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Abstract. A vehicle routing problem aims to deter-
mine a set of vehicle routes to deliver goods to the
customers. Most of the variants of the problem con-
sider static traffic conditions, while in the real world,
travel times depend on the departure time. In this
paper, a capacitated time-dependent vehicle routing
problem is observed, which considers time-dependent
travel times between the customers, and delivery with
vehicles that have limited load capacity. To solve
the problem, an iterative local search metaheuristic
is applied that couples the ruin-recreate principle
with the common local search procedures. Several
scenarios were developed to analyze the impact of
time-dependent travel times on the solution quality in
terms of the total travel time and customer configura-
tion.
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1 Introduction

Delivering goods to customers is a complex logistic
process. In it is important to deliver the goods on
time and meanwhile to reduce the total delivery costs
in terms of total travel time and total traveled distance
(Toth and Vigo, 2001). The key question in such pro-
cess is to determine which routes to choose and how
different route choices affect the change in total travel
time and total distance traveled. Vehicles used in such
processes are often limited by the load capacity in
terms of vehicle cargo volume or maximum vehicle
load-bearing. Another important aspect of the deliv-
ery are traffic conditions, or more precisely time spent
on the route. Due to the traffic conditions, route travel
time depends on the departure time, especially in large
urban centres where traffic congestions occur typically
in rush periods (Erdeli¢ et al., 2021). As traffic con-
gestions significantly increase the travel time, the to-
tal route travel time can change significantly, and thus
increase the total delivery costs (up to 3%), (Kellner,
2016).

In the literature, the well-known problem of de-

livering goods is modelled as NP-hard Vehicle Rout-
ing Problem (VRP), (Toth and Vigo, 2001). The
goal of the VRP is to determine the least-cost de-
livery routes from a warehouse to customers, sub-
ject to side constraints (Laporte, 1992). These side
constraints often resemble real-life limitations of the
problem: limited vehicle load capacity (Capacitated
VRP, CVRP), pickup and delivery of goods (VRP with
Pickup and Delivery, VRPPD), customer delivery time
windows (VRP with Time Windows, VRPTW), hetero-
geneous fleet, etc., (Erdeli¢ and Carié, 2019). Driven
by the impact of traffic congestions on routing deci-
sions, a Time-Dependent VRPW (TD-VRPTW) was
formulated (Figliozzi, 2012), which considers time-
dependent travel times on the road network. The de-
livery period is discretized into smaller time periods,
usually representing rush and non-rush periods. In non-
rush periods typically, the free flow speed is consid-
ered, while in the rush periods, the speed significantly
decreases. These time periods and speeds are often
determined by knowledge. On the other hand, there
are research papers that present the exact time periods
and speed values derived from large historical vehicle
tracking data (Erdeli¢ et al., 2021).

In this paper, the Time-Dependent VRP (TD-VRP)
is observed, which can be considered as a subprob-
lem of both TD-VRPTW and CVRP. In this problem,
vehicles are limited by their load capacity, travel at
time-dependent travel times and do not have to visit a
customer within its time window (only the warehouse
working times are respected). As VRP is an NP-hard
problem, the TD-VRP is also NP-hard. This means
that exact procedures are only capable of solving prob-
lems with a relatively low number of customers (up to
50 customers), and most often, the metaheuristics and
heuristics are applied to solve larger problems (Vidal
et al., 2013). Over the years, a vast number of heuris-
tic and metaheuristic procedures have been applied to
efficiently solve the VRP problems (Erdeli¢ and Carié,
2019). Usually, the best results are achieved with a
metaheuristic procedure that guides the search, such
as tabu search, simulated annealing, large neighbor-
hood search, variable neighborhood search, genetic al-
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gorithm, ant colony, iterative local search (Vidal et al.,
2013). The problem-specific heuristic procedures that
intensify the search are used within the metaheuristic
procedure, such as local search operators (relocate, ex-
change, 2-Opt, etc.), nearest neighbor heuristic, Clark-
and-Wright savings method, etc., (Erdeli¢ and Caric,
2019).

