

A comparative study of YOLOv5 models performance for

image localization and classification

Marko Horvat, Ljudevit Jelečević, Gordan Gledec

Faculty of Electrical Engineering and Computing, Department of Applied Computing

University of Zagreb

Unska 3, HR-10000 Zagreb, Croatia

{Marko.Horvat3, Ljudevit.Jelecevic, Gordan.Gledec}@fer.hr

Abstract. YOLOv5 is one of the latest and often used

versions of a very popular deep learning neural

network used for various machine learning tasks,

mainly in computer vision. The YOLO algorithm has

steadily gained acceptance in the data science
community due to its superior performance in complex

and noisy data environments, availability, and ease of

use in combination with widely used programming

languages such as Python. This paper aims to compare

different versions of the YOLOv5 model using an

everyday image dataset and to provide researchers

with precise suggestions for selecting the optimal

model for a given problem type. The obtained results

and the implemented YOLOv5 models are available for

non-commercial use at:

https://github.com/mhorvat/YOLOv5-models-

comparison

Keywords. computer vision, image classification,

deep learning, deep convolutional neural networks,

YOLO

1 Introduction

The rapid development of Deep Learning (DL) has

accelerated the progress of related methods, algorithms

and procedures in the fields of image processing and

computer vision, offering a wide range of applications.

Nowadays, artificial neural networks are now the

standard tool for most computer vision tasks. Since
2012, with the invention of AlexNet, deep neural

networks have been used in thousands of remote

sensing applications (Krizhevsky, Sutskever & Hinton,

2012). Among others, methods such as R-CNNs

(Region Based Convolutional Neural Networks)

(Girshick et al., 2014) and Fast R-CNNs (Fast Region

Based Convolutional Neural Networks) (Girshick,

2015) – representing a family of machine learning

models developed for computer vision and specifically

object detection, as well as, Spatial Pyramid Pooling-

Nets (He et al., 2015), and “You Only Look Once”
(YOLO) (Redmon et al., 2016) networks provide

promising results on a variety of computer vision

problems.

The YOLO is currently one of the most popular DL

open-source frameworks for a wide range of machine

learning (ML) tasks (Jiang et al., 2022). Additionally,
YOLOv4 was the best real-time object detection

algorithm in 2021 based on the MAP benchmark on the

standard MS COCO dataset and the fastest real-time

object detection algorithm (Lin et al., 2014;

Bochkovskiy, Wang & Liao, 2020). The YOLO

classifiers family is principally used in computer vision

for object detection and image classification, for

example (Krišto, Ivasic-Kos & Pobar, 2020; Du et al.,

2021), in both off-line and real-time (Redmon &

Farhadi, 2018a; Fang, Wang & Ren, 2019) settings.

Apart from YOLO, other frequently used algorithms

for object detection are the already mentioned R-CNN
and Fast R-CNN.

The YOLO algorithm is a single-stage target

recognition DL algorithm. It was first proposed in 2016

by (Redmon et al., 2016), which implements object

recognition classification and localization with a single

neural network. It has been widely used in object

recognition ever since. YOLO has undergone

development from v1 to v7 (Redmon & Farhadi, 2017;

Redmon & Farhadi, 2018b; Bochkovskiy, Wang &

Liao, 2020; Jiang et al., 2022). Currently, YOLOv6/v7

and YOLOv5, launched in 2022 and 2020,
respectively, are the latest algorithm with many

practical advantages over the previous versions

(Solawetz, 2020; Nelson & Solawetz, 2020; Jiang et

al., 2022). Some of the most important benefits of

YOLOv5 compared to previous versions are smaller

volume, higher speed, higher precision, and

implementation in the ecologically mature PyTorch

open-source ML framework. R-CNN belongs to the

two-stage object recognition algorithms, which can

effectively improve the problem of the target under test

in the image, but the two-stage model is more complex

and computationally intensive than the single-stage
model. The YOLOv5 algorithm is commonly selected

for data science projects to classify free datasets

available on online repositories such as Kaggle. The

Proceedings of the Central European Conference on Information and Intelligent Systems ___ 349

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

https://github.com/mhorvat/YOLOv5-models-comparison
https://github.com/mhorvat/YOLOv5-models-comparison

original algorithm is adapted by researchers or

employed directly.

The rest of the paper is organized as follows;

following the introduction, section 2 explains the

YOLOv5 model. The features of the architecture and

the main differences between YOLOv5 and its

predecessors, in particular v3 and v4, are presented.

