently (2022)

one of the most used CMDFs which create this type of

apps (Latif, Lakhrissi, Nfaoui, & Es-Sbai, 2016).

Flutter is a cross-compiled framework (Biørn-Hansen,

Rieger, Grønli, Majchrzak, & Ghinea, 2020) but also

belongs to a special category of Widget based apps

(Shah et al., 2019).

In next chapters a brief overview of each mentioned

which represents also the most popular CMDFs is going

to be given.

3.1 Cordova

Apache Cordova is an open-source version of PhoneGap

which was acquired by Adobe in 2011. Cordova is a

hybrid CMDF so its main characteristics are a container,

WebView, for running the code
(HTML/CSS/JavaScript) inside a native wrapper which

is device specific and Plugins which are dealing with the

native device features. Plugins bind device APIs to the

application, which makes it easy to be invoked simply by

using JavaScript. (Shah et al., 2019)

Figure 1. Cordova Application Architecture (The Apache Software Foundation, n.d.)

3.2 Ionic

As previously mentioned, Ionic represents an example

of Hybrid App CMDF. First version of Ionic

Framework was released in 2013 and was built on top

of AngularJS8, which is now deprecated (from January
2022), and Apache Cordova. In 2016 release of

version 2 of Angular framework with drastic changes

also caused version 2 of Ionic framework. Back then,

Ionic components, which eased development of

mobile UI, were built as Angular directives. That

meant that Ionic framework

is coupled with Angular and with the rise of other

Single Page Application (SPA) frameworks like React9

and Vue10 that became a problem. With adoption of

Web Components standard which represents a suite of

different technologies allowing you to create reusable
custom elements - with their functionality encapsulated

8 https://angularjs.org/
9 https://reactjs.org/

away from the rest of your code - and utilize them in your

web apps (MDN Contributors, 2022) Ionic released

version 4 in 2019 with components based on this

standard. That way, Ionic was decoupled from the

Angular framework, and Ionic components can be used

with other SPA frameworks. Ionic team even created a

tool, named Stencil11, for creating components. Ionic 6 is

the currently active version (from December 2021).

Beside components, another important part of Hybrid

CMDF like Ionic, are tools like Cordova and Capacitor
that help bridge the gap between web apps and native

device features. The Ionic team developed Capacitor in

2018, and while it has similarities with Cordova, it is

using new modern APIs which were not available when

Cordova was released (Lynch, n.d.) and is considered as

Ionic’s official native runtime (Ionic team, n.d.).

10 https://vuejs.org/
11 https://stenciljs.com/

Proceedings of the Central European Conference on Information and Intelligent Systems ___ 491

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

Figure 2. Ionic Application Architecture (Singh & Shobha, 2021)

3.3 React Native

React Native is nowadays the most popular Interpreted

Apps CMDF. React Native started at an internal Meta

Hackathon and was released in March 2015 by Meta as

an open-source framework. Same as Ionic, React

Native will feel familiar to web developers because
they can create mobile apps using JavaScript (Pinto &

Coutinho, 2018) so their learning curve is eased.

React Native is using a JavaScript engine,

JavaScriptCore, in order to interpret (hence the

categorization) deployed application source code

directly to the mobile device (Shah et al., 2019). At

runtime, React Native creates the corresponding

Android and iOS views for React Native

components. Because React Native components are
backed by the same views as Android and iOS, React

Native apps look, feel, and perform like any other apps.

(Meta Platforms, 2022)

The bridge layer allows to invoke platform specific

APIs, Swift or Objective-C APIs for iOS and Java or

Cotlin APIs for Android, needed for rendering

components of the native view controller (Shah et al.,

2019). Also, if an interpreted app requires access to a

native feature (e.g. camera), it will pass the request down

through the respective bridge handling such requests,

and return a result up through the same bridge where

needed, e.g. to return a value from the native-side to the
app-side (Biørn-Hansen & Ghinea, 2018).

Figure 3. React Native Application Architecture (Biørn-Hansen & Ghinea, 2018)

First announced in 2018, recently, in 2022, React

Native rolled out new architecture with the new native

TurboModule system for interaction with the native

side and the Fabric Renderer, new rendering

system, meaning the bridge is splitted in two parts

(Sciandra, 2019).

492 ___ Proceedings of the Central European Conference on Information and Intelligent Systems

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

Figure 4. Flutter architectural overview (Flutter, n.d.)

3.4 Flutter

Flutter became the most popular CMDF lately. It was

created by Google and the first version was released in

2017. Flutter applications are made using Dart

programming language12 which is similar to

JavaScript.

