
Evaluating the UX of a Microservice Web App:

CyberRanges in the μDevOps Project

Luis de-Marcos, José-María Gutiérrez-Martínez, Adrián Domínguez-Díaz,

Sergio Caro-Álvaro, Daniel Rodríguez

Universidad de Alcalá. Dpto. de Ciencias de la Computación.

Edificio Politécnico. Campus Universitario. Alcalá de Henares. 28805. Madrid. Spain

{luis.demarcos, josem.gutierrez, adrian.dominguez,

sergio.caro, daniel.rodriguezg}@uah.es

Abstract. Microservice architectures are becoming

increasingly important since they facilitate agile and

modular production cycles to deliver applications

using collections of loosely coupled and fine-grained

services. The μDevOps is a research project formed

by an international network of organizations

including industry and academia that aims to tackle

current challenges of microservice development

operations. This paper presents the μDevOps project

and the initial research carried out to evaluate the

user experience of a microservice web application
that delivers cybersecurity learning. Results point to

critical elements of three main functionalities: library

of scenarios, scenario information and entering

scenario. Since there are several currently available

solutions that offer similar services, the user

experience of the microservice web app may play a

critical role in determining which application will get

a dominant role in the market.

Keywords. User experience, microservice, usability,

web application, cyberrange.

1 Introduction

Software industry has quickly moved toward ultra-

agile and modular production cycles to deliver

flexible, scalable, and user-centric applications in a

timely way. A DevOps (Development Operations)

process is a recent paradigm that puts together

important advancements at architectural design,

development, and deployment level. At architectural

level, Microservices are an important evolution of

service-oriented architectures aiming at structuring

applications as a collection of loosely coupled and
fine-grained services: it fosters a high modularity to

make the application easier to understand, develop

and test, and to facilitate the deployment, execution,

and maintenance. At development and deployment

level, DevOps stresses the agile code production by

engaging the operational phase earlier in the

development cycle: it fosters communication,

collaboration and integration between development

and IT operation teams, to favour rapid and

continuous delivery cycles. The whole process is

supported by new technologies (e.g., containers for

deployment and cloud platforms at infrastructural

level), which greatly alleviate several manual tasks,

saving technical stakeholders time to deliver greater

value. Even though Microservices and DevOps

originate independently, they share the same set of

principles and cultural background, stressing concepts

like agility, flexibility, scalability, automation, user-
oriented development, and cloud-based provisioning.

Today they are viewed as a complement to each other,

and likely, this production paradigm will underlie

many software applications in the next years.

While researchers and practitioners have well

caught the advantages of the interplay between the

development and IT operation teams, this is by far not

true for the third pillar of μDevOps, namely the

quality assurance team. Software quality (SQ) is a

pivotal asset and a key business driver for today’s IT

industry (Jones & Bonsignour, 2011). Innovation in
this field has significant market opportunities for non-

academic participants in the project. SQ embodies a

wide set of non-functional requirements (in this

context identified as Quality-of-Service (QoS)

attributes) deemed crucial by end users, such as:

security, reliability, performance, availability,

usability. “Failures” in satisfying these requirements

entail a large part of the business risk associated with

a software product, as they can determine completely

its success or failure. The continuous awareness,

during development or operation, of user-perceived

quality in the context where the system operates is
paramount for decision-makers.

The μDevOps project aims to address all these

challenges by forming an international and inter-

sectoral network of organisations working on a joint

research programme in the field of Software Quality

Assurance (SQA) for Microservice Development

Operations (we coin it as μDevOps) engineering

processes. This paper presents μDevOps project and

the initial findings of the work done to evaluate the

Proceedings of the Central European Conference on Information and Intelligent Systems ___ 471

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

UX of a microservices web application. Since the UX

plays a significant role in the success of an

application, it is deemed critical to assess and create

an infrastructure to continuously evaluate user

experience. The rest of the paper is structured as

follows. Section 2 introduces the μDevOps project.

