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Abstract. YOLOv5 is one of the latest and often used 

versions of a very popular deep learning neural 

network used for various machine learning tasks, 

mainly in computer vision. The YOLO algorithm has 

steadily gained acceptance in the data science 
community due to its superior performance in complex 

and noisy data environments, availability, and ease of 

use in combination with widely used programming 

languages such as Python. This paper aims to compare 

different versions of the YOLOv5 model using an 

everyday image dataset and to provide researchers 

with precise suggestions for selecting the optimal 

model for a given problem type. The obtained results 

and the implemented YOLOv5 models are available for 

non-commercial use at: 

https://github.com/mhorvat/YOLOv5-models-

comparison 
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1 Introduction 

The rapid development of Deep Learning (DL) has 

accelerated the progress of related methods, algorithms 

and procedures in the fields of image processing and 

computer vision, offering a wide range of applications. 

Nowadays, artificial neural networks are now the 

standard tool for most computer vision tasks. Since 
2012, with the invention of AlexNet, deep neural 

networks have been used in thousands of remote 

sensing applications (Krizhevsky, Sutskever & Hinton, 

2012). Among others, methods such as R-CNNs 

(Region Based Convolutional Neural Networks) 

(Girshick et al., 2014) and Fast R-CNNs (Fast Region 

Based Convolutional Neural Networks) (Girshick, 

2015) – representing a family of machine learning 

models developed for computer vision and specifically 

object detection, as well as, Spatial Pyramid Pooling-

Nets (He et al., 2015), and “You Only Look Once” 
(YOLO) (Redmon et al., 2016) networks provide 

promising results on a variety of computer vision 

problems.  

The YOLO is currently one of the most popular DL 

open-source frameworks for a wide range of machine 

learning (ML) tasks (Jiang et al., 2022). Additionally, 
YOLOv4 was the best real-time object detection 

algorithm in 2021 based on the MAP benchmark on the 

standard MS COCO dataset and the fastest real-time 

object detection algorithm (Lin et al., 2014; 

Bochkovskiy, Wang & Liao, 2020). The YOLO 

classifiers family is principally used in computer vision 

for object detection and image classification, for 

example (Krišto, Ivasic-Kos & Pobar, 2020; Du et al., 

2021), in both off-line and real-time (Redmon & 

Farhadi, 2018a; Fang, Wang & Ren, 2019) settings. 

Apart from YOLO, other frequently used algorithms 

for object detection are the already mentioned R-CNN 
and Fast R-CNN.  

The YOLO algorithm is a single-stage target 

recognition DL algorithm. It was first proposed in 2016 

by (Redmon et al., 2016), which implements object 

recognition classification and localization with a single 

neural network. It has been widely used in object 

recognition ever since. YOLO has undergone 

development from v1 to v7 (Redmon & Farhadi, 2017; 

Redmon & Farhadi, 2018b; Bochkovskiy, Wang & 

Liao, 2020; Jiang et al., 2022). Currently, YOLOv6/v7 

and YOLOv5, launched in 2022 and 2020, 
respectively, are the latest algorithm with many 

practical advantages over the previous versions 

(Solawetz, 2020; Nelson & Solawetz, 2020; Jiang et 

al., 2022). Some of the most important benefits of 

YOLOv5 compared to previous versions are smaller 

volume, higher speed, higher precision, and 

implementation in the ecologically mature PyTorch 

open-source ML framework. R-CNN belongs to the 

two-stage object recognition algorithms, which can 

effectively improve the problem of the target under test 

in the image, but the two-stage model is more complex 

and computationally intensive than the single-stage 
model. The YOLOv5 algorithm is commonly selected 

for data science projects to classify free datasets 

available on online repositories such as Kaggle. The 
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original algorithm is adapted by researchers or 

employed directly.  

The rest of the paper is organized as follows; 

following the introduction, section 2 explains the 

YOLOv5 model. The features of the architecture and 

the main differences between YOLOv5 and its 

predecessors, in particular v3 and v4, are presented. 

The main differences between YOLO v5 and the latest 

versions v6/v7 are explained in Section 2.1. In Section 

3, the experiment to comparatively study the 
performance of YOLOv5 models is described. The 

standardized experimental data set is also described in 

this section. The results of the conducted experiment 

are presented and discussed in the fourth section. The 

fourth section also compares the YOLOv5 models 

using quantitative indicators. The last section 

concludes the paper and provides suggestions for 

engineers and researchers to use the YOLOv5 model 

for various problems DL. 