Flutter framework includes a rich set of platform,

layout, and foundational libraries for animation,

painting, gestures and design like Material and

Cupertino libraries which offer comprehensive sets of

controls to implement the Material or iOS design

languages. (Flutter, n.d.; Shah et al., 2019) It uses Dart
for creating components using the Skia 2D graphics

engine which is used for rendering the application UI

(Shah et al., 2019). A platform-specific embedder,

written in appropriate platform language, provides an

entrypoint; coordinates with the underlying operating

system for access to services like rendering surfaces,

accessibility, and input; and manages the message

event loop. Using the embedder, Flutter code can be

integrated into an existing application as a module, or

the code may be the entire content of the application.

(Flutter, n.d.)

12 https://dart.dev/

3.5 Xamarin

Example of Generated apps CMDF is Xamarin,

developed by Microsoft since 2016, which uses C# in

order to create applications for various devices.

Xamarin.Forms, which was introduced in Xamarin 3

in 2014, represents an open-source UI framework that

allows developers to create user interfaces in XAML

with code-behind in C# which will be rendered as native

controls on each platform (Johnson, Britch, & Dunn,

2021). The process of accessing native utilities is

simplified by abstraction, a library Xamarin.Essentials,

that provides cross-platform APIs for native device
features (Justin Johnson, David Britch, Craig Dunn, &

Hemant Arya, 2021).

Microsoft's evolution of Xamarin.Forms, .NET

Multi-platform App UI13 (.NET MAUI), is a framework

for building modern, multi-platform, natively compiled

iOS, Android, macOS, and Windows apps using C# and

XAML in a single codebase. Conversion from

Xamarin.Forms to .NET MAUI is basically complete in

2022. Xamarin support will continue through November

2023 (Ramel, 2022).

13 https://dotnet.microsoft.com/en-us/apps/maui

Proceedings of the Central European Conference on Information and Intelligent Systems ___ 493

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

https://api.flutter.dev/flutter/animation/animation-library.html
https://api.flutter.dev/flutter/painting/painting-library.html
https://api.flutter.dev/flutter/gestures/gestures-library.html
https://api.flutter.dev/flutter/material/material-library.html
https://api.flutter.dev/flutter/cupertino/cupertino-library.html

Figure 5. Xamarin.Forms Architecture (Johnson et al., 2021)

4 Related work

As for cross-platform approaches in general it can be

concluded that developers need to compromise on the

user experience which is of highest quality on native

devices (Shah et al., 2019), but it’s important to notice

that it is improving in the newer releases of CMDF and
that performance of mobile devices is constantly

improving. For example, based on a study which was

carried out by Huber, Demetz, & Felderer (2020) React

Native and Android Native apps in terms of UI

fluidness are comparable which results in better user

experience in React Native cross-platform solution, but

also comes with a consequence of high load on CPU

and main memory. On the other hand Ionic has

insignificant better performance compared to React

Native concerning mentioned aspects, but missing the

benefits of a low janky frame rate and low GPU

memory usage which results in performance
degradation perceived by the user (Huber et al., 2020).

In a research paper by Biørn-Hansen, Grønli, &

Ghinea (2019) device hardware impact and penalties

caused by transitions and animations (in-app page

navigation, opening side menu and complex animation

- Lottie animation14) were studied and reports are made

on following metrics: frames per second (FPS), CPU

usage, device memory usage and GPU memory usage.

Eight different mobile apps were created: native iOS

and Android, and also Ionic, Xamarin and React Native

for iOS and Android. Even though the performance of
running complex animation in Native apps is much

better in

contrast to Ionic Hybrid App, Biørn-Hansen, Grønli, &

Ghinea (2019), from users' perspective, couldn’t

observe the difference between these apps. This

indicates that users' experience should be taken into

account while measuring performances for certain

parameters (in this case FPS).

14 https://lottiefiles.com/72-favourite-app-icon

Mobile apps created using CMDFs, specifically

Ionic/Capacitor and React Native, compared to

natively developed applications put a higher load on

CPU usage, main memory and GPU memory

consumption (Huber et al., 2020). Except in the use
case of building high-end gaming applications,

CMDFs usually prevail over the disadvantages that

come with their usage (Shah et al., 2019).

When it comes to implementation and

development of communication bridges for using

native device features in Hybrid (Ionic-Cordova) and

Interpreted (React Native) approaches Biørn-Hansen

& Ghinea (2018) conclude that these aren’t complex

nor tedious programming tasks in both cases.

However, the Hybrid-based Ionic-Cordova app

proved to be five times faster than the Interpreted app
built with React Native for the functionality of

fetching images stored on native devices (Biørn-

Hansen & Ghinea, 2018).

On the other hand, in comparative study (Quazi &

Sinha, 2018) of Ionic, React Native and PhoneGap,

React Native proved to be the finest CMDF based on

execution time to perform the hardware and database

related operations. React Native is also the most

popular from the industrial point of view based on

multiple case-study (Zohud & Zein, 2021) carried out

in four different software development companies in
Palestine in 2021, even though Ionic is more used

than React Native since its older.

Shah et al. (2019) conclude that Flutter is overall

the best choice among all CMDF which combines the

advantages of development tools from other

approaches.