Section 3 presents the state of the art. Section 4

briefly outlines the approach. Section 5 reports initial

findings. The paper concludes with final remarks and

future research.

2 The μDevOps Project

Boundaries between development and operations are
blurred and a highly dynamic environment demands

for a new view of the role of testing for SQA. The

μDevOps project grounds on the idea that the

operational-time contextual information is destined to

be predominant, and any realistic quality practice will

not work if disregards it. The μDevOps research and

innovation action intends to tackle the described

challenges by promoting a cultural shift that places

testing as a key cornerstone between the development

and operation phases

This would amplify the intertwining and synergy
between development and operations in the μDevOps

paradigm, but requires a mind-set change that this

project intends to promote. Toward this long-term

goal, the proposers will implement a joint research

program based on knowledge exchange between

academic and industrial partners. The knowledge

exchange program will revolve around the study,

definition, implementation, and validation of a

context-driven risk-based SQA testing process in

μDevOps, including four scientific objectives:

• Context Learning: the objective is to study

and develop new modelling and learning
strategies to dynamically characterize the

operational context of the microservice-

based software under test at runtime

• Continuous in vivo testing: the objective is to

define and develop techniques for in vivo

tests generation and execution for μDevOps

environment

• Risk Assessment to risk-based SQA in

μDevOps: the objective is to study and

develop metrics and methods to provide

quantitative measures of the business risk of
using a given functionality.

• μDevOps Development & Testing as a

Service (D&TaaS): the objective is to make

everything easily accessible and usable by a

cloud infrastructure where both μDevOps-

based development and testing will be

offered as a service.

We structured the research programme in Work

Packages. Figure 1 shows the work packages and the

workflow of the project, providing an overview of the

inter-relationship between WPs.

Figure 1. μDevOps project. Workflow of work

packages

3 Testing and SQA in Microservices

Testing has been extensively investigated in the

software architecture area, but it is still an open

problem when dealing with microservice-based

systems (Jones & Bonsignour, 2011). Indeed, testing
microservice-based systems is extremely challenging,

mainly because tools must be agnostic to the

programming language and runtime environment of

each microservice and because of the extremely rapid

evolution of the business logic of each microservice

within the system (Di Francesco et al., 2019). A

limited number of testing approaches have been

proposed. Schermann et al. (2016) propose “Bifrost”,

a formal model for defining and automatically

enacting live testing strategies for supporting multi-

phase release strategies of microservice-based

systems, with acceptable performance overhead under
many release strategies in parallel. Release strategies

are defined using a YAML-based Domain-Specific

Language (DSL), thus allowing strategies to be

transparently shared, reused, and versioned across

projects and organisations. Heorhiadi et al. (2016)

presented “Gremlin”, a purely network-oriented,

systematic resiliency-testing framework inspired by

software-defined networks. In Gremlin, a centralized

control plane allows operators to provide high-level

outage scenarios and assertions on how microservices

should react during outages. Then, Gremlin
automatically translates this information into a fixed

set of fault injection rules applied to the network

messages exchanged between microservices via

network proxies. Experiments show that Gremlin can

provide low-latency feedback to operators, and that

the learning curve for creating scenarios and

assertions is minimal. An architecture for automating

acceptance testing in the context of microservice-

based systems is proposed in (Schermann et al.,

2016). The architecture heavily relies on Behaviour-

Driven Development (BDD), where acceptance tests
are defined as scenarios conforming to a simple

syntax, even accessible by business stakeholders. The

approach ensures that all microservices meet

472 ___ Proceedings of the Central European Conference on Information and Intelligent Systems

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

requirements related to reusability, auditability, and

maintainability. For what concerns SQA of

microservices, performance (e.g., (Mazedur & Gao,

2015; Holger, 2016)) and maintainability (e.g.,

(Düllmann et al., 2017a; Hasselbring, 2017)) are the

most investigated quality attributes in the state of the

art. Many methods and techniques focussing on

system performance have a special focus on

scalability (Jones & Bonsignour, 2011), suggesting

that researchers consider scalability as a sub-problem
of performance when architecting with microservices.