2 The YOLOv5 model 

"You Only Look Once" is an object detection approach 

that processes input images in its entirety, unlike the 

older "sliding window" approach where specific image 
segments are individually classified often in multiple 

passes. This approach allows for faster processing 

because it does not have to perform many independent 

evaluations and it also improves accuracy since the 

global image context is made available to the whole 

neural network (Redmon & Farhadi, 2018a; Yang et 

al., 2020; Jocher, 2020a; Jocher, 2020b). 

The YOLOv5 (Solawetz, 2020) is based on the 

YOLO detection architecture and uses several 

algorithm optimization strategies from the field of 

convolutional neural networks such as auto learning 

bounding box anchors, mosaic data augmentation, and 
the cross-stage partial network. Compared to earlier 

solutions the YOLO model was the first object detector 

to connect the procedure of predicting bounding boxes 

with class labels in an end-to-end differentiable 

network (Nelson & Solawetz, 2020). 

The YOLOv5 network consists of three main 

components: 1) backbone, 2) neck, and 3) output. First, 

the input terminal performs data preprocessing tasks 

including mosaic data augmentation (Solawetz, 2020) 

and adaptive image filling. To be able to adapt to 

different datasets, YOLOv5 integrates adaptive anchor 
frame calculation on the input, so that it can 

automatically set the initial anchor frame size when the 

dataset changes. 

The backbone is a convolutional neural network 

that aggregates and forms image features at different 

granularities. It mainly uses a cross-stage partial 

network (CSP) (Kim et al., 2019) and spatial pyramid 

pooling (SPP) (He et al., 2015) to extract feature maps 

of different sizes from the input image by multiple 

convolution and pooling. The BottleneckCSP 

architecture is used to reduce the amount of calculation 

and increase the speed of inference, while the SPP 

structure realizes the feature extraction from different 

scales for the same feature map, and can generate three-

scale feature maps, which helps improve the detection 

accuracy. The neck neural network represents a series 

of layers to mix and combine image features and to 

pass them forward to the prediction. In the neck 

network, the feature pyramid structures of FPN and 

PAN are used. The FPN (Liu et al., 2016) structure 

conveys strong semantic features from the top feature 
maps into the lower feature maps. At the same time, the 

PAN (Wang et al., 2019) structure conveys strong 

localization features from lower feature maps into 

higher feature maps. These two structures jointly 

strengthen the feature extracted from different network 

layers in Backbone fusion, which further improves the 

detection capability. As a final detection step, the head 

output is mainly used to predict targets of different 

sizes on feature maps. 

The YOLOv5 model includes 10 individual 

architectures named YOLOv5n, YOLOv5s, 
YOLOv5m, YOLOv5l, YOLOv5x, YOLOv5n6, 

YOLOv5s6, YOLOv5m6, YOLOv5l6, and 

YOLOv5x6 + TTA (Jocher, 2020a). However, 

commonly only the first five are considered for 

research: nano, small, medium, large, xlarge. The main 

difference between them lies in the number of feature 

extraction modules and convolution kernels, and 

subsequently – which is important from the practical 

perspective in working with the YOLO models – in the 

number of neural network parameters. Accordingly, 

the size of parameters’ set for the YOLOv5n, 

YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x is 4 
MB, 14 MB, 41 MB, 89 MB, and as much as 166 MB, 

respectively (Yang et al., 2020; Jocher, 2020b). In a 

previous study these five YOLOv5 models were 

compared using COCO val2017 corpus (Lin et al., 

2014; Nelson & Solawetz, 2020). In this image 

classification experiment researchers employed 

NVIDIA V100 Tensor Core GPU and the dataset 

consisted of 5000 pictures separated in 80 classes. The 

results of this study are shown in Table 1. 