Differences regarding performances for CMDF

on different platforms, iOS and Android, exist.

Cordova apps exhibit significantly different patterns

of rendering time, which can be attributed to the

differences in the underlying HTML rendering

engines and the JavaScript engines of the respective
platforms, and UI response on the iOS and Android

494 ___ Proceedings of the Central European Conference on Information and Intelligent Systems

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

platform. (Jia, Ebone, & Tan, 2018) This is also in line

with study of Biørn-Hansen, Grønli, & Ghinea (2019)

in which Android and iOS are found to differ greatly in

terms of memory consumption, CPU usage and

rendered FPS for both the native and cross-platform
apps.

There are some papers regarding industry

perspective on CMDFs and their usage, but this area

represents the potential for further exploration due to

the rapid pace of development in the field, in order for

academia to stay relevant with industry standards in

mobile development (Biørn-Hansen, Grønli, Ghinea, &

Alouneh, 2019). Based on a survey conducted in 2016

(Biørn-Hansen, Grønli, Ghinea, et al., 2019) which was

targeting industry practitioners, the most popular

frameworks were Phone Gap (which is now

deprecated), Ionic and React Native, both in hobby and
professional projects. Biørn-Hansen et al. (2019)

concluded that industry is moving towards using React

Native and Ionic which is in line with today's statistics

(JetBrains, 2022). Obtained conclusion in another,

already mentioned study (Zohud & Zein, 2021), carried

out over industry practitioners, is that developers

experience is the most influential factor in the

development process. This could indicate that web

developers who are familiar with SPA framework like

Angular would prefer to work with Ionic, rather than

learn new CMDF from scratch like Flutter. This is also
the case with React Native since it uses JavaScript, and

on the other hand for Flutter, Dart, its own development

programming language must be learned (Işitan &

Koklu, 2020).

Conclusion of Biørn-Hansen et al. (2020) is that

certain cross-platform frameworks can perform equally

well or even better than native on certain metrics. In

this case metrics were measured for tasks of creating

contact, reading from file system, accessing location

information and usage of accelerometer for Ionic,

React Native, NativeScript, Flutter, MAML/MD2 and

Native Android. No single framework scores best
across all features in the study, nor do they state that a

silver bullet solution exists. This indicates that well-

defined technical requirements and specifications are

very important before choosing between CMDF (or not

choosing CMDF) since bad decisions can potentially

lead to underperforming apps (Biørn-Hansen et al.,

2020).

Based on literature study it can be observed that

there aren't many studies which include the comparison

of the majority of beforehand mentioned frameworks,

especially Flutter as newest vs. older ones.

5 Conclusion

The Flutter and React Native ecosystems are in its rise
and are constantly improving. On the other hand, Ionic,

as representative of hybrid mobile applications CMDF,

is going to stay relevant in the future because of the

possibility that web developers with experience in SPA

frameworks can quickly adapt to the Ionic framework

and start building mobile applications. As for

Xamarin.Forms, it is yet to be seen how its evolution

.NET MAUI is going to be accepted.

The further analysis of mentioned, most recent
and currently most popular CMDFs based on

different aspects and criteria could be of great use

when it comes to decision making of choosing

between different approaches and frameworks. Since

there is constant improvement of mobile devices and

also CMDFs, the interesting topic for further research

would be measuring real users' experience of using

apps written in mentioned CMDFs (and native

languages) in various use cases along with

performance measurement which can affect it. This

could help to draw a conclusion if the higher

performance parameters are very noticeable and
therefore crucial in decision making.

The fast-paced development of new versions and

emerging of new CMDF and also staying updated

with technical advances is a challenge for both

industry and academia. Continuous research in this

field is especially important due to the rapid pace at

which cross-platform frameworks are being released,

updated and deprecated. (Biørn-Hansen, Grønli, &

Ghinea, 2019)

References

Biørn-Hansen, A., & Ghinea, G. (2018). Bridging

the Gap: Investigating Device-Feature Exposure

in Cross-Platform Development. 8.

Biørn-Hansen, A., Grønli, T.-M., & Ghinea, G.

(2019). Animations in Cross-Platform Mobile

Applications: An Evaluation of Tools, Metrics

and Performance. Sensors, 19(9), 2081.

https://doi.org/10.3390/s19092081

Biørn-Hansen, A., Grønli, T.-M., Ghinea, G., &

Alouneh, S. (2019). An Empirical Study of

Cross-Platform Mobile Development in

Industry. Wireless Communications and Mobile

Computing, 2019, 1–12.

https://doi.org/10.1155/2019/5743892

Biørn-Hansen, A., Grønli, T.-M., Majchrzak, T. A.,

Kaindl, H., & Ghinea, G. (2022). The Use of

Cross-Platform Frameworks for Google Play

Store Apps. Presented at the Hawaii International

Conference on System Sciences.