For example, O'Connor et al., 2017 presented a

polyglot (i.e., supporting microservices developed in

different languages, e.g., Java, JavaScript) auto

scaling technique for the IBM Bluemix platform. The

technique enables engineers to describe policies and

set thresholds for scaling microservice-based

applications based on their CPU, memory, and heap

usage, and supports a shared multi-tenancy

deployment model and it is delivered as managed

cloud services. For what concerns maintainability, the
relatively high scientific interest it is attracting might

be related to the highly distributed nature of

microservice-based systems and their inherent focus

on services independence. As an example, Nuha et al.

(2016) presented “MicroART”, a technique for semi-

automatically reconstructing the architecture of

microservice-based systems to ease their maintenance

and comprehension. MicroART is based on the

Model-Driven Engineering paradigm (Seelam et al.,

2015) and it reconstructs the software architecture of

the system by mining the GitHub repositories with

microservices source code and reusing existing
monitoring platforms (e.g., New Relic). Other

qualities are less explored with respect to performance

and maintainability, including services compatibility

(e.g., (Granchelli., 2017, Schmidt & Douglas, 2006)),

security (e.g., (Sara et al., 2017, Viennot et al.,

2015)), portability (e.g., (Yuqiong et al., 2015, Yahia

et al., 2016)), or organisational alignment (Linthicum,

2016).

Relevant DevOps practices that relate to testing

and SQA are continuous delivery (Justus &

Zimmermann, 2016) and continuous monitoring
(Jambunathan & Kalpana, 2016). In continuous

delivery pipelines, testing activities are automated,

using technologies as Cucumber or Selenium (Farley

& Humble, 2010). However, it is an open challenge

how to select the right load tests in such pipelines:

with frequent releases, the capacity for executing load

tests become critical and the need to select the right

tests for maximum insight becomes crucial. One

solution adopted in practice is canary testing, in which

a new release is delivered to a few users for live

testing. Ongoing efforts aim at providing more

systematic support, such as the architecture-based
performance engineering platform CASPA (van

Hoorn et al., 2009). Currently, the main aim is to

identify regressions over time (Aderaldo et al., 2017).

No solutions have been proposed yet to systematically

test systems for unexpected contexts. Overall, the

activities are still usually separated between

development and operation: while models and

predictions may be used at development time to

support design decisions, measurements-based

approaches such as application performance

management and monitoring are used at operation

time. Initial approaches to reconcile both have been

suggested, such as iObserve (Düllmann et al., 2017b)

and CIPM (Mazkatli & Koziolek, 2018). Security
testing in DevOps is also a relevant concern. There

are tools helping to extract and automate tests to

check for security issues, e.g., BDD-Security, Mittn

by F-Secure, Contrast Security and Gauntlt. These are

usually coupled with other means, like code analysis

(e.g., tools like Veracode to scan the code to find

vulnerabilities), runtime checks, cloud infrastructure

best practices to check for configurations security best

practices (e.g., Microsoft Azure Advisor, evident.io).

DevSecOps refers to the practices to build security

testing into DevOps. Reliability testing is much less
investigated. An approach indirectly useful for

reliability is the WESSBAS approach for the usage

profile modelling (Vögele et al., 2016), which extracts

probabilistic workload from measurements at

operation time to inform models and decision-making

at development-time.

4 Case Study: The CyberRanges

Web Application

A cyber range is a virtual environment commonly

used to provide a secure, legal environment for

cybersecurity education, practice, and training.

Isolation from threats is ensured by providing trainees

the ability to recognize and respond to real-world

challenges in a controlled environment. This approach

guarantees that client infrastructure and data is never

at risk because of the cybersecurity training (Aries
Security, 2020).