Compared to the related research papers of Figliozzi
(2012); Cari¢ and Fosin (2020) and Rozi¢ et al. (2015),
this paper is one of the few that considers the TD-VRP
problem without time windows and its influence on the
total route duration and customer configuration; thus,
investigating the real-life problems in which customers
do not have time windows, and can be visited at any
time during the day. The applied Iterative Local Search
(ILS) heuristic to solve the problem has not yet been
applied on such problem. Additionally, we investigated
the impact of different speed values in different time
periods on solution quality in the form of several spe-
cific scenarios.

The rest of the paper is organized as follows. The
description of the problem, together with the test in-
stances, are presented in Section 2. The solution
method used to solve the problem is described in Sec-
tion 3 together with the heuristic for the initial solution,
Local Search (LS) operators and ILS. The results of the
paper are presented in Section 4. Finally, the conclu-
sion of the paper is given in Section 5.

2 Problem description

In this section, a TD-VRP problem modelled as a
Mixed Integer Program (MIP) is described. Addition-
ally, an example of test instances used to test the solu-
tion method is presented.

2.1 MIP model

TD-VRP is formulated as a MIP model by Equations
1-7 with the goal of minimizing the overall total travel
time. Let V. = {1,...,N} be a set of geographi-
cally scattered customers that need to be served. Ver-
tices 0 and N + 1 denote the warehouse instances,
and every route begins at vertex 0, and ends at vertex
N+1(Vont1 =V U{0}U{N +1}). Graph G is
defined as G = (Vo n+1,A), where A is the set of
arcs A = {(4,5)|4,7 € Von+1,© # j}. The binary
variable z;; € {0,1} (Equation 1) is equal to 1 if arc
(4, 7) is traversed in the solution, and 0 otherwise. Each
vehicle has a load capacity C'. Each customer ¢ has a
service time s; and load demand ¢;. The warehouse has
a working time [0, ly]. Additionally, two more decision
variables for customers (¢ € Vy n41) are used: 7; -
begin time of service and u; - remaining load capac-
ity. The arc value ¢;;(x) represents the time function
that determines time needed to traverse the arc with the
departure time x. The objective function is given by
Equation 2 as the sum of travel times per arcs.

Equations 3 and 4 ensure the arc connectivity of cus-
tomers, meaning that each customer can have only one
entry and one exit arc which results in the constraint
that each customer has to be visited only once. Equa-
tion 5 ensures travel time feasibility of arcs between
customers ¢ and customer j. If arc (4, j) is traversed,
then the begin time at customer j, 7;, has to be equal to
the sum of begin time at customer ¢, 7;, time-dependent
travel time between ¢ and j (depends on the departure
time) ¢;;(7; + s;), and service time of customer i, s;.
Equation 6 ensure arcs load flow, in similar way as
equation 5. Equation 7 ensures that the leaving ware-
house instance has a remaining load capacity equal to
the vehicle load capacity C.

xi; € {0,1}, Vi € Vo, j € Vng1,i # j (1)

min Z Z

1€Vo JEVN41,i#]

tij (i + 8i) 245 2

Z QCij = ]., 1eV (3)
JEVN41,8#]
S o X am0sev @
iGVN+1,i7éj 1€V, i#£]

Ti+ (L (75 + 80) + si)wij — lo - (1 — 2y5) = 75, (5)

Vl S ‘/E)avj S VN+17i #.7
0 <wuy <u; —x45(q; + C) + C, (6)

Vie Vo,Vj € Vg, i #j

ug =C (7

The time of one working day is discretized in dif-
ferent time periods in order to take into account traf-
fic congestions that occur in the so-called rush hours.
This means that the function of travel time on arc
tij (i + ;) is discretized into a finite number of time
intervals k € {Tp,..., Tk}, and to each time period
a static speed vy, is assigned. The problem considers
that the distance on arc d;; does not change, and the
travel time on arc in time period k£ can be computed
as t;;(k) = d;;/vg. The departure time customers ¢
expressed as 7; + s; is used to determine the period k
in which the vehicle starts to travel from customer ¢ to
customer j.