https://doi.org/10.24251/HICSS.2022.934

Biørn-Hansen, A., Rieger, C., Grønli, T.-M.,

Majchrzak, T. A., & Ghinea, G. (2020). An

empirical investigation of performance overhead

in cross-platform mobile development

Proceedings of the Central European Conference on Information and Intelligent Systems ___ 495

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

https://www.zotero.org/google-docs/?broken=LkfnaI
https://www.zotero.org/google-docs/?broken=LkfnaI
https://www.zotero.org/google-docs/?broken=LkfnaI
https://www.zotero.org/google-docs/?broken=LkfnaI
https://www.zotero.org/google-docs/?broken=LkfnaI
https://www.zotero.org/google-docs/?broken=8km47K
https://www.zotero.org/google-docs/?broken=8km47K
https://www.zotero.org/google-docs/?broken=8km47K
https://www.zotero.org/google-docs/?broken=8km47K
https://www.zotero.org/google-docs/?broken=8km47K
https://www.zotero.org/google-docs/?broken=8km47K
https://www.zotero.org/google-docs/?broken=8km47K
https://www.zotero.org/google-docs/?broken=8km47K
https://www.zotero.org/google-docs/?broken=8km47K
https://www.zotero.org/google-docs/?broken=EE2Raf
https://www.zotero.org/google-docs/?broken=EE2Raf
https://www.zotero.org/google-docs/?broken=EE2Raf
https://www.zotero.org/google-docs/?broken=EE2Raf
https://www.zotero.org/google-docs/?broken=EE2Raf
https://www.zotero.org/google-docs/?broken=EE2Raf
https://www.zotero.org/google-docs/?broken=EE2Raf
https://www.zotero.org/google-docs/?broken=EE2Raf
https://www.zotero.org/google-docs/?broken=EE2Raf
https://www.zotero.org/google-docs/?broken=EE2Raf
https://www.zotero.org/google-docs/?broken=vjqAQL
https://www.zotero.org/google-docs/?broken=vjqAQL
https://www.zotero.org/google-docs/?broken=vjqAQL
https://www.zotero.org/google-docs/?broken=vjqAQL
https://www.zotero.org/google-docs/?broken=vjqAQL
https://www.zotero.org/google-docs/?broken=vjqAQL
https://www.zotero.org/google-docs/?broken=vjqAQL
https://www.zotero.org/google-docs/?broken=vjqAQL
https://www.zotero.org/google-docs/?broken=ymMSJ2
https://www.zotero.org/google-docs/?broken=ymMSJ2
https://www.zotero.org/google-docs/?broken=ymMSJ2
https://www.zotero.org/google-docs/?broken=ymMSJ2

frameworks. Empirical Software Engineering,

25(4), 2997–3040. https://doi.org/10.1007/s10664-

020-09827-6

Charland, A., & Leroux, B. (2011). Mobile

application development: Web vs. native.

Communications of the ACM, 54(5), 49–53.

https://doi.org/10.1145/1941487.1941504

Flutter. (n.d.). Flutter architectural overview.

Retrieved June 6, 2022, from

https://docs.flutter.dev/resources/architectural-

overview

Google Trends comparison (React Native vs. Flutter

vs. Ionic vs. Xamarin vs. Cordova). (2022, June

9). Retrieved June 9, 2022, from Google Trends

website: https://tinyurl.com/CMDFComparison

Huber, S., Demetz, L., & Felderer, M. (2020).

Analysing the Performance of Mobile Cross-

platform Development Approaches Using UI

Interaction Scenarios. In M. van Sinderen & L. A.

Maciaszek (Eds.), Software Technologies (pp. 40–

57). Cham: Springer International Publishing.

https://doi.org/10.1007/978-3-030-52991-8_3

Ionic team. (n.d.). Cordova Community Plugins.

Retrieved June 6, 2022, from

https://ionicframework.com/docs/native/communit

y#capacitor-support

Işitan, M., & Koklu, M. (2020). Comparison and

Evaluation of Cross Platform Mobile Application

Development Tools. International Journal of

Applied Mathematics Electronics and Computers,

273–281. https://doi.org/10.18100/ijamec.832673

JetBrains. (2022, February 21). Cross-platform mobile

frameworks used by software developers

worldwide from 2019 to 2021. Retrieved May 30,

2022, from Statista website:

https://www.statista.com/statistics/869224/worldw

ide-software-developer-working-hours/

Jia, X., Ebone, A., & Tan, Y. (2018). A performance

evaluation of cross-platform mobile application

development approaches. Proceedings of the 5th

International Conference on Mobile Software

Engineering and Systems, 92–93. Gothenburg

Sweden: ACM.

https://doi.org/10.1145/3197231.3197252

Johnson, J., Britch, D., & Dunn, C. (2021, July 8).

What is Xamarin.Forms? Retrieved June 6, 2022,

from https://docs.microsoft.com/en-

us/xamarin/get-started/what-is-xamarin-forms

Justin Johnson, David Britch, Craig Dunn, &

Hemant Arya. (2021, July 8). What is Xamarin?