For evaluation of object detection, a common way 

to determine if one object proposal was correct is 

Intersection over Union (𝐼𝑜𝑈, 𝐼𝑈). This method takes 

the set 𝑨 of proposed object pixels and the set of true 

object pixels 𝑩 and calculates: 

 

𝐼𝑜𝑈(𝑨, 𝑩) =
𝑨 ∩ 𝑩

𝑨 ∪ 𝑩
;  𝐼𝑜𝑈(𝑨, 𝑩) ∈ [0,1] (1) 

 

Commonly, the threshold 𝐼𝑜𝑈 >  0.5 means that 

object detection was a hit; otherwise, if 𝐼𝑜𝑈 ≤  0.5 it 

was a fail. For each object class 𝑐 one can calculate the 

average precision (𝐴𝑃) as: 
 

𝐴𝑃(𝑐) =
𝑇𝑃(𝑐)

𝑇𝑃(𝑐) + 𝐹𝑃(𝑐)
 (2) 
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where 𝑇𝑃(𝑐) represents the number of true positive 

instances and 𝐹𝑃(𝑐) the number of false positive 

instances for class 𝑐. For an arbitrary class 𝑐 value 

𝐴𝑃(𝑐) = 1 would represent a perfect detection and 

𝐴𝑃(𝑐) = 0 the worst. Therefore, the evaluation metric 

mean average precision (𝑚𝐴𝑃) over the set of all 

objects (𝑶) in a dataset can be expressed as: 

 

𝑚𝐴𝑃 =
1

|𝑶|
∑ 𝐴𝑃(𝑐)

𝑐∈𝑶
 (3) 

 

Thus, metric 𝑚𝐴𝑃0.5:0.95 indicates 𝑚𝐴𝑃 over 

different 𝐼𝑜𝑈 thresholds, from 0.5 to 0.95, in 0.05 

increments. Similarly, 𝑚𝐴𝑃0.5 describes 𝑚𝐴𝑃 for 

𝐼𝑜𝑈 >  0.5. In popular object detection challenges 

(i.e. COCO Object Detection Challenge) additional 

common performance metrics is used such as 

𝑚𝐴𝑃IoU=.50:.05:.95, 𝑚𝐴𝑃IoU=.50 and 𝑚𝐴𝑃IoU=.75 

(Padilla et al., 2020). 

 

Table 1. Comparison of YOLOv5 models on 

COCOval 2017 dataset. Adapted from (Nelson & 

Solawetz, 2020). 

 

Model mAP0.5 mAP0.5:0.95 
Training 

duration [s] 

YOLOv5n 46.0 28.4 6.3 

YOLOv5s 56.0 37.2 6.4 

YOLOv5m 63.9 45.2 8.2 

YOLOv5l 67.2 48.8 10.1 

YOLOv5x 68.9 50.7 12.1 

 
The key benefits of the YOLOv5 compared to the 

previous versions are 1) simple installation requiring 

only the PyTorch and some lightweight python 

libraries, 2) fast training and reduction of 

experimentation costs, 3) functional inference ports on 

individual images, batch images, video feeds, or 

webcam ports, 4) intuitive layout based on standard file 

folder layout that is intuitive and easy to navigate while 
developing, and 5) easy translation to mobile devices 

such as smartphones and tablets with Core ML 

compatibility. Also, from the developers’ perspective, 

it is essential to point out that YOLOv5 is available in 

the PyTorch framework using Jupyter notebooks or 

Google Colab (Google Colaboratory) tools. 

2.1 The YOLO v6 and v7 models 

The latest YOLO versions MT-YOLOv6 and 

YOLOv7 were published online in June and July 2022 

(“YOLOv6”, 2022; Wang, Bochkovskiy, Liao, 2022) 

after this paper was accepted for review. As reported, 

both versions outperform YOLOv5 in object detection 
accuracy, training and classification speed. However, 

it should be noted that v6 and v7 are not part of the 

official YOLO series. They were developed 

independently by different developer groups, so 

YOLOv5 is still the last official YOLO release. 

According to information currently in the public 

domain, MT-YOLOv6 (developed by the Meituan 

company, hence the prefix “MT”) is a single-stage 

object detection framework dedicated to industrial 

applications with a hardware-friendly, efficient design 

and high performance. YOLOv6 has fewer model 

types (lacking m/l/x). Model MT-YOLOv6-s achieved 
43.1 mAP on the COCO val2017 dataset, compared to 

37.4 mAP for YOLOv5-s, with similar inference 

speed. MT-YOLOv6 shows significant improvements 

with small object detection in densely packed scenarios 

(“YOLOv6” 2022). 

Even less is known about YOLOv7, except that it 

is said to outperform all known object detectors in 

terms of speed and accuracy in the range of 5-160 FPS 

and has the highest accuracy 56.8% AP among all 
known real-time object detectors with 30 FPS or higher 

on GPU V100 (Wang, Bochkovskiy, Liao, 2022). Of 

course, to thoroughly compare the latest YOLO 

models, further experiments with different datasets and 

in different environments are needed (Wang, 

Bochkovskiy, Liao, 2022). 