2.2 Data

To test their methods and compare them to other
methods, researchers typically solve the benchmark
instances. In this paper, one instance from the
well-known Solomon VRPTW test instances is used
(Solomon, 1987). Each customer in instance has a lo-
cation C(z,y) in the Cartesian coordinate system, ser-
vice time and demand. The warehouse working time
consist of opening (0) and closing time (ly). The dis-
tance between the customers is computed by Euclidean
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Figure 1: Speeds

distance given by Equation 8. The warehouse work-
ing time [0, lo] is discretized into five-time buckets of
equal duration: [0,0.2lp), [0.2lg, 0.4lo), [0.41p, 0.6p),
[0.619,0.8p), and [0.81¢, o). In periods of congestion,
speeds are reduced in order to better represent the ac-
tual state of the traffic system, while in other intervals,
speeds are closer to the free flow speed. The example
of speeds per discretized intervals for one path in one
working day is presented in Figure 1. In total, five time
periods are observed on the x-axis with corresponding
speed values on the y-axis. As it can be seen, during
the night and evening, a free-flow speed with the value
of 60 km/h is present, while during the morning and
afternoon rush hours, the speed drops to 20 km/h, and
15 km/h respectively. Between the rush hour periods,
the speed is somewhere in between with the value of
45 km/h.

Used instance contains a subset of 25 customers pre-
sented in Figure 2. The customers are presented with
black circles, where the size of the circle represents the
customer demand, the higher the demand is, the larger
the circle is. The warehouse is presented as a red cir-
cle. The name of the instance C'101 indicates that cus-
tomers are groupped in clusters.

d(Cy,C) = \/(x1 —22)> + (1 —12)>  (8)

The values of distances and travel times on arcs
(paths) between customers are commonly stored in 2D
matrices, representing the shortest path between each

Figure 2: Instance C101_25
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Figure 3: 3D travel time matrix

customer pair (Erdeli¢ et al., 2021). Such matrices are
computed in a preprocessing step to reduce the com-
putation time, as computing the shortest path between
customer pairs is time-consuming. Here, as the Eu-
clidean distance was used, there is no need for the
computation of the matrices, but for the sake of the
complicity, the matrices will be used. Including time-
dependent travel times results in the 3D travel time ma-
trix, where the third dimension represents the number
of discretized time periods. The example of a 3D travel
time matrix is presented in Figure 3. For example, a
value of five in the first row and second column repre-
sents a travel time of five between the warehouse and
the first customer in first time period.

3 Methodology

The methodology section consists of three parts:
(i) creation of the initial solution, (ii) LS procedure,
and (iii) ILS procedure. All applied heuristic meth-
ods search in the feasible solution space, which is con-
strained by the vehicle load capacity and by the total
route duration due to the warehouse working hours.

3.1 Initial solution heuristic

The heuristic used for the creation of the initial solution
is based on the time-oriented nearest neighbour heuris-
tic (Solomon, 1987). The heuristic in each iteration
selects the customer that is the closest to the current
customer in terms of the travel time.

The procedure for creating an initial solution is pre-
sented by the Algorithm 1. The input to the algorithm
is a list of all customers V. First, all customers, ex-
cept the warehouse, are added to the list of unvisited
customers. Next, a new vehicle route is opened, and
a warehouse is added to it. Further on, the algorithm
searches through all unvisited customers for the unvis-
ited customer who has the lowest arrival time and can
be added to the vehicle route, respecting the load ca-
pacity of the vehicle and total route duration (enough
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Algorithm 1 Heuristic for the creation of the initial so-
lution
Input: List of customers V'

1: Add all customers V', except warehouse, to the list
of unvisited customers
2: Open a new route, add warehouse to it and set the
warehouse as the current customer
3: while there are no unvisited customers do
4:  Find the timely closest unvisited customer ¢,
to the current customer
5. if load capacity and the total duration of the ve-
hicle route is not violated by adding a customer