Retrieved June 6, 2022, from

https://docs.microsoft.com/en-us/xamarin/get-

started/what-is-xamarin

Laricchia, F. (2022, February 7). Mobile operating

systems’ market share worldwide from January

2012 to January 2022. Retrieved May 28, 2022,

from Statista website:

https://www.statista.com/statistics/272698/globa

l-market-share-held-by-mobile-operating-

systems-since-2009/

Latif, M., Lakhrissi, Y., Nfaoui, E. H., & Es-Sbai,

N. (2016). Cross platform approach for mobile

aplication development: A survey. 5.

Latif, M., Lakhrissi, Y., Nfaoui, E. H., & Es-Sbai,

N. (2017). Review of mobile cross platform and

research orientations. 2017 International

Conference on Wireless Technologies,

Embedded and Intelligent Systems (WITS), 1–4.

Fez, Morocco: IEEE.

https://doi.org/10.1109/WITS.2017.7934674

Lynch, M. (n.d.). Capacitor vs Cordova: Hybrid

Mobile App Development. Retrieved June 6,

2022, from

https://ionic.io/resources/articles/capacitor-vs-

cordova-modern-hybrid-app-development

Malavolta, I., Ruberto, S., Soru, T., & Terragni, V.

(2015). Hybrid Mobile Apps in the Google Play

Store: An Exploratory Investigation. 2015 2nd

ACM International Conference on Mobile

Software Engineering and Systems, 56–59.

Florence, Italy: IEEE.

https://doi.org/10.1109/MobileSoft.2015.15

Martinez, M. (2019). Two Datasets of Questions

and Answers for Studying the Development of

Cross-Platform Mobile Applications using

Xamarin Framework. 2019 IEEE/ACM 6th

International Conference on Mobile Software

Engineering and Systems (MOBILESoft), 162–

173. Montreal, QC, Canada: IEEE.

https://doi.org/10.1109/MOBILESoft.2019.0003

2

MDN Contributors. (2022, April 27). Web

Components. Retrieved June 6, 2022, from

https://developer.mozilla.org/en-

US/docs/Web/Web_Components

Meta Platforms. (2022, March 30). Core

Components and Native Components. Retrieved

496 ___ Proceedings of the Central European Conference on Information and Intelligent Systems

