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Abstract. Modern plagiarism detection tools calcu-
late the percentage of the similarity between two given
source code files. In academia, the process of check-
ing for potential plagiarized students solutions can be
challenging in terms of resources due to the large num-
ber of combinations between many students. In such
conditions, the reliability of plagiarism detection tools
may be put to risk. Every plagiarism detection tool
produces a similarity report as files containing the re-
sults of the analysis for each pair of analyzed source
code files. While such a report is useful for a one-time
checking, sometimes it is needed to store the result data
for future use. In our previous work, the results were
stored in a relational database and a list of relevant
queries was defined for meaningful analysis. Neverthe-
less, the large number of pair-wise impacts the storage
and query execution speeds. In this paper, we present
a solution to this problem by importing the similar-
ity analysis data into a graph database and evaluate
the difference in the query execution speed between a
graph and a relational database.
Keywords. plagiarism, graph databases, similarity de-
tection

1 Introduction
In academia, students are required to do homework
assignments as part of their course evaluation. One
problem that teachers have with homework assign-
ments is plagiarism. Plagiarism is "the act of taking
the writings of another person and passing them off
as one’s own" according to (Encyclopædia Britannica
Inc, 2015). There is a similar problem called collusion
which means "working together to produce assessed
work in circumstances where this is forbidden" (Bar-
rett and Cox, 2005). The main difference is that in
collusion the original author knows and participates in
the process of cheating. While there are many defini-
tions what constitutes plagiarism in this paper the defi-
nition from (Novak, 2020) will be used which is defin-
ing specifically source-code plagiarism and it seems
the most accurate in this case: "Plagiarism, in pro-
gramming assignments, is the act of taking a significant
amount of source-code parts (up to the entire source-
code) from other students or from the Internet and us-

ing it without noting its origin. A ’significant amount’
means that the similarity between two solutions of a
programming assignment is high enough that an expert
(teacher, ethical board, etc.) considers specific student
work as sufficiently ’real’ plagiarism to accuse the stu-
dent of plagiarism.".

The main problem when dealing with plagiarism
is how to find out that plagiarism is taking place. In
small classrooms this is not a big issue just by grading
the assignments the teacher notices similarity and can
act accordingly. But in big classrooms (100 or more
students) it is impossible to remember every solution
and compare them. In such situations, similarity de-
tection tools are a significant assistance. Such tools
are often called plagiarism detection tools yet it’s not
really what they perform rather for what purpose they
are used. So-called plagiarism detection tools calcu-
late the percentage of the similarity between two given
files. Some tools are for text and some are specialized
for source-code. A good comparison can be found in
(Ragkhitwetsagul et al., 2016; Novak et al., 2019). As
already mentioned, in this paper the focus is on source-
code similarity since the chosen courses are program-
ming courses.

Plagiarism detection tool produces a similarity re-
ports as files and while such a report is useful for a
one-time checking, sometimes it is needed to store the
result data for future use. In our previous work, the
results were stored in a relational database and list of
relevant queries was defined for meaningful analysis.
Nevertheless, the large number of pair-wise impacts the
storage and query execution speeds. In this paper, we
present a solution to this problem by importing the sim-
ilarity analysis data into a graph database and evaluate
the difference in the query execution speed between a
graph and a relational database.

Section 2 gives the related work. In section 3 the
plagiarism detection process is presented and more de-
tails about concrete problem are given. Section 4 de-
scribes the methodology and section 5 describes the
transition to graph database. Section 6 presents and
discusses the query execution results in both databases
and section 7 concludes.
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2 Related work
In works like (Joy and Luck, 1999; Martins et al., 2015;
Ðurić and Gašević, 2013) various similarity detections
are performed with the purpose of detecting plagiarism
in academia source-code assignments. The first works
date back to 80’s like (Donaldson et al., 1981). But,
when looking for plagiarism detection engines or sim-
ilarity detection engines that use graph database, there
is not much work done. There is a paper by (Arora
et al., 2021) where they use graph databases to visual-
ize the code structure so it can be analysed. Likewise,
in (Tyagi et al., 2022) they are "converting a Java pro-
gram into a specialized dependency graph". On the
other hand there are a lot of papers like (Esser and
Fahland, 2021; Timón-Reina et al., 2021; Šestak et al.,
2021) and books (e.g. (Robinson et al., 2015)) about
graph databases and their usage in various areas (e.g.
Facebook’s Open Graph, Google’s Knowledge Graph,
Twitter’s FlockD) as stated by (Miller, 2013). In this
paper we want to apply graph databases in the context
of plagiarism detection and see if we can get good re-
sults. In difference to the previously mentioned work in
this paper we use the typical similarity detection tools
(e.g. Sherlock, jPlag) for detection and graph database
in the analysis’s phase. More details about the tools are
given in the next section.