Celos then
6: Add customer c.,s to the current vehicle
route
7: Remove customer ¢, from the list of unvis-
ited customers
8: Reduce the available load capacity of current
vehicle
9: else
10: Close the current vehicle route by adding a
warehouse at the end
11: Open a new route, add warehouse to it and set
the warehouse as the current customer
12:  endif

13: end while

time to return to the depot) is not exceeded. In case in
which the observed customer exceeds the capacity of
the vehicle or the total route duration, the vehicle is re-
turned to the warehouse, and a new vehicle is opened.
This means that the warehouse is added after the last
visited customer and a new route with a warehouse is
opened. By adding a customer to the vehicle, the ca-
pacity of the vehicle increases by it’s demand. If a cus-
tomer can be added to the vehicle route, it is removed
from the list of unvisited customers and saved to the
list of visited customers of the current vehicle. The
process is repeated until all customers are visited. The
final result of the initial solution is the number of ve-
hicles needed to visit all customers, the configuration
of customers per vehicle routes with the total traveled
time and the total traveled distance.

3.2LS

The created initial VRP solution is often 20-30% far
from the optimal solution to the problem (Erdeli¢ and
Carié, 2019). By searching the neighborhood of the
current (initial) solution, a better solution can be found,
commonly called local optima. The local optima is ob-
tained by operators that calculate the difference in total
travel time made by vehicles after switching customers
among themselves or by inserting and removing cus-
tomers from certain vehicle routes, but only if:

(i) afeasible solution regarding the load capacity and
warehouse working hours is produced,

d C d C
f e f e

Before After
(a) Intra relocate
a a e
f f
8 g
| Before n | After .

(b) Intra 2-Opt

Before After

(c) Inter exchange

(d) Inter relocate

Figure 4: LS operators

(ii) saving in the total travel travel time objective is
achieved.

Depending whether the changes are performed on a
single route or between multiple routes intra and in-
ter LS operators are used. In total, four LS operators
are applied, presented in Figure 4. After applying each
of the operator on the current solution, the local optima
in search composite neighborhood is found.

3.2.1 Intra operators

Intra operators are used to change the order of cus-
tomers within the same route. The vehicle capac-
ity limit with the intra operators does not need to be
checked due to the rotation of the customer within the
same route, so the capacity requirement remains un-
changed.
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Intra relocate is an operator that moves a customer
from one position in a route to another position within
the same route. As presented in Figure 4(a) three arcs
in the same route are removed, and three new red ones
are inserted. Time savings is defined as the difference
between the total travel time before the change and af-
ter the change.

Intra 2-Opt operator is used to remove the arcs inter-
sections within the route. As shown in Figure 4(b) two
arcs that intersect are removed, and two new red ones
are inserted, resulting in a decrease of the total travel
time. Additionally, the part of the route between the re-
moved arcs needs to be reverted (instead of b — ¢ — d,
the reversed order is d — ¢ — b).

3.2.2 Inter operators

Inter operators are used to move customers between
different routes in the solution. It is mandatory to check
the vehicle capacity limit and total route duration with
the inter operators.

Inter exchange operator replaces positions of two
customers in different vehicle routes. Replacement is
only performed if the vehicle capacity limit is not ex-
ceeded and time savings are achieved. As shown in
Figure 4(c) two customers are exchanged with in total
four arcs removed and four red ones inserted (two per
route).

Inter relocate operator switches customers from one
position in the route to another position in another
route. As shown in Figure 4(d) one customer is re-
moved from one route to another route, meanwhile re-
moving three arcs and inserting three red ones.

3.2.3 Search strategy

LS operators are called in the following order: inter ex-
change, inter relocate, intra 2-Opt and intra relocate.
Such order is selected to first improve the solution by
moving customers between different routes and then to
improve the customer configuration within each route.
This makes sense, as there is no point in the route im-
provement with intra operator if a particular customer
will be removed from the route with inter operator as
it leads to an overall better solution. The operators are
applied in such order, as long as there was at least one
improvement by either of the operators. This means
that the loop for the LS procedure repeats until there
is no improvement. Within a search of a single opera-
tor, a best-of technique is used, meaning that the best
move from all the possible moves found by a particular
operator is conducted.

