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Longevize BV

l.cundric@gmail.com

Blaž Stojanovič
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Abstract. With the ubiquitous increase in the num-
ber of people in cities, there is a growing need for
sustainable transport possibilities. Smart cities should
provide environment-friendly ways to travel inside the
city. One of the most nature-preserving ways to travel
is using bicycles, which is often encouraged by pub-
lic bicycle sharing systems, which are present in many
cities around the globe. While these systems are usu-
ally easily accessible, they still lack optimization re-
garding bicycle availability across stations. This pa-
per contributes towards the optimization of the bicycle
sharing system in Ljubljana, Slovenia. We developed
classification and regression machine learning models
for predicting the emptiness and occupancy across bi-
cycle stations in near future. These predictions allow
for the caretakers of the system to intervene on time
and provide enough bicycles across all stations.
Keywords. Smart city, sustainable transport, bicycle
sharing, optimization

1 Introduction

The world is facing an environmental crisis, where the
ecosystems are changing rapidly. In 2018, the intergov-
ernmental body reported that we are facing irreversible
consequences due to the global greenhouse gas (GHG)
emissions (Masson-Delmotte et al. (2018)). For that
reason, the goal is to address climate change by prepar-
ing for unavoidable consequences or reducing emis-
sions. One of the areas where the benefits of mitigating
the GHG emissions would be significant is transport.

Transportation systems account for a quarter of
energy-related CO2 emissions (Masson-Delmotte et al.
(2018)). One of the strategies to reduce GHG emis-
sions in transport is a modal shift to lower-carbon op-
tions (Rolnick et al. (2022)). One of the best ways

to substitute the carbon emission intensive modes of
transport in densely populated areas is with bicycles.

The first bicycle-sharing system (BSS) was intro-
duced in 1965 in Amsterdam with the White Bike Plan
bicycle-sharing program. Since then, Shaheen et al.
(2010) reported that more than 130.000 bicycles have
been made available through such programs world-
wide. In all such programs, the users can borrow a
bicycle from one of the stations and return it to some
station within a specific time frame.

Among the biggest challenges of the BSS is the
(re)balancing of the bicycles at the parking stations
(Shaheen et al. (2010)). For example, in the morning
and afternoon hours, the direction of travel by bicycle
is usually heavily biased in one direction. This bias, in
turn, causes an imbalance at the stations, where some
stations are full and others are empty. The employed
workers then redistribute bicycles from occupied sta-
tions to less occupied ones. However, the open ques-
tion remains of how and when the employees should
take action. Machine learning (ML) provides means to
solve such a problem.

ML algorithms have already achieved great success
in various forecasting tasks. There is a big motivation
to use ML for mitigating climate change. For example,
ML is used to forecast electricity demand, photovoltaic
production, extreme events, and behavior change (Rol-
nick et al. (2022)). For the task at hand, ML algorithms
can assist decision-making in the bicycle redistribution
problem.

In this paper, we present an approach to classify-
ing decision-making options (adding/removing bicy-
cles from stations) and an approach to forecasting the
number of bicycles at the parking stations. We do so
considering multiple forecasting horizons. Our con-
tributions involve developing and comparing classifi-
cation models for decision-making options and regres-
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sion models for bicycle availability, which can be used
in real-time by the BicikeLJ BSS to assist the rebalanc-
ing process.

The rest of this paper is structured as follows: Sec-
tion 2 presents related work, and Section 3 describes
the use-case of a BSS used in Ljubljana, Slovenia. Sec-
tion 4 introduces the methodology we followed to ana-
lyze the data, create the dataset, the corresponding fea-
tures, and how we trained and evaluated the forecasting
models. Section 5 presents the results, while Section 6
offers our conclusions and provides an outline for fu-
ture work.

2 Related Work
Shaheen et al. (2010) provide an overview of BSS and
related problems and experiences. Bicycle imbalance
in a network of bicycle stations is a critical problem.
Therefore bicycle redistribution is a necessary func-
tionality of such systems. Usually, it is done by trucks
or other vehicles to move bicycles to high-demand sta-
tions. Efficient maintenance of bicycle balance re-
quires online information support, automated predic-
tion of the number of bicycles and demand for a bicy-
cle at individual stations, and planning optimal inter-
ventions to restore the balance.