CyberRanges1 is a web application (Figure 2)

developed by Silensec that delivers cyber security

training and capability development exercises using

technology and services for the design, delivery, and

management of simulation-based, deep-dive

experiences. It can be used to learn, train, test,

measure, and improve the digital dexterity and cyber

resilience of professionals, teams, and organizations

by using a platform and technology that resembles a

real-world scenario. CyberRanges uses a microservice
architecture that strongly focuses on the functionality

of the platform.

Since there are several competitors offering cyber

range solutions, to get a dominant position is not only

required to provide the better offering, in terms of

functionality, library of scenarios and user base. But it

1 https://www.cyberranges.com/

Proceedings of the Central European Conference on Information and Intelligent Systems ___ 473

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

https://www.cyberranges.com/

is also necessary to offer a seamless user experience

that provides a meaningful and relevant interaction.

Competitors to consider and compare include openly

accessible solutions like TryHackMe2 and

HackTheBox3, and commercial solutions that require

a paid account like RangeForce4 or ImmersiveLabs5.

Similarly, online teaching and learning marketplaces

like Udemy provide compelling and intuitive user

experiences but lack of simulation required for cyber

ranges.
The development team of the company assessed

the UX strengths and weaknesses of the CyberRanges

application based on the skills and competences of

their staff. They identified a set of needs that could be

addressed by the researchers. These needs can be

summarized as follows: (1) Evaluate and redesign the

UX for a more user-friendly experience, particularly

simplifying the interface for the construction of

scenarios and the UX inside them by suggesting

changes to the actionable UI elements. For instance,

changes are required in the interface to enter a
scenario, in the library of scenarios (e.g., provide a

more organic filter, better scrolling, and more on-

screen information) as well as a possible redesign the

statistics web page. (2) Get a better understanding of

the process to build improve UX including the stages

and steps (e.g., analysis, validation, etc.) to make it

agile and incorporate feedback effectively. (3) Define

the data to bring out and use for continuous

improvement of UX (e.g., logs). Secondary less

urgent needs include improving the analytics by

suggesting new charts or changes to existing ones and

analyzing the gamified elements and gameful design
of the platform.

The case study presented here offers significant

research possibilities in terms of the experimental

testing and evaluation of the platform. Since

cyberranges.com is going to publicly available soon,

this opens the possibility for massive data collection.

It would be possible soon to design and run

experiments related to UX and user interaction.

2 https://tryhackme.com
3 https://www.hackthebox.com
4 https://www.rangeforce.com
5 https://www.immersivelabs.com

5 Approach for User Experience

Evaluation

The sheer number of existing usability and UX

evaluation methods includes, among others,

observation, self-reporting, visual designs, idea

descriptions, interaction analysis, lab tests, field

studies and market feedback. The selection of one or

other usually relies on the phase of product

development, period of experience to evaluate and

desired feedback. For instance, a visual design can be

useful to assess the emotional expressions and

reactions of a non-functional prototype or concept,

while a field study (e.g., experience sampling or day

reconstruction method) can be used to evaluate the
long-term experience of a functional prototype.

Among the myriad of approaches, the μDevOps

project opted for expert evaluation using sources like

Yablonski’s (2020) laws of UX and usability

engineering. Given current state of the application and

deployment plans for the subsequent months, we

chose a method that can expedite the feedback

required by the developers to improve the UX before

launch. The usability evaluation was run by a group

of three experts. Evaluation was performed during

one month during Spring 2022. Experts meet initially
to determine the goals, parameters, and steps for the

study. They followed the template suggested by the

Nielsen Norman Group6. The usability evaluation

focused on the following functionalities: library of

scenarios, scenario information, and entering

scenario. These core functionalities to be subject of

evaluation were pointed by the company development

team based on their perceptions of what are more

critical for their users. Each expert evaluated the user

interface separately and they all joined to write the

final report. The remaining of the paper summarizes

the findings on which all evaluators agreed in their
final report.