3 Image classification experiment 

In the experiment reported in this paper, the YOLOv5 

models’ performance was compared on the Face Mask 

Detection image dataset (Maranhão, 2020). This 

dataset was created for medical face mask detection, 

and its properties are sufficient to compare YOLOv5 

models. The presented study is preliminary, and 

additional datasets and performance measures that are 
standardized in object recognition challenges, such as 

the COCO Object Detection Challenge, should be used 

for a more comprehensive analysis. 

The described experiment is conceptually similar to 

research (Yang et al., 2020; Sharma, 2020; Ieamsaard, 

Charoensook & Yammen, 2021; Jiang et al., 2021) 

where YOLOv3 and YOLOv5 models were trained on 

datasets designed to train deep neural networks to 
detect the human face and classify whether the person 

in the image is wearing a mask and wearing it properly. 

In (Yang et al., 2020) a system was constructed to 

detect a human face in a picture and classify whether 

the person is wearing a mask. The authors considered 

several different deep neural networks, Faster R-CNN, 

R-FCN, SDD, and YOLOv5s, and compared them. 

When training the YOLOv5 neural network, they used 
the AIZOOTech dataset (Chiang, 2020) and got 

slightly better results when training lasted more than 

300 epochs. In the second paper, the authors trained 

YOLOv5 models on a face detection corpus and 

performed classification to identify images of a person 

wearing a medical mask. The dataset was created by 

downloading images from the Internet and manually 

tagging them. The classification performance was 
slightly worse than in the first paper. Possible reasons 

were training on only 100 epochs, and the training data 

set contained a small number of examples. 

Proceedings of the Central European Conference on Information and Intelligent Systems _____________________________________________________________________________________________________ 351 

 
33rd CECIIS, September 21-23, 2022
_____________________________________________________________________________________________________  

Dubrovnik, Croatia



 

3.1 Experimental dataset 

The Face Mask Detection dataset used for training is 

available at the Kaggle repository (Maranhão, 2020). 

The Face Mask Detection dataset is in Public Domain 
(CC0: Public Domain) and it is freely available for 

research, education and even commercial purposes. A 

sample of images in the Face Mask Detection dataset 

is shown in Fig. 1. The Face Mask Detection dataset 

images are separated in 3 labelled classes: 1) persons 

with mask (“with_mask”); 2) persons without mask 

(“without_mask”); 3) persons with mask worn 

incorrectly (“mask_weared_incorrect”). 

 
 

Figure 1. Example of images in the Face Mask 

Detection dataset used for the comparative study. 

The image bounding boxes are available in the 

PASCAL VOC format. The original Face Mask 

Detection dataset contains 853 images. However, this 

was insufficient for training YOLOv5 models in this 

research. Therefore, all images in the dataset were 

mirrored along their horizontal axis to produce 

duplicates. Some images were discarded because they 
were nearly identical to the originals. In the end the 

experimental dataset consisted of 1677 images. 

3.2 Model training 

All YOLOv5 architectures in this experiment were 

trained using the Kaggle platform and the NVIDIA 

Tesla P100 GPU accelerator, which is freely available 

online via the Google Colab platform. This 

environment is particularly popular for data mining and 

computer vision research. To objectively compare the 

models, a Jupyter notebook was developed using the 

ultralytics library1 to integrate with the YOLO model. 

The Jupyter notebook was reused for all 5 models 

included in the analysis and was therefore adapted to 

                                                
1 https://github.com/ultralytics 

the Google Colab and Kaggle platforms. Also, the 

developed Jupyter notebook implements compression 

of outputs in ZIP format to expediate results download. 

The ability to resume data processing, load and store 

previously trained network parameters was 

implemented because of various usage restrictions of 

online platforms.  

The developed Juypter notebook is freely available 

for non-commercial, educational and research 

purposes at: https://github.com/mhorvat/YOLOv5-
models-comparison. We believe that the reported 

results and utilized real-world experimental settings 

are relevant to researchers who do not have access to 

powerful GPU workstations, especially junior early 

career researchers. 

The experimental dataset was randomly divided in 

3 subsets for training, evaluation and testing. This 

approach enables cross-validation and early stopping 

to prevent model overfitting. The relative sizes of the 

subsets were 85% (training), 10% (evaluation) and 5% 

(testing), respectively. The data was rotated during one 
training session using k-fold cross validation (k = 10). 