Many works (Yang et al. (2016); Almannaa et al.
(2020); Ashqar et al. (2017); Cagliero et al. (2017);
Ashqar et al. (2021)) report on experiments with the
automated prediction of the number of bicycles at dif-
ferent stations, using various statistical and ML tech-
niques for learning to predict from past BSS data. Yang
et al. (2016) proposed a prediction method that consists
of (1) predicting the check-in numbers at individual
stations, given the current data about check-out bicy-
cles and their locations, taking into account the proba-
bilities of bicycles currently traveling between pairs of
stations and travel times; and (2) estimating the proba-
bility distribution of checking out a bicycle at given sta-
tion depending on the time of day, kind of day, type of
station location, weather conditions, among other fac-
tors. Using historical data, this is done by the Random
Forest ML method (Breiman (2001)). They conducted
an experimental evaluation of their approach regard-
ing prediction accuracy using past data observed in the
BSS of the Chinese city of Hangzhou, supposedly the
world-largest BSS. They compared Random Forest re-
sults with three more traditional techniques for time-
series prediction and found that Random Forest out-
performed these baseline methods.

Almannaa et al. (2020); Ashqar et al. (2017, 2021)
report on experiments in the prediction of the number
of bicycles at bicycle stations using historical data in
the BSS of the San Francisco Bay area. Prediction
methods used in Almannaa et al. (2020) were dynamic
linear models and Random Forest. Both methods pro-
duced similar results in terms of prediction accuracy.
For the fifteen-minute predictions horizon of bicycle

counts at a station, the average prediction error was
about 2% of the station’s total bicycle capacity, and the
average error for the two-hour prediction horizon was
6%. Cagliero et al. (2017) developed a method for pre-
dicting critical conditions in a BSS regarding bicycle
counts, integrating the Bayesian learning and Associa-
tion learning techniques. The method was evaluated on
historical bicycle numbers data for the New York City
BSS.

The above papers are mainly concerned with pre-
dicting bicycle counts but not explicitly with planning
optimal bicycle redistribution interventions. Seo et al.
(2022) formulated the bicycle redistribution problem as
a Markov decision problem. Then the choice of best
actions (bicycle moving operations) according to a suit-
able cost function in a stochastic dynamic environment
can be addressed by techniques of reinforcement learn-
ing (Sutton and Barto (2018)). The proposed solution
suggests the best action every ten minutes, which de-
pends on the observed current state of the BSS system
and predicted future demands. Predictions are made
by the Random Forest method. This approach was
experimentally evaluated on the BSS of Yeouido Is-
land District in South Korea (thirty-one bicycle sta-
tions). The experiment used historical data covering
about one year from this BSS. The proposed solution
to bicycle rebalancing has a clear advantage over pre-
viously proposed benchmark strategies in responding
to dynamic changes in bicycle demand and thus reduc-
ing the chances of unmet demand.

Related work extends to studying various other prob-
lems and questions related to BSS. For example, Yoon
et al. (2012) described a smartphone application for the
Dublin BSS, which recommends the most suitable pair
of bicycle stations concerning the user’s current needs
and the availability of bicycles, and the possibility of
bicycle return at different stations. Shang et al. (2021)
analyses the impact of the COVID-19 pandemic on the
behavior of users in BSS. It is reported that notable ef-
fects of the pandemic on users’ behavior are mostly en-
vironment friendly.

3 Use Case

We performed our research based on a real-world use
case based on data from BicikeLJ, a BSS available in
Ljubljana, the capital city of Slovenia. BicikeLJ was
introduced in 2011. Users pay a small fee to register
to the platform and benefit from the BSS. Bicycle us-
age under an hour is granted for free, while additional
charges apply per hour if used for a more extended
period. BicikeLJ provides near-real-time information
on the number of bicycles available at each station and
makes them available to the public through a website1.

1A map with overlayed information regarding the number of bi-
cycles available at each station is provided at the following web page:
https://www.bicikelj.si/en/mapping
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While this is not always the case, the optimal sce-
nario of a BSS would be that there is always (a) a bicy-
cle available for anyone willing to use it and (b) some
parking slot at the station so that the bicycle can be
parked. Therefore, in this work, we explore two kinds
of prediction models: (i) classification models to pre-
dict decision-making options (whether we need to add
bicycles, remove them, or no action is required), and
(ii) regression models to predict the number of bicy-
cles at the parking station. We envision such models
could be used to:

• proactively alert decision-makers and ensure all sta-
tions have an adequate number of bicycles and park-
ing slots. Such information could be used as inputs to
vehicle routing optimization problems if some truck
is used to re-balance the bicycles among the stations.