3 Plagiarism detection process
In (Ðurić and Gašević, 2013; Kermek and Novak,
2016) the process of plagiarism detection is described,
which can be divided into four main phases: prepara-
tion phase, preprocessing phase, detection phase and
result analysis phase. The preparation phase is usu-
ally not complicated, especially if students submit as-
signments in Learning Management Systems like Moo-
dle, it includes downloading the code and passing it
to the preprocessing phase. Preprocessing phase deals
with cleaning the data before detection and an in-depth
analysis of the effectiveness of preprocessing was done
in (Kleiman and Kowaltowski, 2009; Ðurić and Gaše-
vić, 2013; Novak, 2020). Afterwards, the similarity is
calculated using tools like SIM (Grune and Huntjens,
1989), Sherlock (Joy and Luck, 1999), JPlag (Prechelt
et al., 2002) etc. These tools produce output in various
forms, but usually the data is displayed in a table form
(Prechelt et al., 2002; Grune and Huntjens, 1989) or
graph form (Joy and Luck, 1999; Novak et al., 2021).
This process normally takes a while depending on the
number of submissions and the code lengths of each
submission. At last, the data is analysed by the teacher
by looking at the highest similarities mainly in side-by-
side comparison and deciding if plagiarism is taking
place.

While our process is the same in the first three phases
the analysis phase differs. In our case, students can
submit their assignments at different points of time

usually before an exam. According to the faculty reg-
ulations, a student can retake the exam (if he does not
pass) up to eight times in four years. Therefore students
from different academic years submit their projects be-
fore each exam. In order to make sure that students
did not use the projects or parts of the projects from
students that already passed, the course plagiarism de-
tection needs to be performed before each exam. The
comparisons are done between student projects from
the same academic year since they have the same as-
signment. The project assignment is to build up a full-
featured web application that in the end has around
1500-5000 lines of code (LOC). In order to not repeat
detections that were already done, the data is stored in
a relational database. Then before each exam, a query
is performed to get similarities larger than 30% for stu-
dents that are taking the exam. If high similarities oc-
cur, then projects similarities are analysed manually
and if plagiarism is taking place the student can not
take the exam and is reported to the ethical board.

Conducting plagiarism analysis happens right before
every exam for each applied student. Number of ex-
amined students can vary from one student to roughly
one hundred. The issue here is that over the years the
database became quite large (over 1.200.000 data) and
the query executions became slow. By looking at the
MySQL process status it was noticed that sometimes a
query would take up to 1 minute to execute. This can
be problematic if 50 students apply for an exam so it
takes up too much time to execute all queries for all
applied students. Naturally, the execution not only de-
pends on the number of students that applied but also
on the server load, the number of plagiarised matches,
etc. It is not possible to influence the server load, also
the number of plagiarised matches is not something
that can be changed and many other factors are out of
our reach. But maybe the query executions can be im-
proved by cleaning up the database of old data, which
didn’t solve the problem. Afterwards, we tried to op-
timize the queries so that only one complex query is
submitted instead of multiple queries. While it seemed
better at first, by monitoring the query times in MySQL
process status we noticed that some queries still took
around 40 seconds. The query that was used looked
like this:

SELECT nameP,similarity,fileType
FROM (SELECT

CONCAT(‘username1‘,’-’,‘username2‘)
as nameP,
‘username1‘ , ‘username2‘ ,
‘fileType‘ ,
SUM( ‘similarity‘ ) as ‘similarity‘

FROM ‘matches‘
WHERE
(username1=’studentA’

OR username2=’studentA’)
GROUP BY ‘username1‘ , ‘username2‘,
‘fileType‘
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order by similarity DESC) as temp
WHERE ‘similarity‘ > 20

Mentioned query returns information about which
student has significantly high similarity to observed
student. Nested query produces results which includes
observed student and his observed pairs and their total
of similarities by file type.

It might be that the query can be further optimised
but since there is a work about graph databases that
shows their advantage over the relational database like
(Cheng et al., 2019) the idea is to migrate the data to
a graph database and see if the query execution will be
significantly faster.

4 Methodology
To verify if graph database is a good choice in this sit-
uation we performed an experiment. To have compara-
ble results the experiment was done for both databases
on the same machine with 4GB of RAM and 4CPU
cores. We are aware that it’s recommended to have at
least 8GB of RAM for Neo4j but we wanted to perform
experiment in environment which can be used by an in-
dividual teacher. We are aware that needs for used tools
are not met, but if we manage to improve the times on
such hardware then it is the expectation that the times
will be even better on a server.