To further improve the evaluation process in the

future, we can also explore the existing logs of the

web application and implement the necessary changes

in those logs to gather meaningful information about

the user interaction that can be used to further

improve the user experience.

6 NN/g Checklist for Planning Usability Studies.

https://www.nngroup.com/articles/usability-test-checklist/

474 ___ Proceedings of the Central European Conference on Information and Intelligent Systems

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

https://tryhackme.com/
https://www.hackthebox.com/
https://www.rangeforce.com/
https://www.immersivelabs.com/
https://www.nngroup.com/articles/usability-test-checklist/

Figure 2. Cyberranges web app dashboard

6 Initial Findings

This section provides examples of the results of the

evaluation of the user experience for three

functionalities of the CyberRanges application: library

of scenarios (Figure 3), scenario information (Figure

4) and entering scenario (Figure 5). We report here

the functionalities that returned more issues according

to the experts’ evaluation.

The library of scenarios implements horizontal
browsing for the elements which presents two

usability issues. First, common usability heuristics

suggests that horizontal scrolling is not recommended

to present information. Second, the interface elements

(buttons) that enable the horizontal browsing are only

visible upon rollover of the mouse cursor. Also, in the

library of scenarios assessment it was noticed that,

upon application of a filter, the presentation of the list

of scenarios changes substantially. The suggestion is

to present the filtered output using a similar layout.

In the interface that shows information about
scenarios, assessment found that the categories shown

are different to the ones showed in the library.

Apparently, the library contains tags for the whole

collection while the scenario information screen

shows the keywords. This is confusing. Suggestions

include: (1) include the tags of the library also in the

scenario information screen, (2) make clear that they

represent different sets, and (3) make them clickable

so that the user can access all the scenarios with same

tags and keywords with just one action. In the

scenario information interface, experts also suggest

including an element (e.g., a button) to return to the

library. In the current implementation the user needs

to use the main menu on the right.

In the scenario loading user interface, it was

suggested to improve the visibility of the loading bar.

Recommendations are particularly focus on the fact
that loading a scenario usually take a long time. The

current bar’s size and location on the top of the screen

may prevent the user to see it initially, thus missing

the important information it shows at a critical

moment. The bar contrast with big ‘Loading…’ label

at the bottom right that captures initial user attention.

A wider suggestion is to rearrange the scenario

loading UI. The screen presents parts that are mostly

empty. Although the interface has a good approach,

using tabs to present the mission, rules and

leaderboards, designers may consider including

further information and fill the empty spaces if
needed, since the user may spend a substantial amount

of time in this screen while the scenario loads. This

may probably require motivating scenario creators to

include all the additional information, which may be

done by informing them of the space and time

available. Similarly, the scenario loading screen could

be used to provide required technical information that

the user needs to complete it. For instance, the

configuration of the VPN is shown on the main

screen, but it would also be a good idea to include

other reminders or links while loading.

Proceedings of the Central European Conference on Information and Intelligent Systems ___ 475

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

Figure 3. Scenario information

Figure 4. Scenario information

Figure 5. Scenario loading

476 ___ Proceedings of the Central European Conference on Information and Intelligent Systems

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

7 Conclusion & Future Work

This paper described the initial approach and findings

for the evaluation of the UX for experiential learning

in the context of the CyberRanges web application for

the μDevOps project. We initially presented the

challenges of the microservices architectures that the

μDevOps aims to address. We then introduced the

case study of CyberRanges web application and the

need for user experience evaluation in the context of

microservices architectures. Initial findings suggest

several improvements for critical functionalities of the

application including the library of scenarios, the
scenario information screen, and the scenario loading

interface. Suggestions aim at dealing with important

usability issues and improving the user experience.