The main differences between YOLO v5 and the latest

versions v6/v7 are explained in Section 2.1. In Section

3, the experiment to comparatively study the
performance of YOLOv5 models is described. The

standardized experimental data set is also described in

this section. The results of the conducted experiment

are presented and discussed in the fourth section. The

fourth section also compares the YOLOv5 models

using quantitative indicators. The last section

concludes the paper and provides suggestions for

engineers and researchers to use the YOLOv5 model

for various problems DL.

2 The YOLOv5 model

"You Only Look Once" is an object detection approach

that processes input images in its entirety, unlike the

older "sliding window" approach where specific image
segments are individually classified often in multiple

passes. This approach allows for faster processing

because it does not have to perform many independent

evaluations and it also improves accuracy since the

global image context is made available to the whole

neural network (Redmon & Farhadi, 2018a; Yang et

al., 2020; Jocher, 2020a; Jocher, 2020b).

The YOLOv5 (Solawetz, 2020) is based on the

YOLO detection architecture and uses several

algorithm optimization strategies from the field of

convolutional neural networks such as auto learning

bounding box anchors, mosaic data augmentation, and
the cross-stage partial network. Compared to earlier

solutions the YOLO model was the first object detector

to connect the procedure of predicting bounding boxes

with class labels in an end-to-end differentiable

network (Nelson & Solawetz, 2020).

The YOLOv5 network consists of three main

components: 1) backbone, 2) neck, and 3) output. First,

the input terminal performs data preprocessing tasks

including mosaic data augmentation (Solawetz, 2020)

and adaptive image filling. To be able to adapt to

different datasets, YOLOv5 integrates adaptive anchor
frame calculation on the input, so that it can

automatically set the initial anchor frame size when the

dataset changes.

The backbone is a convolutional neural network

that aggregates and forms image features at different

granularities. It mainly uses a cross-stage partial

network (CSP) (Kim et al., 2019) and spatial pyramid

pooling (SPP) (He et al., 2015) to extract feature maps

of different sizes from the input image by multiple

convolution and pooling. The BottleneckCSP

architecture is used to reduce the amount of calculation

and increase the speed of inference, while the SPP

structure realizes the feature extraction from different

scales for the same feature map, and can generate three-

scale feature maps, which helps improve the detection

accuracy. The neck neural network represents a series

of layers to mix and combine image features and to

pass them forward to the prediction. In the neck

network, the feature pyramid structures of FPN and

PAN are used. The FPN (Liu et al., 2016) structure

conveys strong semantic features from the top feature
maps into the lower feature maps. At the same time, the

PAN (Wang et al., 2019) structure conveys strong

localization features from lower feature maps into

higher feature maps. These two structures jointly

strengthen the feature extracted from different network

layers in Backbone fusion, which further improves the

detection capability. As a final detection step, the head

output is mainly used to predict targets of different

sizes on feature maps.

The YOLOv5 model includes 10 individual

architectures named YOLOv5n, YOLOv5s,
YOLOv5m, YOLOv5l, YOLOv5x, YOLOv5n6,

YOLOv5s6, YOLOv5m6, YOLOv5l6, and

YOLOv5x6 + TTA (Jocher, 2020a). However,

commonly only the first five are considered for

research: nano, small, medium, large, xlarge. The main

difference between them lies in the number of feature

extraction modules and convolution kernels, and

subsequently – which is important from the practical

perspective in working with the YOLO models – in the

number of neural network parameters. Accordingly,

the size of parameters’ set for the YOLOv5n,

YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x is 4
MB, 14 MB, 41 MB, 89 MB, and as much as 166 MB,

respectively (Yang et al., 2020; Jocher, 2020b). In a

previous study these five YOLOv5 models were

compared using COCO val2017 corpus (Lin et al.,

2014; Nelson & Solawetz, 2020). In this image

classification experiment researchers employed

NVIDIA V100 Tensor Core GPU and the dataset

consisted of 5000 pictures separated in 80 classes. The

results of this study are shown in Table 1.