In the experiment we will measure time to execute
the query for 1 student, 33 students and two times
the same 33 students which makes a total of 66 stu-
dents. Also, further improvement of the MySQL query
was performed and at last the query used for testing in
MySQL looks like this:

SELECT CONCAT(‘username1‘,’-’,‘username2‘)
AS imeP,
SUM(similarity) as similarity,fileType

FROM matches
WHERE (username1=’studentA’

OR username2=’studentA’)
GROUP BY ‘username1‘ ,

‘username2‘, ‘fileType‘
HAVING SUM(similarity) > 20
ORDER BY similarity DESC

First of all, query is filtering all data by examined
student username. Query then produces totals of simi-
larities between examined student and its pair student.
Finally, query filters only the results in which similarity
is greater than some number, in this case twenty.

Before conducting the experiment, all data needs to
be transitioned to the graph database.

5 Transition to graph database
In order to transition to a graph database the data
was exported from a relational database and stored

Figure 1: Graph Database schema

first as a CSV file. CSV file was then used for im-
porting data into graph database. Neo4j 1 was used
for graph database and installing it was very sim-
ple but the main problem was importing all the data
into the database. The data for import was stored at
/var/lib/neo4j/import directory so it can be loaded
with:

LOAD CSV WITH HEADERS FROM
"file:///matches.csv" as line
CREATE(:Plagijat{file1: line.file1,
file2:line.file2,
similarity:toInteger(line.similarity),
username1:line.username1,
username2:line.username2,
project:line.projekt,
course: line.predmet,
year:toInteger( line.godina)});

This was the first attempt which did not actually cre-
ate graph rather it created independent nodes where one
node was corresponding to one row in the relational
database. Keywords WITH HEADERS allowed us to
load CSV files with header row. To create graph in
database we used next database schema as presented in
Figure 1.

In database schema there are three types of nodes:
Students, Files and Project which are connected with
relationships :Made and :For. Main relationship :Sim-
ilarTo is recursive and defines file pairs similarities. In
relation with created database schema, loading of data
was with next query.

LOAD CSV WITH HEADERS
FROM "file:///load1.csv" AS line
WITH line

MERGE (f1:Files {file:line.file1})
MERGE (f2:Files {file:line.file2})
MERGE (p:Projects{project:line.projekt,

year:toInteger(line.godina),
course:line.predmet})

WITH f1, f2, p, line
MERGE (f1)-[:For]->(p)<-[:For]-(f2)

WITH f1, f2, line
1https://neo4j.com/
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MERGE (f1)-[:SimilarTo
{fileType:line.fileType,
fileTypeName:line.fileTypeName,
startlinef1:line.startlinef1,
endlinef1:line.endlinef1,
linef1count:line.linef1count,
startlinef2:line.startlinef2,
endlinef2:line.endlinef2,
linef2count:line.endlinef2,
similarity:line.similarity}]->(f2)

Rather then CREATE, clause MERGE was used as it
intends to create nodes and relationships that don’t al-
ready exist in database. Data in CSV file were di-
vided in sequences of 100 000 lines per file because
of heap memory. With given query, two of three men-
tioned nodes were created, Files and Projects, and two
of three relationships, :For and :SimilarTo. Nodes and
relationships are created with properties corresponding
to schema in Figure 1. Relationship :For defines which
file belongs to which project, and relationship :Simi-
larTo defines plagiarism detection results between two
files. In consequence of big data, student usernames
were loaded separately. First, usernames with corre-
sponding file names were excluded from CSV files and
loaded with next query.

LOAD CSV WITH HEADERS
FROM "file:///studentFiles.csv" AS line
WITH line

MERGE (f:Files{file:line.file})
MERGE (s:Students

{username:line.username})
WITH f,s

MERGE (s)-[:Made]->(f)

Query above was used for importing student user-
names as node named Students and connecting user-
names and matched files with relationships :Made. To
do the testing we used Node since it has packages for
both MySQL and Neo4j in the repositories:

sudo npm -g install mysql2
sudo npm -g install neo4j-driver

6 Results and discussion
For tests, we have performed the same queries on a
relational database and on a graph database. Not ex-
actly the same, since they used different query types
but with the same intent, conditions and data compar-
isons. The idea was to get all similarities bigger than
some percentage for a particular student. While exe-
cuting queries, the time was measured for how long it
takes to get a result response.