Since there are several commercial applications that

offer cyber ranges and similar cybersecurity trainings,

the user experience may play key role in the

competition for determining which groups of

solutions takes a significant part of the market share.

Future research can further dive into other

approaches to UX evaluation that could be especially

suitable for scientific objectives of the μDevOps
project. Focusing on the first scientific objective,

collecting real-time UX metrics could help to

dynamically characterize the operational context of

the microservice-based application, in terms of usage

profile. This information could be used to improve the

SQA processes by focusing testing efforts on those

specific features in which more user experience issues

are found. The integration of this data with artificial

intelligence and machine learning techniques could

help to create user models that predict UX problems,

as well as to generate in-vivo test based on UX

collected data and found issues. Another interesting
problem in terms of UI and UX is to automatically

create and manage replicas of corporate apps for

CyberRanges exercises and other cybersecurity

training.

Acknowledgments

This project has received funding from the European

Union’s Horizon 2020 research and innovation

programme under the Marie Skłodowska-Curie grant

agreement No 871342

References

Aderaldo, C. M., Mendonça, N. C., Pahl, C., &

Jamshidi, P. (2017, May). Benchmark

requirements for microservices architecture

research. In Proceedings of the 1st International

Workshop on Establishing the Community-Wide
Infrastructure for Architecture-Based Software

Engineering (pp. 8-13). IEEE Press.

Aries Security. (2020). What is a Cyber Range? A

Definitive Guide and Definition.

https://www.ariessecurity.com/what-is-a-cyber-

range-a-definitive-guide-and-definition/ [Accessed

on 24th May 2022]

Di Francesco, P., Malavolta, I., Lago, P. Architecting

with Microservices: a Systematic Mapping Study,

Journal of Systemsand Software, 2019.

Düllmann, Thomas F., and André van Hoorn. Model-

driven Generation of Microservice Architectures
for Benchmarking Performance and Resilience

Engineering Approaches. Proceedings of the 8th

ACM/SPEC on International Conference on

Performance Engineering Companion. ACM,

2017.

Thomas F. Düllmann, Robert Heinrich, Andre van

Hoorn, Teerat Pitakrat, Jürgen Walter, and Felix

Willnecker. Caspa: A platform for comparability

of architecture-based software performance

engineering approaches. In Proceedings of the

2017 IEEE International Conference on Software
Architecture (ICSA 2017), 2017. IEEE Internation

Conference on Software Architecture Workshops.

2017.

D. Farley and J. Humble, Continuous Delivery:

Reliable software releases through Build, Test and

Deployment Automation . Addison-Wesley

Professional, 2010.

Granchelli, G., Cardarelli, M., Di Francesco, P.,

Malavolta, I., Iovino, L., Di Salle, A. MicroART:

A Software Architecture Recovery Tool

forMaintaining Microservice-based Systems. In

Software Architecture Workshops (ICSAW), 2017
IEEE International Conference on (pp. 298-302).

IEEE.

Hasselbring, Wilhelm, and Steinacker. Microservice

architectures for scalability, agility and reliability

in E-commerce. Software Architecture Workshops

(ICSAW), 2017 IEEE International Conference

on. IEEE, 2017.ç

Heorhiadi, V., Rajagopalan, S., Jamjoom, H., Reiter,

M. K., & Sekar, V. (2016, June). Gremlin:

systematic resilience testing of microservices.

IEEE 36th International Conference on
Distributed Computing Systems (ICDCS), 2016

(pp. 57-66).

K. Holger. Sustaining runtime performance while

incrementally modernizing transactional

monolithic software towards microservices.

Proceedings of the 7th ACM/SPEC on

International Conference on Performance

Engineering. ACM, 2016.

Baskaran Jambunathan and Y Kalpana. Multi cloud

deployment with containers. International Journal

of Engineering and Technology (IJET), 8(1):421–

428, 2016.