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

https://www.zotero.org/google-docs/?broken=ymMSJ2
https://www.zotero.org/google-docs/?broken=ymMSJ2
https://www.zotero.org/google-docs/?broken=ymMSJ2
https://www.zotero.org/google-docs/?broken=ymMSJ2
https://www.zotero.org/google-docs/?broken=ymMSJ2
https://www.zotero.org/google-docs/?broken=ymMSJ2
https://www.zotero.org/google-docs/?broken=ymMSJ2
https://www.zotero.org/google-docs/?broken=6hWbpK
https://www.zotero.org/google-docs/?broken=6hWbpK
https://www.zotero.org/google-docs/?broken=6hWbpK
https://www.zotero.org/google-docs/?broken=6hWbpK
https://www.zotero.org/google-docs/?broken=6hWbpK
https://www.zotero.org/google-docs/?broken=6hWbpK
https://www.zotero.org/google-docs/?broken=6hWbpK
https://www.zotero.org/google-docs/?broken=sMYoat
https://www.zotero.org/google-docs/?broken=sMYoat
https://www.zotero.org/google-docs/?broken=sMYoat
https://www.zotero.org/google-docs/?broken=sMYoat
https://www.zotero.org/google-docs/?broken=lbFPDk
https://www.zotero.org/google-docs/?broken=lbFPDk
https://www.zotero.org/google-docs/?broken=lbFPDk
https://www.zotero.org/google-docs/?broken=lbFPDk
https://www.zotero.org/google-docs/?broken=rj253U
https://www.zotero.org/google-docs/?broken=rj253U
https://www.zotero.org/google-docs/?broken=rj253U
https://www.zotero.org/google-docs/?broken=rj253U
https://www.zotero.org/google-docs/?broken=rj253U
https://www.zotero.org/google-docs/?broken=rj253U
https://www.zotero.org/google-docs/?broken=rj253U
https://www.zotero.org/google-docs/?broken=rj253U
https://www.zotero.org/google-docs/?broken=rj253U
https://www.zotero.org/google-docs/?broken=Zwk3Pn
https://www.zotero.org/google-docs/?broken=Zwk3Pn
https://www.zotero.org/google-docs/?broken=Zwk3Pn
https://www.zotero.org/google-docs/?broken=Zwk3Pn
https://www.zotero.org/google-docs/?broken=qIusRL
https://www.zotero.org/google-docs/?broken=qIusRL
https://www.zotero.org/google-docs/?broken=qIusRL
https://www.zotero.org/google-docs/?broken=qIusRL
https://www.zotero.org/google-docs/?broken=qIusRL
https://www.zotero.org/google-docs/?broken=qIusRL
https://www.zotero.org/google-docs/?broken=qIusRL
https://www.zotero.org/google-docs/?broken=cFBY2q
https://www.zotero.org/google-docs/?broken=cFBY2q
https://www.zotero.org/google-docs/?broken=cFBY2q
https://www.zotero.org/google-docs/?broken=cFBY2q
https://www.zotero.org/google-docs/?broken=cFBY2q
https://www.zotero.org/google-docs/?broken=cFBY2q
https://www.zotero.org/google-docs/?broken=hc8WVY
https://www.zotero.org/google-docs/?broken=hc8WVY
https://www.zotero.org/google-docs/?broken=hc8WVY
https://www.zotero.org/google-docs/?broken=hc8WVY
https://www.zotero.org/google-docs/?broken=hc8WVY
https://www.zotero.org/google-docs/?broken=hc8WVY
https://www.zotero.org/google-docs/?broken=hc8WVY
https://www.zotero.org/google-docs/?broken=hc8WVY
https://www.zotero.org/google-docs/?broken=hc8WVY
https://www.zotero.org/google-docs/?broken=Yygldd
https://www.zotero.org/google-docs/?broken=Yygldd
https://www.zotero.org/google-docs/?broken=Yygldd
https://www.zotero.org/google-docs/?broken=Yygldd
https://www.zotero.org/google-docs/?broken=hKQDkU
https://www.zotero.org/google-docs/?broken=hKQDkU
https://www.zotero.org/google-docs/?broken=hKQDkU
https://www.zotero.org/google-docs/?broken=hKQDkU
https://www.zotero.org/google-docs/?broken=hKQDkU
https://www.zotero.org/google-docs/?broken=oooQ5E
https://www.zotero.org/google-docs/?broken=oooQ5E
https://www.zotero.org/google-docs/?broken=oooQ5E
https://www.zotero.org/google-docs/?broken=oooQ5E
https://www.zotero.org/google-docs/?broken=oooQ5E
https://www.zotero.org/google-docs/?broken=oooQ5E
https://www.zotero.org/google-docs/?broken=oooQ5E
https://www.zotero.org/google-docs/?broken=Wlri7c
https://www.zotero.org/google-docs/?broken=Wlri7c
https://www.zotero.org/google-docs/?broken=Wlri7c
https://www.zotero.org/google-docs/?broken=Wlri7c
https://www.zotero.org/google-docs/?broken=Wlri7c
https://www.zotero.org/google-docs/?broken=121T3j
https://www.zotero.org/google-docs/?broken=121T3j
https://www.zotero.org/google-docs/?broken=121T3j
https://www.zotero.org/google-docs/?broken=121T3j
https://www.zotero.org/google-docs/?broken=121T3j
https://www.zotero.org/google-docs/?broken=121T3j
https://www.zotero.org/google-docs/?broken=121T3j
https://www.zotero.org/google-docs/?broken=121T3j
https://www.zotero.org/google-docs/?broken=121T3j
https://www.zotero.org/google-docs/?broken=X7oqcW
https://www.zotero.org/google-docs/?broken=X7oqcW
https://www.zotero.org/google-docs/?broken=X7oqcW
https://www.zotero.org/google-docs/?broken=X7oqcW
https://www.zotero.org/google-docs/?broken=X7oqcW
https://www.zotero.org/google-docs/?broken=00Gr4j
https://www.zotero.org/google-docs/?broken=00Gr4j
https://www.zotero.org/google-docs/?broken=00Gr4j
https://www.zotero.org/google-docs/?broken=00Gr4j
https://www.zotero.org/google-docs/?broken=00Gr4j
https://www.zotero.org/google-docs/?broken=00Gr4j
https://www.zotero.org/google-docs/?broken=00Gr4j
https://www.zotero.org/google-docs/?broken=00Gr4j
https://www.zotero.org/google-docs/?broken=00Gr4j
https://www.zotero.org/google-docs/?broken=mgbVm8
https://www.zotero.org/google-docs/?broken=mgbVm8
https://www.zotero.org/google-docs/?broken=mgbVm8
https://www.zotero.org/google-docs/?broken=mgbVm8
https://www.zotero.org/google-docs/?broken=mgbVm8
https://www.zotero.org/google-docs/?broken=mgbVm8
https://www.zotero.org/google-docs/?broken=mgbVm8
https://www.zotero.org/google-docs/?broken=mgbVm8
https://www.zotero.org/google-docs/?broken=mgbVm8
https://www.zotero.org/google-docs/?broken=mgbVm8
https://www.zotero.org/google-docs/?broken=mgbVm8
https://www.zotero.org/google-docs/?broken=VyMytc
https://www.zotero.org/google-docs/?broken=VyMytc
https://www.zotero.org/google-docs/?broken=VyMytc
https://www.zotero.org/google-docs/?broken=VyMytc
https://www.zotero.org/google-docs/?broken=ycSoYK
https://www.zotero.org/google-docs/?broken=ycSoYK

June 10, 2022, from

https://reactnative.dev/docs/intro-react-native-

components

Nunkesser, R. (2018). Beyond Web/Native/Hybrid: A

New Taxonomy for Mobile App Development. 5.