In Table 1 the average execution time is presented.
The test was performed with only 1 student, then with
33 different students and then with 2 times 33 stu-
dents which means that every student was queried

twice. The total amount of data was 1.200.000 in both
databases. The first attempt with was importing data
into GraphDB without much considering the graph and
as one can see the GraphDB query is slower than the
MySQL optimized query as there is no graph to work
with. The query in the graph database looked like this:

MATCH(p:Plagijat) WHERE
(p.username1="studentA"

OR p.username2="studentA")
WITH {type:p.type,

user1:p.username1,
user2:p.username2,
suma:SUM(p.similarity)}

AS u WHERE u.suma>20
RETURN u

As database didn’t have relationships, this query is
very similar to MySQL query, with disctincion of not
having to explicitly specify grouping of data. Group-
ing is in fact formed from the non-aggregation columns
in scope when aggregation function like SUM is used.
Query searches for all data with specified student user-
name and returns data with sum of similarities of stu-
dents per file type.

As mentioned, second experiment was to create a
real graph database with relationships. In this case the
benefit is in having a graph representation to analyse
one student relations to others. This time the query
looked like this:

MATCH(s:Students{username:"studentA"})
--()-[st:SimilarTo]->()--(s1:Students)

WITH {type:st.type,
user1:s.username,
user2:s1.username,
suma:SUM(toInteger(st.similarity))}

AS u WHERE u.suma>20 RETURN u

Previous query searches for all relationships :Sim-
ilarTo from student with username "studentA" to all
students. Although not explicitly written, in query
there are used relationship :Made and nodes Files. Full
MATCH clause would look like:

MATCH(s:Students{username:"studentA"})
-[:Made]->(:Files)-[st:SimilarTo]
->(:Files)-[:Made]->(s1:Students)

Query firstly selects node :Students with username
"studentA" then finds all the files that student made,
and secondly finds files of another students which files
where compared to files of "studentA". Lastly it returns
calculated similarity between two students.

One can see from Table 1 that with added relation-
ships, execution time is improved. For better compari-
son of MySQL optimized query and Neo4j query with
relationships, query execution times for one student are
presented as graph in Figure 2. In Figure 3 the results
are presented for executing a queries for 33 students,
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Table 1: Results summary

Tool Students AVG Total Time
MySQL 1 0.496s

Neo4j with one node 1 1.628s
Neo4j with relationships 1 1.092 s

MySQL 33 18.525s
Neo4j with one node 33 19.172s

Neo4j with relationships 33 2.468s
MySQL 2*33 38.101s

Neo4j with one node 2*33 41.718s
Neo4j with relationships 2*33 2.679s

Figure 2: Query execution time for 1 student

and in figure 4 the results are presented for executing a
queries for 66 students. From this analysis we conclude
that MySQL performed better when executing only one
query but when the number of queries is larger then
Neo4j starts to outperform MySQL.

One of the big advantages of using graph database is
that tools like Gephi are not needed, as used in (Novak
et al., 2021) where the authors display the benefits of
graph representation of student file similarities. With
graph database one can directly have a graph represen-
tation without any need for other tools. In Figure 5 we
can see connections of selected student with other stu-
dents.

Figure 3: Query execution time for 33 students

Figure 4: Query execution time for 66 students

Figure 5: Node connections for one username in
Neo4j

7 Conclusion

In this paper, we have shown that graph databases pro-
vide a lot of benefits for analysing data in the context of
plagiarism detection. Firstly, it represents data connec-
tions which can be used for analysis so there is no need
for installation and configuration of additional tools for
creating graphs. Furthermore, our testing results show
that with the correct graph database scheme, executing
presented queries and getting the result set of data from
a graph database outperforms the relational database
when the number of queries increases. With only one
query MySQL had an average of 0.495 seconds exe-
cution time while Neo4j had 1.098 seconds execution
time. On the other hand with 33 students the average
execution time of MySQL queries increased to 18.525
seconds while average execution time of Neo4j queries
was only 2.468 seconds.

In future works, the idea is to expand research by
additional testing on created graph database to deter-
mine the real impact of graph databases in the pro-
cess of plagiarism detection. Moreover, additional tests
have to be performed on better hardware with differ-
ent data in order to have a better understanding and to
be able to generalize the findings. Current setup was
used intentionally since this is a hardware configura-
tion that most teacher should have available. Based on
current results, although experiment was performed on
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lower-end hardware and because Neo4j outperformed
MySQL, we expect that with better hardware the dif-
ferences will even more in favor of Neo4j since it de-
mands at least 8GB of RAM.
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