For evaluation of object detection, a common way

to determine if one object proposal was correct is

Intersection over Union (𝐼𝑜𝑈, 𝐼𝑈). This method takes

the set 𝑨 of proposed object pixels and the set of true

object pixels 𝑩 and calculates:

𝐼𝑜𝑈(𝑨, 𝑩) =
𝑨 ∩ 𝑩

𝑨 ∪ 𝑩
; 𝐼𝑜𝑈(𝑨, 𝑩) ∈ [0,1] (1)

Commonly, the threshold 𝐼𝑜𝑈 > 0.5 means that

object detection was a hit; otherwise, if 𝐼𝑜𝑈 ≤ 0.5 it

was a fail. For each object class 𝑐 one can calculate the

average precision (𝐴𝑃) as:

𝐴𝑃(𝑐) =
𝑇𝑃(𝑐)

𝑇𝑃(𝑐) + 𝐹𝑃(𝑐)
 (2)

350 ___ Proceedings of the Central European Conference on Information and Intelligent Systems

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

where 𝑇𝑃(𝑐) represents the number of true positive

instances and 𝐹𝑃(𝑐) the number of false positive

instances for class 𝑐. For an arbitrary class 𝑐 value

𝐴𝑃(𝑐) = 1 would represent a perfect detection and

𝐴𝑃(𝑐) = 0 the worst. Therefore, the evaluation metric

mean average precision (𝑚𝐴𝑃) over the set of all

objects (𝑶) in a dataset can be expressed as:

𝑚𝐴𝑃 =
1

|𝑶|
∑ 𝐴𝑃(𝑐)

𝑐∈𝑶
 (3)

Thus, metric 𝑚𝐴𝑃0.5:0.95 indicates 𝑚𝐴𝑃 over

different 𝐼𝑜𝑈 thresholds, from 0.5 to 0.95, in 0.05

increments. Similarly, 𝑚𝐴𝑃0.5 describes 𝑚𝐴𝑃 for

𝐼𝑜𝑈 > 0.5. In popular object detection challenges

(i.e. COCO Object Detection Challenge) additional

common performance metrics is used such as

𝑚𝐴𝑃IoU=.50:.05:.95, 𝑚𝐴𝑃IoU=.50 and 𝑚𝐴𝑃IoU=.75

(Padilla et al., 2020).

Table 1. Comparison of YOLOv5 models on

COCOval 2017 dataset. Adapted from (Nelson &

Solawetz, 2020).

Model mAP0.5 mAP0.5:0.95
Training

duration [s]

YOLOv5n 46.0 28.4 6.3

YOLOv5s 56.0 37.2 6.4

YOLOv5m 63.9 45.2 8.2

YOLOv5l 67.2 48.8 10.1

YOLOv5x 68.9 50.7 12.1

The key benefits of the YOLOv5 compared to the

previous versions are 1) simple installation requiring

only the PyTorch and some lightweight python

libraries, 2) fast training and reduction of

experimentation costs, 3) functional inference ports on

individual images, batch images, video feeds, or

webcam ports, 4) intuitive layout based on standard file

folder layout that is intuitive and easy to navigate while
developing, and 5) easy translation to mobile devices

such as smartphones and tablets with Core ML

compatibility. Also, from the developers’ perspective,

it is essential to point out that YOLOv5 is available in

the PyTorch framework using Jupyter notebooks or

Google Colab (Google Colaboratory) tools.

2.1 The YOLO v6 and v7 models

The latest YOLO versions MT-YOLOv6 and

YOLOv7 were published online in June and July 2022

(“YOLOv6”, 2022; Wang, Bochkovskiy, Liao, 2022)

after this paper was accepted for review. As reported,

both versions outperform YOLOv5 in object detection
accuracy, training and classification speed. However,

it should be noted that v6 and v7 are not part of the

official YOLO series. They were developed

independently by different developer groups, so

YOLOv5 is still the last official YOLO release.

According to information currently in the public

domain, MT-YOLOv6 (developed by the Meituan

company, hence the prefix “MT”) is a single-stage

object detection framework dedicated to industrial

applications with a hardware-friendly, efficient design

and high performance. YOLOv6 has fewer model

types (lacking m/l/x). Model MT-YOLOv6-s achieved
43.1 mAP on the COCO val2017 dataset, compared to

37.4 mAP for YOLOv5-s, with similar inference

speed. MT-YOLOv6 shows significant improvements

with small object detection in densely packed scenarios

(“YOLOv6” 2022).

Even less is known about YOLOv7, except that it

is said to outperform all known object detectors in

terms of speed and accuracy in the range of 5-160 FPS

and has the highest accuracy 56.8% AP among all
known real-time object detectors with 30 FPS or higher

on GPU V100 (Wang, Bochkovskiy, Liao, 2022). Of

course, to thoroughly compare the latest YOLO

models, further experiments with different datasets and

in different environments are needed (Wang,

Bochkovskiy, Liao, 2022).