Pinto, C. M., & Coutinho, C. (2018). From Native to

Cross-platform Hybrid Development. 669–676.

IEEE. https://doi.org/10.1109/IS.2018.8710545

Quazi, F. U. R., & Sinha, N. (2018). Android-

Platform Based Determination of Fastest

CrossPlatform Framework. International Journal

of Computer Science and Mobile Computing, 7(9),

1–12.

Que, P., Guo, X., & Zhu, M. (2016). A

Comprehensive Comparison between Hybrid and

Native App Paradigms. 2016 8th International

Conference on Computational Intelligence and

Communication Networks (CICN), 611–614.

Tehri, India: IEEE.

https://doi.org/10.1109/CICN.2016.125

Ramel, D. (2022, May 24). .NET MAUI Reaches

General Availability, Replacing Xamarin.Forms.

Retrieved June 10, 2022, from

https://visualstudiomagazine.com/articles/2022/05/

24/net-maui-ga.aspx

Sciandra, L. (2019, April 9). The New React Native

Architecture Explained: Part Three. Retrieved

June 10, 2022, from

https://formidable.com/blog/2019/fabric-

turbomodules-part-3/

Shah, K., Sinha, H., & Mishra, P. (2019). Analysis of

Cross-Platform Mobile App Development Tools.

2019 IEEE 5th International Conference for

Convergence in Technology (I2CT), 1–7. Bombay,

India: IEEE.

https://doi.org/10.1109/I2CT45611.2019.903387

2

Singh, M., & Shobha, G. (2021). Comparative

Analysis of Hybrid Mobile App Development

Frameworks. International Journal of Soft

Computing and Engineering, 10(6), 21–26.

https://doi.org/10.35940/ijsce.F3518.0710621

S.Thakare, B., Shirodkar, D., Parween, N., &

Parween, S. (2014). State of Art Approaches to

Build Cross Platform Mobile Application.

International Journal of Computer Applications,

107(20), 22–23. https://doi.org/10.5120/18868-

0389

The Apache Software Foundation. (n.d.). Apache

Cordova Documentation—Overview. Retrieved

June 17, 2022, from

https://cordova.apache.org/docs/en/11.x/guide/o

verview/index.html

Vishal, K., & Kushwaha, A. S. (2018). Mobile

Application Development Research Based on

Xamarin Platform. 2018 4th International

Conference on Computing Sciences (ICCS),

115–118. Jalandhar: IEEE.

https://doi.org/10.1109/ICCS.2018.00027

Xanthopoulos, S., & Xinogalos, S. (2013). A

comparative analysis of cross-platform

development approaches for mobile applications.

Proceedings of the 6th Balkan Conference in

Informatics on - BCI ’13, 213. Thessaloniki,

Greece: ACM Press.

https://doi.org/10.1145/2490257.2490292

Zohud, T., & Zein, S. (2021). Cross-Platform

Mobile App Development in Industry: A

Multiple Case-Study. International Journal of

Computing, 46–54.

https://doi.org/10.47839/ijc.20.1.2091

Proceedings of the Central European Conference on Information and Intelligent Systems ___ 497