The cross-validation was stratified. However, the 

classes were imbalanced since 3.184 images were 

labelled “with mask”, 716 as “without mask”, and only 

121 “mask worn incorrectly”. In the worst case this 

could result in the neural network labelling all samples 

as “with mask” to minimize loss. 

Table 2. Duration of training of YOLOv5 models in 

hours on the experimental Face Mask Detection 

dataset. 

Model Training duration [h] 

YOLOv5n 1.17 

YOLOv5s 0.83 

YOLOv5m 1.83 

YOLOv5l 2.83 

YOLOv5x 8.67 

Each model was trained for 300 epochs. The mini 

groups sizes were determined with autobatch function 

in ultralytics library. Patience property was set to 100 

epochs to interrupt the training in the event of no 

progress. As could be seen in Table 2, training of the 

YOLOv5s model was the shortest. under an hour, 

while training of YOLOv5x was the longest and lasted 

almost nine hours. Generally speaking, the duration of 

training increases proportionally to the number of 

model parameters. However, due to the enabled early 

stopping feature, it is possible that training of more 
complex models will be shorter than for simpler 

models, as has happened with models n and s. The 

Google Colab has implemented a limit on free use (i.e. 

the stopping feature). In this regard, all Google Colab 

notebooks have an idle timeout of 90 minutes and an 

absolute timeout of 12 hours. If the user does not 
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interact with their Google Colab notebook for more 

than 90 minutes, the instance will automatically stop. 

4 Results and discussion 

The performance of the neural network is first 

determined by testing with a subset of training data that 

can indicate whether a particular model has sufficient 

learning ability to be used for this purpose, and with a 

subset of test data to determine the generalization 

ability of the network and how well it performs with 

the unknown input data. The classification experiment 

was performed independently on five YOLOv5 

architectures (n, s, m, l, x) first on the training and then 
on the testing image subsets. An example of models’ 

output is shown in Fig. 2. 

 
 

Figure 2. Example of image classifications as outputs 

from the YOLOv5x model. Outputs from other 

YOLOv5 architectures in this study have the same 

format. 

The results of models’ performance assessment on 

training and testing subsets are given in Fig. 3. The 

most complex architecture YOLOv5x achieved the 

best results in the training subset, while models m and 

l performed slightly worse. This is quite expected, as is 

the fact that YOLOv5n performed the worst due to the 

correlation between the number of parameters and the 

ability to learn the network. Results on the training and 

testing subsets are presented to maintain the 

completeness of the report. 
When testing with a set of unseen data (i.e. the 

testing subset), simpler neural networks can produce 

better results than more complex networks because of 

the ability to retrain the more complex networks. A 

smaller number of parameters alone can act as a form 

of regularization, giving a simpler network a greater 

ability to generalize. 

 

 
 

Figure 3. YOLOv5 (n, s, m, l, x) models’ 

performance on the training subset (above) and testing 

data subset (below). 

We see that more complex models are certainly 

more accurate, both in seen and unseen examples, but 

still, we cannot say that they are therefore better, 

especially if we take into account the everyday 

applications. In addition to accuracy itself, it is 

important, especially in the context of everyday 

applications, to consider the time it takes each model 

to process an unseen input example. The time it takes 

each model to process an image is given in Table 3. 
A can be seen in Table 3, when choosing an optimal 

network architecture, it is necessary to make a trade-

off between quality and speed. For more complex 

models to be competitive in terms of speed, they need 

stronger hardware, which may not always be available. 

For example, for a single-use device that automatically 

opens a door depending on whether a person is wearing 

a mask, it is not necessary to use a workstation when a 

device like the Raspberry Pi microcontroller with a 

camera could be used that can deliver nearly equal 

performance at much smaller cost. 

Table 3. Duration of processing of a single random 

image from the experimental dataset. All values are 

expressed in milliseconds (ms). The shortest total 

processing time is in green, and the longest in red. 

 

Model 
Pre-

processing 
Processing NMS Total 

YOLOv5n 0.2 5.1 2.5 7.8 

YOLOv5s 0.5 5.0 2.0 7.5 

YOLOv5m 0.3 11.2 1.8 13.3 

YOLOv5l 0.6 17.8 2.0 20.4 

YOLOv5x 0.8 32.7 1.8 35.3 
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Figure 4. Confusion matrices for image classification with the most complex model YOLOv5x on the train (left) 

and test (right) subsets. 