3 Image classification experiment

In the experiment reported in this paper, the YOLOv5

models’ performance was compared on the Face Mask

Detection image dataset (Maranhão, 2020). This

dataset was created for medical face mask detection,

and its properties are sufficient to compare YOLOv5

models. The presented study is preliminary, and

additional datasets and performance measures that are
standardized in object recognition challenges, such as

the COCO Object Detection Challenge, should be used

for a more comprehensive analysis.

The described experiment is conceptually similar to

research (Yang et al., 2020; Sharma, 2020; Ieamsaard,

Charoensook & Yammen, 2021; Jiang et al., 2021)

where YOLOv3 and YOLOv5 models were trained on

datasets designed to train deep neural networks to
detect the human face and classify whether the person

in the image is wearing a mask and wearing it properly.

In (Yang et al., 2020) a system was constructed to

detect a human face in a picture and classify whether

the person is wearing a mask. The authors considered

several different deep neural networks, Faster R-CNN,

R-FCN, SDD, and YOLOv5s, and compared them.

When training the YOLOv5 neural network, they used
the AIZOOTech dataset (Chiang, 2020) and got

slightly better results when training lasted more than

300 epochs. In the second paper, the authors trained

YOLOv5 models on a face detection corpus and

performed classification to identify images of a person

wearing a medical mask. The dataset was created by

downloading images from the Internet and manually

tagging them. The classification performance was
slightly worse than in the first paper. Possible reasons

were training on only 100 epochs, and the training data

set contained a small number of examples.

Proceedings of the Central European Conference on Information and Intelligent Systems ___ 351

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

3.1 Experimental dataset

The Face Mask Detection dataset used for training is

available at the Kaggle repository (Maranhão, 2020).

The Face Mask Detection dataset is in Public Domain
(CC0: Public Domain) and it is freely available for

research, education and even commercial purposes. A

sample of images in the Face Mask Detection dataset

is shown in Fig. 1. The Face Mask Detection dataset

images are separated in 3 labelled classes: 1) persons

with mask (“with_mask”); 2) persons without mask

(“without_mask”); 3) persons with mask worn

incorrectly (“mask_weared_incorrect”).

Figure 1. Example of images in the Face Mask

Detection dataset used for the comparative study.

The image bounding boxes are available in the

PASCAL VOC format. The original Face Mask

Detection dataset contains 853 images. However, this

was insufficient for training YOLOv5 models in this

research. Therefore, all images in the dataset were

mirrored along their horizontal axis to produce

duplicates. Some images were discarded because they
were nearly identical to the originals. In the end the

experimental dataset consisted of 1677 images.

3.2 Model training

All YOLOv5 architectures in this experiment were

trained using the Kaggle platform and the NVIDIA

Tesla P100 GPU accelerator, which is freely available

online via the Google Colab platform. This

environment is particularly popular for data mining and

computer vision research. To objectively compare the

models, a Jupyter notebook was developed using the

ultralytics library1 to integrate with the YOLO model.

The Jupyter notebook was reused for all 5 models

included in the analysis and was therefore adapted to

1 https://github.com/ultralytics

the Google Colab and Kaggle platforms. Also, the

developed Jupyter notebook implements compression

of outputs in ZIP format to expediate results download.

The ability to resume data processing, load and store

previously trained network parameters was

implemented because of various usage restrictions of

online platforms.

The developed Juypter notebook is freely available

for non-commercial, educational and research

purposes at: https://github.com/mhorvat/YOLOv5-
models-comparison. We believe that the reported

results and utilized real-world experimental settings

are relevant to researchers who do not have access to

powerful GPU workstations, especially junior early

career researchers.

The experimental dataset was randomly divided in

3 subsets for training, evaluation and testing. This

approach enables cross-validation and early stopping

to prevent model overfitting. The relative sizes of the

subsets were 85% (training), 10% (evaluation) and 5%

(testing), respectively. The data was rotated during one
training session using k-fold cross validation (k = 10).

The cross-validation was stratified. However, the

classes were imbalanced since 3.184 images were

labelled “with mask”, 716 as “without mask”, and only

121 “mask worn incorrectly”. In the worst case this

could result in the neural network labelling all samples

as “with mask” to minimize loss.

Table 2. Duration of training of YOLOv5 models in

hours on the experimental Face Mask Detection

dataset.