• provide forecasts to the users and ensure they can bet-
ter understand if some bicycle or parking slot will be
available upon arrival at the station. Such forecasts
could be complemented with (a) soft reservations
to gather demand data and proactively handle mis-
matches between supply and demand, and (b) some
gamification to incentivize people moving bicycles
between stations for certain benefit (Wu (2020)).

For the purpose of this research, we considered mul-
tiple forecasting horizons. Such forecasts enable us to
consider bicycle-sharing dynamics over time and un-
derstand how the quality of the forecasts degrades over
time.

Figure 1: Diagram showing the predictor period taken
into account to build the forecasting models, the fore-
cast issue time, and the multiple forecasting horizons
considered for this use case. Each model forecasts for
a specific horizon and has a particular forecast validity
time.

4 Methodology
The subsections below explain the methodology we
followed to build and evaluate our forecasting models.
We describe how data was collected and analyzed, the
features we created, how we defined the target labels
and baseline models, and how we trained and evaluated
the models.

4.1 Data collection and analysis
The experiment was conducted based on data collected
from public APIs provided by the BicikeLJ BSS. Since
there are no publicly available historical datasets, we
obtained the data from the developer’s API and pub-
lic endpoints of the system. We collected data between
March 9th 2022 to May 8th 2022. The final dataset had
minor gaps due to networking errors during the web
scraping. The data we collected contained two types of
records: (i) station states and (ii) bicycle states. Each
data record for (i) contains station ID, station name,
station address, latitude, longitude, capacity, and the
number of free and occupied spaces, while the data
from (ii) provide information regarding the bicycle ID,
and status, timestamp, and station ID. We collected
data for a total of 82 stations and found that there are
nearly 800 bicycles offered in the BSS. We then cre-
ated a single dataset informing the number of bicycles
at each station for each reading, which is available at
a five-minute frequency. We analyzed the data to find
and understand patterns when visualizing the (i) time
series (e.g., see Fig. 2), (ii) histograms describing the
number of bicycles available at each station (e.g., see
Fig. 3), and (iii) heatmaps to understand usual move-
ments of bicycles between stations.

Figure 2: Time series obtained from the bicycle count
over the time at the Breg station.

Figure 3: Histogram showing the frequency of bicycle
availability for the Breg station.

4.2 Feature extraction
While we considered two problems (forecasting
decision-making and the number of expected bicycles
per station for a given point in time), we considered the
same time series features for both. In particular, we
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consider that the future number of bicycles available at
a particular station is closely related to the current de-
mand. Therefore, we computed two types of features
(see Table 1): (a) features indicating how close we are
to reaching the full stations’ bicycle parking capacity
(features 1-4) and (b) features indicating whether the
number of bicycles in the station is growing or not (fea-
tures 5-6). The features were created considering rel-
ative values to ensure the same features would gener-
alize well between local and global models and make
them comparable.

4.3 Creating target labels for classification

One of the possible use cases related to BSS is to assist
decision-making. We frame it as a classification prob-
lem, aiming to predict whether three possible states
will be reached in the future: (a) no bicycles will be
available (therefore need to be supplied), (b) no park-
ing slots will be available (therefore bicycles should be
removed), or (c) no action is required, given enough
bicycles and parking slots will exist. To determine
these three labels, we analyzed each station and the
preceding number of bicycles before no bicycles (LNB)
or parking slots were found (LNPS). Therefore, three
classes were assigned: (a) add bicycles if a less or equal
amount of bicycles in a given station are found than the
reference amount LNB, (b) do not perform any action,
and (c) remove bicycles if an equal or greater amount
of bicycles in a given station is found than the reference
amount LNPS. The dataset has shown a strong class im-
balance.

4.4 Baseline models

We created two baseline models, one for the classifica-
tion and one for the regression problem. We followed
a similar procedure for both baselines to the one de-
scribed in Section 4.3. However, instead of considering
state transitions from bicycles and parking slots avail-
able to their deficit, we considered the corrective ac-
tions that overturned the deficit of bicycles and parking
slots. Therefore, we computed the expected future state
based on the last observed value. For classification
purposes, we considered that if a deficit of bicycles or
parking slots occurs, the following action should over-
turn such a deficit. If no deficit is observed, no action
is taken. For regression purposes, we considered that if
a deficit of parking slots arises, we remove bicycles to
reach the minimum number of parked bicycles histori-
cally observed at that station after no parking slots were
available. Analogously, suppose no bicycles are avail-
able at the station. In that case, we consider adding
a number of bicycles equal to the maximum number
of bicycles observed historically at that station after no
bicycles were available.