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

https://www.zotero.org/google-docs/?broken=ycSoYK
https://www.zotero.org/google-docs/?broken=ycSoYK
https://www.zotero.org/google-docs/?broken=ycSoYK
https://www.zotero.org/google-docs/?broken=z0kWKj
https://www.zotero.org/google-docs/?broken=z0kWKj
https://www.zotero.org/google-docs/?broken=z0kWKj
https://www.zotero.org/google-docs/?broken=z0kWKj
https://www.zotero.org/google-docs/?broken=vlGQVP
https://www.zotero.org/google-docs/?broken=vlGQVP
https://www.zotero.org/google-docs/?broken=vlGQVP
https://www.zotero.org/google-docs/?broken=vlGQVP
https://www.zotero.org/google-docs/?broken=vlGQVP
https://www.zotero.org/google-docs/?broken=ijVzBT
https://www.zotero.org/google-docs/?broken=ijVzBT
https://www.zotero.org/google-docs/?broken=ijVzBT
https://www.zotero.org/google-docs/?broken=ijVzBT
https://www.zotero.org/google-docs/?broken=ijVzBT
https://www.zotero.org/google-docs/?broken=ijVzBT
https://www.zotero.org/google-docs/?broken=ijVzBT
https://www.zotero.org/google-docs/?broken=ijVzBT
https://www.zotero.org/google-docs/?broken=ijVzBT
https://www.zotero.org/google-docs/?broken=uNdBWU
https://www.zotero.org/google-docs/?broken=uNdBWU
https://www.zotero.org/google-docs/?broken=uNdBWU
https://www.zotero.org/google-docs/?broken=uNdBWU
https://www.zotero.org/google-docs/?broken=uNdBWU
https://www.zotero.org/google-docs/?broken=uNdBWU
https://www.zotero.org/google-docs/?broken=uNdBWU
https://www.zotero.org/google-docs/?broken=uNdBWU
https://www.zotero.org/google-docs/?broken=uNdBWU
https://www.zotero.org/google-docs/?broken=8MQPR6
https://www.zotero.org/google-docs/?broken=8MQPR6
https://www.zotero.org/google-docs/?broken=8MQPR6
https://www.zotero.org/google-docs/?broken=8MQPR6
https://www.zotero.org/google-docs/?broken=8MQPR6
https://www.zotero.org/google-docs/?broken=aJXJVq
https://www.zotero.org/google-docs/?broken=aJXJVq
https://www.zotero.org/google-docs/?broken=aJXJVq
https://www.zotero.org/google-docs/?broken=aJXJVq
https://www.zotero.org/google-docs/?broken=aJXJVq
https://www.zotero.org/google-docs/?broken=tjru1s
https://www.zotero.org/google-docs/?broken=tjru1s
https://www.zotero.org/google-docs/?broken=tjru1s
https://www.zotero.org/google-docs/?broken=tjru1s
https://www.zotero.org/google-docs/?broken=tjru1s
https://www.zotero.org/google-docs/?broken=tjru1s
https://www.zotero.org/google-docs/?broken=tjru1s
https://www.zotero.org/google-docs/?broken=tjru1s
https://www.zotero.org/google-docs/?broken=YwA0T6
https://www.zotero.org/google-docs/?broken=YwA0T6
https://www.zotero.org/google-docs/?broken=YwA0T6
https://www.zotero.org/google-docs/?broken=YwA0T6
https://www.zotero.org/google-docs/?broken=YwA0T6
https://www.zotero.org/google-docs/?broken=YwA0T6
https://www.zotero.org/google-docs/?broken=YwA0T6
https://www.zotero.org/google-docs/?broken=YwA0T6
https://www.zotero.org/google-docs/?broken=YwA0T6
https://www.zotero.org/google-docs/?broken=Mrm9cc
https://www.zotero.org/google-docs/?broken=Mrm9cc
https://www.zotero.org/google-docs/?broken=Mrm9cc
https://www.zotero.org/google-docs/?broken=Mrm9cc
https://www.zotero.org/google-docs/?broken=Mrm9cc
https://www.zotero.org/google-docs/?broken=Mrm9cc
https://www.zotero.org/google-docs/?broken=Mrm9cc
https://www.zotero.org/google-docs/?broken=Mrm9cc
https://www.zotero.org/google-docs/?broken=Mrm9cc
https://www.zotero.org/google-docs/?broken=Mrm9cc
https://www.zotero.org/google-docs/?broken=4d9Ool
https://www.zotero.org/google-docs/?broken=4d9Ool
https://www.zotero.org/google-docs/?broken=4d9Ool
https://www.zotero.org/google-docs/?broken=4d9Ool
https://www.zotero.org/google-docs/?broken=4d9Ool
https://www.zotero.org/google-docs/?broken=MMhgTc
https://www.zotero.org/google-docs/?broken=MMhgTc
https://www.zotero.org/google-docs/?broken=MMhgTc
https://www.zotero.org/google-docs/?broken=MMhgTc
https://www.zotero.org/google-docs/?broken=MMhgTc
https://www.zotero.org/google-docs/?broken=MMhgTc
https://www.zotero.org/google-docs/?broken=MMhgTc
https://www.zotero.org/google-docs/?broken=MMhgTc
https://www.zotero.org/google-docs/?broken=fCOncC
https://www.zotero.org/google-docs/?broken=fCOncC
https://www.zotero.org/google-docs/?broken=fCOncC
https://www.zotero.org/google-docs/?broken=fCOncC
https://www.zotero.org/google-docs/?broken=fCOncC
https://www.zotero.org/google-docs/?broken=fCOncC
https://www.zotero.org/google-docs/?broken=fCOncC
https://www.zotero.org/google-docs/?broken=fCOncC
https://www.zotero.org/google-docs/?broken=fCOncC
https://www.zotero.org/google-docs/?broken=tR8G9Y
https://www.zotero.org/google-docs/?broken=tR8G9Y
https://www.zotero.org/google-docs/?broken=tR8G9Y
https://www.zotero.org/google-docs/?broken=tR8G9Y
https://www.zotero.org/google-docs/?broken=tR8G9Y
https://www.zotero.org/google-docs/?broken=tR8G9Y
https://www.zotero.org/google-docs/?broken=tR8G9Y