Model Training duration [h]

YOLOv5n 1.17

YOLOv5s 0.83

YOLOv5m 1.83

YOLOv5l 2.83

YOLOv5x 8.67

Each model was trained for 300 epochs. The mini

groups sizes were determined with autobatch function

in ultralytics library. Patience property was set to 100

epochs to interrupt the training in the event of no

progress. As could be seen in Table 2, training of the

YOLOv5s model was the shortest. under an hour,

while training of YOLOv5x was the longest and lasted

almost nine hours. Generally speaking, the duration of

training increases proportionally to the number of

model parameters. However, due to the enabled early

stopping feature, it is possible that training of more
complex models will be shorter than for simpler

models, as has happened with models n and s. The

Google Colab has implemented a limit on free use (i.e.

the stopping feature). In this regard, all Google Colab

notebooks have an idle timeout of 90 minutes and an

absolute timeout of 12 hours. If the user does not

352 ___ Proceedings of the Central European Conference on Information and Intelligent Systems

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

https://github.com/ultralytics
https://github.com/mhorvat/YOLOv5-models-comparison
https://github.com/mhorvat/YOLOv5-models-comparison

interact with their Google Colab notebook for more

than 90 minutes, the instance will automatically stop.

4 Results and discussion

The performance of the neural network is first

determined by testing with a subset of training data that

can indicate whether a particular model has sufficient

learning ability to be used for this purpose, and with a

subset of test data to determine the generalization

ability of the network and how well it performs with

the unknown input data. The classification experiment

was performed independently on five YOLOv5

architectures (n, s, m, l, x) first on the training and then
on the testing image subsets. An example of models’

output is shown in Fig. 2.

Figure 2. Example of image classifications as outputs

from the YOLOv5x model. Outputs from other

YOLOv5 architectures in this study have the same

format.

The results of models’ performance assessment on

training and testing subsets are given in Fig. 3. The

most complex architecture YOLOv5x achieved the

best results in the training subset, while models m and

l performed slightly worse. This is quite expected, as is

the fact that YOLOv5n performed the worst due to the

correlation between the number of parameters and the

ability to learn the network. Results on the training and

testing subsets are presented to maintain the

completeness of the report.
When testing with a set of unseen data (i.e. the

testing subset), simpler neural networks can produce

better results than more complex networks because of

the ability to retrain the more complex networks. A

smaller number of parameters alone can act as a form

of regularization, giving a simpler network a greater

ability to generalize.

Figure 3. YOLOv5 (n, s, m, l, x) models’

performance on the training subset (above) and testing

data subset (below).

We see that more complex models are certainly

more accurate, both in seen and unseen examples, but

still, we cannot say that they are therefore better,

especially if we take into account the everyday

applications. In addition to accuracy itself, it is

important, especially in the context of everyday

applications, to consider the time it takes each model

to process an unseen input example. The time it takes

each model to process an image is given in Table 3.
A can be seen in Table 3, when choosing an optimal

network architecture, it is necessary to make a trade-

off between quality and speed. For more complex

models to be competitive in terms of speed, they need

stronger hardware, which may not always be available.

For example, for a single-use device that automatically

opens a door depending on whether a person is wearing

a mask, it is not necessary to use a workstation when a

device like the Raspberry Pi microcontroller with a

camera could be used that can deliver nearly equal

performance at much smaller cost.

Table 3. Duration of processing of a single random

image from the experimental dataset. All values are

expressed in milliseconds (ms). The shortest total

processing time is in green, and the longest in red.

Model
Pre-

processing
Processing NMS Total

YOLOv5n 0.2 5.1 2.5 7.8

YOLOv5s 0.5 5.0 2.0 7.5

YOLOv5m 0.3 11.2 1.8 13.3

YOLOv5l 0.6 17.8 2.0 20.4

YOLOv5x 0.8 32.7 1.8 35.3

Proceedings of the Central European Conference on Information and Intelligent Systems ___ 353

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

Figure 4. Confusion matrices for image classification with the most complex model YOLOv5x on the train (left)

and test (right) subsets.

The YOLOv5x architecture achieved 88% TP

(True Positive) for the class "with_mask" with the most

examples in the training subset, and also 63% and 24%
for the “without_mask” and "mask_weared_incorrect"

classes with fewer data instances, respectively. In the

testing, the YOLOv5x correctly classified 90% of

“with_mask” instances, 66% “without_mask”, and

32% “mask_weared_incorrect” which is slightly better

overall than in training. Nevertheless, such results on

the testing subset may be explained by overfitting of

the neural network during the training. Also, the results

could be at least partially attributed to the previously

mentioned problem of severely unbalanced class

distribution. Class "mask_weared_incorrect" has the

least images in the data set and examples belonging to
this class in 52% of cases are falsely marked as

"with_mask" which has the most instances in the

dataset.