4.5 Model training
To train and evaluate the models, we performed a ten-
fold stratified cross-validation, considering the labels
of the classification problem. We used the same folds
to train the classification and regression models. For
the local models, we considered only the data for the
same station we predicted. In contrast, for the global
models, we trained the model on the data of the train
folds of the station we predicted in addition to all the
data available from the remaining stations (see Fig. 4).

For the classification problem, we compared two
models: logistic regression and gradient boosted trees2,
training the gradient boosted trees for ten iterations
using a multiclass loss function. We also compared
two models for the regression problem: linear regres-
sion and gradient boosted trees, training the gradient
boosted trees for ten iterations and considering the
Root Mean Square Error (RMSE) as the loss function.

Figure 4: Cross-validation training procedure for (A)
local and (B) global models. Given a station i for which
a forecast is required, local models were trained only
on the train folds of that particular station and eval-
uated on the test folds. Global models, on the other
hand, followed the same cross-validation but enriched
the train set with data from all the remaining stations.

5 Results and Analysis
We evaluated classification models’ discriminative
power with the Area Under the Receiver Operating
Characteristic Curve (AUC ROC (Bradley (1997)))
metric (see Table 2), considering that the metric is in-
variant to the a priori class probabilities, a relevant as-
pect given the class imbalance observed in the dataset.
For the regression problem, we evaluated the models’
performance with the Mean Absolute Error (MAE - see
Table 3) and RMSE (see Table 4) metrics. While the
RMSE metric penalizes large errors, the MAE metric
is not sensitive to outliers and therefore provides a bet-
ter estimate of the models’ average performance. The
results presented below were computed considering all
but the P+R Barje bicycle stations.

2For the gradient boosted trees, we used the Catboost implemen-
tation Prokhorenkova et al. (2018).
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# Feature Description
1 mean5 The average number of parked bicycles over the last five readings and divided by the station’s total capacity.
2 mean3 The average number of parked bicycles over the last three readings and divided by the station’s total capacity.
3 mean2 The average number of parked bicycles over the last two readings and divided by the station’s total capacity.
4 n-1 The last known number of parked bicycles, divided by the station’s total capacity.
5 mean5/mean3 The average number of parked bicycles over the last five readings and divided by the average number of parked bicycles over the last three readings.
6 mean5/mean2 The average number of parked bicycles over the last five readings and divided by the average number of parked bicycles over the last two readings.
7 mean3/mean2 The average number of parked bicycles over the last three readings and divided by the average number of parked bicycles over the last two readings.

Table 1: The features considered to build the classification and regression models.

Model / Forecasting Horizon 20 min. 30 min. 40 min. 50 min. 60 min.
Baseline 0,6658 0,6591 0,6519 0,6443 0,6373

Local Logistic Regression 0,9901 0,9721 0,9538 0,9369 0,9199
Catboost Classifier 0,9939 0,9758 0,9580 0,9418 0,9257

Global Logistic Regression 0,9287 0,9120 0,8959 0,8806 0,8665
Catboost Classifier 0,9279 0,9114 0,8952 0,8801 0,8654

Table 2: Mean AUC ROC values (higher is better)
were obtained across the stations for each forecasting
horizon. The mean was computed over the mean AUC
ROC obtained from the ten-fold cross-validation per-
formed for each station. Best results are bolded, and
second-best are displayed in italics.

Model / Forecasting Horizon 20 min. 30 min. 40 min. 50 min. 60 min.
Baseline 1,3395 1,5189 1,6694 1,8024 1,9247

Local Linear Regression 0,1607 0,6099 0,8979 1,1177 1,3016
Catboost Regressor 0,2444 0,6600 0,9303 1,1370 1,3109

Global Linear Regression 0,8765 1,1722 1,3882 1,5622 1,7125
Catboost Regressor 0,8642 1,1570 1,3713 1,5396 1,6882

Table 3: Mean MAE values (lower is better) were ob-
tained across the stations for each forecasting horizon.
The mean was computed over the mean MAE obtained
from the ten-fold cross-validation performed for each
station. Best results are bolded, and second-best are
displayed in italics.