Proceedings of the Central European Conference on Information and Intelligent Systems ___ 477

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

C. Jones, O. Bonsignour, The Economics of Software

Quality, FINANCIAL TIMES/PRENTICE HALL,

2011.

Bogner Justus, and Alfred Zimmermann. "Towards

integrating microservices with adaptable

enterprise architecture." Enterprise Distributed

Object Computing Workshop (EDOCW), 2016

IEEE 20th International. IEEE, 2016.

Linthicum, David S. "Practical use of microservices in

moving workloads to the cloud." IEEE Cloud

Computing 3.5 (2016): 6-9.

Rahman Mazedur, Jerry Gao. A reusable automated

acceptance testing architecture for microservices

in behavior-driven development. IEEE

Symposium on Service-Oriented System

Engineering (SOSE), IEEE, 2015.

Manar Mazkatli and Anne Koziolek. Continuous

integration of performance model. In The 9th

ACM/SPEC on International Conference on

Performance Engineering Companion, Berlin,

Germany, 2018, ICPE '18 Companion. ACM,

New York, NY, USA. 2018.

Alshuqayran Nuha, Nour Ali, and Roger Evans. A

systematic mapping study in microservice

architecture. 9th International Conference on

Service-Oriented Computing and Applications

(SOCA). IEEE, 2016.

O'Connor Rory V., Peter Elger, and Paul M. Clarke.

Continuous software engineering —A

microservices architecture perspective. Journal of

Software: Evolution and Process 29.11 (2017).

Hassan Sara, Nour Ali, and Rami Bahsoon.

"Microservice Ambients: An Architectural Meta-
modelling Approach for Microservice

Granularity." Software Architecture (ICSA), 2017

IEEE International Conference on. IEEE, 2017.

Gerald Schermann, Dominik Schöni, Philipp Leitner,

and Harald C. Gall. Bifrost: Supporting

Continuous Deployment with Automated

Enactment of Multi-Phase Live Testing Strategies.

In Proceedings of the 17th International

Middleware Conference (Middleware). 2016.

ACM, New York, NY, USA.

Schmidt, Douglas C. "Model-driven engineering."

COMPUTER-IEEE COMPUTER SOCIETY-39.2

(2006): 25.

Seelam, S. R., Dettori, P., Westerink, P., & Yang, B.

B. (2015, March). Polyglot Application Auto

Scaling Service for Platform as a Service Cloud.
In Cloud Engineering (IC2E), 2015 IEEE

International Conference on (pp. 84-91). IEEE.

A. van Hoorn, M. Rohr, W. Hasselbring, J. Waller, J.

Ehlers, S. Frey, and D. Kieselhorst, “Continuous

monitoring of software services: Design and

application of the kieker framework,” 2009.

Viennot, N., Lécuyer, M., Bell, J., Geambasu, R., &

Nieh, J. (2015, April). Synapse: a microservices

architecture for heterogeneous-database web

applications. In Proceedings of the Tenth

European Conference on Computer Systems (p.

21). ACM.

Vögele, C., van Hoorn, A., Schulz, E., Hasselbring,

W., & Krcmar, H. (2016). WESSBAS: Extraction

of probabilistic workload specifications for load

testing and performance prediction—A model-

driven approach for session-based application

systems. Software & Systems Modeling, 1-35

Yablonski, J. (2020). Laws of UX. O'Reilly Media.

Yahia, E. B. H., Réveillère, L., Bromberg, Y. D.,

Chevalier, R., & Cadot, A. Medley: An event-

driven lightweight platform for service

composition. In International Conference on Web

Engineering (pp. 3-20). Springer, 2016.

Sun Yuqiong, Susanta Nanda, and Trent Jaeger.

"Security-as-a-service for microservices-based

cloud applications." Cloud Computing

Technology and Science (CloudCom), 2015 IEEE

7th International Conference on. IEEE, 2015.

478 ___ Proceedings of the Central European Conference on Information and Intelligent Systems

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