3.3 1ILS

LS operators explore the narrow solution space around
the current solution, which often tends to lead to the
same local optima. To escape the local optima and

Algorithm 2 ILS
Input: Best solution s

1: while repeat njy g iterations do
: Copy solution s to s’
3:  Randomly remove ng; percent of customers
from the solution s’
. while repeat nj g iterations do
5: Determine random positions of customer in-
sertions in vehicles’ routes in solution s’
if solution s’ would be feasible then

7: Perform determined insertions on solution
S/
8: Perform LS on s’
: if solutions s’ is better than s then
10: Copy solution s’ to s
11: end if
12: Break loop
13: end if

14:  end while
15: end while

search in the other parts of the solution space, the ruin-
recreate principle to diversify the search is applied.
Here, a random removal and insertion of customers
in the solution is used. The description of ILS meta-
heuristic based on the ruin-recreate principle is given
by Algorithm 2. The input to the algorithm is the cur-
rently best solution s, achieved either by the initial
construction heuristics or LS procedure. In each iter-
ation, ng s percent of customers are randomly selected
from the solution and removed. Random removed cus-
tomers are tried to be reinserted at some positions in
vehicle routes. When inserting customers in vehicles,
it is mandatory to check the capacity limitations of the
vehicle and total route duration. After the evaluation of
insertions, if either constraint is violated, the insertion
of customers in the solution will not be performed, and
the procedure for insertion will repeat itself to at maxi-
mum nyyg iterations. If a feasible solution is found, a
LS is performed in an attempt to find a better solution.
During the algorithm execution, two solution instances
are tracked: current best solution s and temporal solu-
tion s’. The ruin-recreate principle is always performed
on the current best solution. To prevent the data loss re-
garding the configuration of current best solution s in
case when the ILS was not able to find a better solu-
tion than the best so far, at the start of each iteration,
the best solution s is copied to s’. In the case when
the total travel time of solution s’ is better than the to-
tal travel time of s, the configuration of s’ is copied
to s. The whole procedure of removal, insertion and
improvement is repeated for nyy g iterations.

Due to the random selection of customers’ removals
and insertions after each restart of the program, there
will be a different solution that may be better than the
first solution obtained. It is important to note that this
procedure searches the solution space beyond the local
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optima in order to find a better solution that may then
be a globally optimal solution, but this is not guaran-
teed.

4 Results

In this section, the proposed methodology is evaluated
on the test instance described in Section 2.2, and the
analysis of time-dependent speeds is conducted. The
parameters used for solving the problems are the fol-
lowing: nrrs = 30, ngjy = ].0, niNs = 10%. The
ILS is implemented as a single-thread code in the C#
programming language. All tests were performed on a
machine with Intel(R) Core(TM) i15-9300H CPU (2.24
Ghz) and 8 GB of RAM.

4.1 Evaluation of a search process

To solve the observed instance of the VRP, the dis-
cretization of time intervals and speeds is given by Ta-
ble 1 (Scenario A). The warehouse working hours are
set between 0 and [{, = ly/4. The closing time is short-
ened compared to the [y value from the Solomon in-
stance (Solomon, 1987) because the closing time [y,
originally used for the problem with time windows,
is too large for the observed TD-VRP problem where
time windows are not included. This means that all de-
liveries in TD-VRP routes are always done by the time
1.

To show how the ILS works, the examples of solu-
tions for scenario A, are presented in Figure 5. The
metrics used to evaluate the solution are the Num-
ber of Vehicles (NV) in the solution, cumulative To-
tal Travel Time (TTT) of all vehicles in the solution
and cumulative Total Traveled Distance (TTD) of all
vehicles in the solution. First, the initial solution is
created with the time-oriented nearest neighbor heuris-
tic (Figure 5(a)), resulting in NV=3, TTT=617.14,
and TTD=266.29 (no real-world units are used). The
values of TTT and TTD were decreased by a sin-
gle application of the LS procedure (Figure 5(b)) to
TTT=481.37 and TTD=256.53, with the same num-
ber of vehicles. The ILS strategy further decreased the
values to TTT=433.88 and TTD=215.17 (Figure 5(c)).
The results of the scenario A indicate that the proposed
procedure is able to efficiently solve the problem and
decrease TTT and TTD values compared to their initial
values.