Model / Forecasting Horizon 20 min. 30 min. 40 min. 50 min. 60 min.
Baseline 2,0567 2,2601 2,4392 2,5998 2,7478

Local Linear Regression 0,3180 1,0519 1,4344 1,7131 1,9393
Catboost Regressor 0,4220 1,0941 1,4601 1,7284 1,9460

Global Linear Regression 1,1319 1,6041 1,9115 2,1503 2,3508
Catboost Regressor 1,1326 1,5897 1,8952 2,1294 2,3280

Table 4: Mean RMSE values (lower is better) were
obtained across the stations for each forecasting hori-
zon. The mean was computed over the mean RMSE
obtained from the ten-fold cross-validation performed
for each station. Best results are bolded, and second-
best are displayed in italics.

We found that all models we created performed bet-
ter than the baseline. On average, the local models per-
formed best, with the Catboost Classifier leading over
the Logistic Regression when predicting the decision-
making actions and the Linear Regression leading over
the Catboost Regressor when predicting the number
of bicycles to be found at the station for a particular
forecasting horizon. Nevertheless, when considering
global models, we found that the Logistic Regression
displayed slightly better performance against the Cat-
boost Classifier in all cases, and the Catboost Regressor
outperformed the Linear Regression when measuring
MAE and RMSE in all cases, except for RMSE at the
time horizon of twenty minutes.

When analyzing the impact of the time horizon on
the models’ performance, we found that the local mod-
els are not strongly affected, displaying an AUC ROC
above 0,9 even when predicting an hour ahead. Re-
gression models, on the other side, suffer more pro-
nounced performance degradation. The best model in-
creases the error eight and six times when comparing
MAE and RMSE correspondingly, between time hori-
zons of twenty and sixty minutes.

Finally, we were interested in which stations our
forecasting models displayed the best and worst per-
formance. We found that local models performed best
when predicting decision-making for the Črnuče sta-
tion and the Zalog station when forecasting the num-
ber of bicycles available. On the other hand, while the
worst performance for the regression problem was ob-
served for the Nama station, for classification differ-
ent stations were found depending on the forecasting
horizon (e.g., P+R Dolgi Most for twenty and thirty
minutes, Lidl Rudnik for forty and sixty minutes, and
GH Šentpeter Njegoševa cesta for fifty minutes). When
considering global models, decision-making was best
predicted for the Bordarjev trg station, while the worst
performance was observed for the Studenec station.
For regression, we found the best performance was dis-
played at the BS4 Stožice station. The worst perfor-
mance for the MAE metric was found at the Zalog sta-
tion. In contrast, for the RMSE metric, the worst per-
formance was split among the Zalog (predicting twenty
and thirty minutes ahead), Kolodvorska ulica (predict-
ing forty minutes ahead), and Nama (predicting fifty
and sixty minutes ahead) stations. Finally, when look-
ing at the baseline performance for classification, we
found that the best performance was observed at the
Živalski vrt station and the worst one for the Športni
Center Stožice in all forecasting horizons, except when
forecasting sixty minutes ahead, where the worst per-
formance was obtained for the Mercator Center Šiška.
On the other hand, when considering the regression
problem, we found that the best performance was ob-
tained at the Zalog station, while the worst one at the
Parkirišče NUK 2-FF station.

6 Conclusion
Optimizing BSS enables to amplify their use further
and minimize the adverse effects on nature. In our
work, we trained and compared ML models to predict
when rebalancing of the bicycles across stations is re-

Proceedings of the Central European Conference on Information and Intelligent Systems _____________________________________________________________________________________________________ 369 

 
33rd CECIIS, September 21-23, 2022
_____________________________________________________________________________________________________  

Dubrovnik, Croatia



quired. We evaluated our approach on real-life data
from BicikeLJ system in Ljubljana and achieved supe-
rior results compared to the baseline methods.

Given that our model can predict bicycle shortage or
overflow in advance, this information is helpful for the
caretakers of the system. Bicycles could be relocated
on time by exploiting other means of transport, thus
allowing for higher bicycle use. Another way we can
exploit the model’s insightful information is to increase
the usability of the BSS by incentivizing users to move
bicycles to the desired locations, i.e., from stations with
no parking capacity to the empty ones.

The main limitation of our study is the real-life im-
plementation, where the relocation of bicycles should
consider at least three constraints: (a) must be per-
formed timely, (b) in an environment-friendly way, and
(c) be financially efficient. Therefore, our future work
will aim to develop a holistic solution while consider-
ing the introduction and evaluation of our results in the
practical operation of Ljubljana BSS, and the above-
mentioned constraints. Furthermore, we plan to test
our approach on multiple BSS.
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