 

The YOLOv5x architecture achieved 88% TP 

(True Positive) for the class "with_mask" with the most 

examples in the training subset, and also 63% and 24% 
for the “without_mask” and "mask_weared_incorrect" 

classes with fewer data instances, respectively. In the 

testing, the YOLOv5x correctly classified 90% of 

“with_mask” instances, 66% “without_mask”, and 

32% “mask_weared_incorrect” which is slightly better 

overall than in training. Nevertheless, such results on 

the testing subset may be explained by overfitting of 

the neural network during the training. Also, the results 

could be at least partially attributed to the previously 

mentioned problem of severely unbalanced class 

distribution. Class "mask_weared_incorrect" has the 

least images in the data set and examples belonging to 
this class in 52% of cases are falsely marked as 

"with_mask" which has the most instances in the 

dataset. 

The results reported here and the YOLOv5 models 

implemented in a Jupyter notebook in the Google 

Colab development environment are freely available 

for educational and research purposes using the link 

provided above. Please cite this document when using 

the experimental results, software code, or conclusions 

in your work. 

5 Conclusion 

In the broader sense, the main advantage of YOLOv5 
is twofold. First, it is the integration of advances from 

other research areas in computer vision theory that 

improve YOLOv5 object recognition performance. 

Second, they are made available to ML and data 

scientists as a collection in the PyTorch framework, 

which can be easily integrated and used in modern 

cloud-based application development environments 

and other software packages such as NumPy.  

The latest YOLO versions v6 and v7 show even 

better performance than v5, especially in detecting 
small objects in densely packed environments. 

However, these versions have only recently been 

released and should be tested more thoroughly in 

various settings and with different datasets. 

The YOLOv5 algorithm has significant 

improvements over its predecessor, YOLOv3, making 

it easier to train with a range of written scripts and 

simplifying the later application of a trained image 
processing network. In addition, it offers a full range of 

architectures of varying complexity enabling a range of 

new everyday applications and indicating that accuracy 

is not the only item to pay attention to when choosing 

a network. The YOLOv5 improves and facilitates the 

application of trained neural networks in real-time 

video signal processing applications such as crowd 

people counters (Doljanin et al., 2021; Sukkar, Kumar 
& Sindha, 2021), or as a part of an intelligent decision 

support system for monitoring student behavior that 

can assist teachers in optimizing personalized 

education during online courses (Horvat & Jagušt, 

2020), or for example, in an automated system that 

selectively opens doors to public facilities only to 

persons properly wearing a medical mask. 

In a nutshell, the versatile YOLOv5 algorithm can 
train a neural network for various practical 

applications, one of which is demonstrated in this 

paper. Moreover, unlike its predecessors, YOLOv5 

improves the application of trained neural networks in 

video processing applications. It allows such 

applications to run on weaker devices, which has been 

challenging to do so far. 

The YOLO architecture is ready to use out of the 
box, which is especially useful to junior engineers and 

researchers without much experience in machine 

learning and computer vision. But to improve object 

recognition performance without changing the 

algorithm, it would be advisable first to improve the 
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understanding of the scene. For example, classification 

performance could be improved by disregarding 

unnecessary parts of an image and selecting only 

genuine regions of interest before importing the image 

into the YOLO pipeline. In this regard, it is highly 

advisable to use ontologies, formal knowledge 

representation methods, and automated reasoning 
services to achieve a semantically rich description of 

the scene and an understanding of the concepts in the 

image and their mutual functional relationships 

(Horvat, 2013; Horvat, Grbin & Gledec, 2013a; 

Horvat, Grbin & Gledec, 2013b). 

Finally, another important general point in practical 

applications of AI and DL algorithms such as the 

YOLO must be taken into consideration, and that is 
reliability or trust. Existing AI methods, if adequately 

trained, are very effective. Still, their output is very 

often hard to interpret and understand by the end-user, 

depending on the AI system's decisions. Therefore, in 

an Explainable AI (XAI) approach, an algorithm needs 

to provide the user with an explainable decision (Nott, 

2017). Explainable AI output aims to provide the user 

with additional information that supports the decision 
made by an AI system. This is usually a set of key 

features that lead to the system's decision. Providing 

XAI explanations to the end user increases confidence 

and understanding of the system. To take full 

advantage of the YOLO family of algorithms, 

including future updated versions, it is vital to use them 

to provide a comprehensive explanation of why a 

particular classification or decision was made. 
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