Period & 1 2 3 4 5
Time T}, | 0.05[; 0.15[, 0.2l 0.4, I
Speed vy, 1.0 0.2 0.3 0.2 1.0

Table 1: Speed values in scenario A

(b) LS - NV:3, TTT: 481.37, TTD: 256.53

(c) ILS - NV:3, TTT: 433.88, TTD: 215.17

Figure 5: Example of search stages

4.2 Effect of time-dependent speeds

To investigate the effect of time-dependent speeds on
the solution quality and customer configuration, an-
other scenario B is observed. The time periods and
speeds in scenario B are set in such way that they rep-
resent static traffic conditions, so the values of speeds
are all equal to 1 in all time periods. In this case, the
ILS resulted in NV=3, TTT=205.34, and TTD=205.34.
As speed values are equal to 1, the TTT and TTD
have the same values. Compared to scenario A, which
uses higher speeds, the TTT in scenario B reduced by
52.67%, while the TTD reduced by 4.57%. As it can be
seen, lower speeds during the mid-day time period pri-
marily affect the TTT and not the TTD. Therefore, the
knowledge of time-dependent travel times has a signif-
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Period k& 1 2 3 4 5
Time T}, 0.05; 0.151; 0.2{; 0.4l [
Speed v, (C) | 0.1 0.2 0.2 0.2 0.1
Speed v, (D) | 0.9 0.1 0.7 0.1 0.9
Speed v, (E) | 0.8 0.6 0.7 0.6 0.8

Table 2: Speed values in scenarios C, D and F

icant impact on the delivery duration and can lead to
an increase in the transportation cost in terms of driver
salary and penalties for late arrivals, especially in time-
precise deliveries.

Additional three scenarios are tested: constant con-
gestion (scenario C'), rush hours (scenario D) and
light congestion (scenario E), with speed values pre-
sented in Table 2. The same time intervals are kept
as in scenario A. The results are presented in Fig-
ure 6, and are the following: (i) scenario C' - NV=3,
TTT=1363.01, and TTD=188.84 (Figure 6(a)); (ii) sce-
nario D - NV=3, TTT=413.55, and TTD=229.29 (Fig-
ure 6(b)); and (iii) scenario & - NV=3, TTT=280.57,
and TTD=188.53 (Figure 6(c)). Again the TTD is
slightly affected by the different speeds while the TTT
is highly affected, especially in scenario C' where the
travel times increased six times compared to the sce-
nario B, which considers static traffic conditions. As
we can see on the figure 6 the configuration of cus-
tomers per vehicle routes also changes, with the signif-
icant change in the scenario D.

5 Conclusion

In this paper, a variant of the VRP called capacitated
TD-VRP is considered. TD-VRP takes into account
time-dependent traffic conditions in the form of time-
dependent travel times and vehicles with a limited load
capacity. To solve the problem, an ILS metaheuris-
tic is used that combines the ruin-recreate principle
to diversify the search and LS procedure to intensify
the search. The initial solution, used as input to the
metaheuristic, is created using a time-oriented nearest
neighbor heuristic. The results on one instance contain-
ing 25 customers show that the proposed metaheuristic
is able to efficiently solve such problems. The con-
ducted analysis regarding the different speed values in
different periods of the delivery time (horizon) showed
that time-dependent speeds have little effect on the total
distance traveled, while they have a significant effect
on the total travel time, especially in heavily-congested
scenarios.

For future research, the idea is to investigate the
metaheuristic behaviour on instances with several thou-
sand customers, as well as the improvement of the total
travel time computation regarding the transitions be-
tween two neighboring time periods.

(c) Scenario E/ - NV:3, TTT:280.57, TTD:188.53

Figure 6: Results for scenarios C, D and E
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