The results reported here and the YOLOv5 models

implemented in a Jupyter notebook in the Google

Colab development environment are freely available

for educational and research purposes using the link

provided above. Please cite this document when using

the experimental results, software code, or conclusions

in your work.

5 Conclusion

In the broader sense, the main advantage of YOLOv5
is twofold. First, it is the integration of advances from

other research areas in computer vision theory that

improve YOLOv5 object recognition performance.

Second, they are made available to ML and data

scientists as a collection in the PyTorch framework,

which can be easily integrated and used in modern

cloud-based application development environments

and other software packages such as NumPy.

The latest YOLO versions v6 and v7 show even

better performance than v5, especially in detecting
small objects in densely packed environments.

However, these versions have only recently been

released and should be tested more thoroughly in

various settings and with different datasets.

The YOLOv5 algorithm has significant

improvements over its predecessor, YOLOv3, making

it easier to train with a range of written scripts and

simplifying the later application of a trained image
processing network. In addition, it offers a full range of

architectures of varying complexity enabling a range of

new everyday applications and indicating that accuracy

is not the only item to pay attention to when choosing

a network. The YOLOv5 improves and facilitates the

application of trained neural networks in real-time

video signal processing applications such as crowd

people counters (Doljanin et al., 2021; Sukkar, Kumar
& Sindha, 2021), or as a part of an intelligent decision

support system for monitoring student behavior that

can assist teachers in optimizing personalized

education during online courses (Horvat & Jagušt,

2020), or for example, in an automated system that

selectively opens doors to public facilities only to

persons properly wearing a medical mask.

In a nutshell, the versatile YOLOv5 algorithm can
train a neural network for various practical

applications, one of which is demonstrated in this

paper. Moreover, unlike its predecessors, YOLOv5

improves the application of trained neural networks in

video processing applications. It allows such

applications to run on weaker devices, which has been

challenging to do so far.

The YOLO architecture is ready to use out of the
box, which is especially useful to junior engineers and

researchers without much experience in machine

learning and computer vision. But to improve object

recognition performance without changing the

algorithm, it would be advisable first to improve the

354 ___ Proceedings of the Central European Conference on Information and Intelligent Systems

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

understanding of the scene. For example, classification

performance could be improved by disregarding

unnecessary parts of an image and selecting only

genuine regions of interest before importing the image

into the YOLO pipeline. In this regard, it is highly

advisable to use ontologies, formal knowledge

representation methods, and automated reasoning
services to achieve a semantically rich description of

the scene and an understanding of the concepts in the

image and their mutual functional relationships

(Horvat, 2013; Horvat, Grbin & Gledec, 2013a;

Horvat, Grbin & Gledec, 2013b).

Finally, another important general point in practical

applications of AI and DL algorithms such as the

YOLO must be taken into consideration, and that is
reliability or trust. Existing AI methods, if adequately

trained, are very effective. Still, their output is very

often hard to interpret and understand by the end-user,

depending on the AI system's decisions. Therefore, in

an Explainable AI (XAI) approach, an algorithm needs

to provide the user with an explainable decision (Nott,

2017). Explainable AI output aims to provide the user

with additional information that supports the decision
made by an AI system. This is usually a set of key

features that lead to the system's decision. Providing

XAI explanations to the end user increases confidence

and understanding of the system. To take full

advantage of the YOLO family of algorithms,

including future updated versions, it is vital to use them

to provide a comprehensive explanation of why a

particular classification or decision was made.

References

Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M.
(2020). Yolov4: Optimal speed and accuracy of

object detection. arXiv preprint

arXiv:2004.10934.

Chiang, D. (2020). AIZOOTech. FaceMaskDetection.

Retrieved from

https://github.com/AIZOOTech/FaceMaskDetecti

on

Doljanin, D., Pranjić, L., Jelećević, L., & Horvat, M.

(2021). Adaptive intelligent agent for e-learning:

First report on enabling technology solutions.

In 2021 44th International Convention on

Information, Communication and Electronic

Technology (MIPRO) (pp. 1690-1694). IEEE.

Du, Y., Pan, N., Xu, Z., Deng, F., Shen, Y., & Kang,

H. (2021). Pavement distress detection and

classification based on YOLO

network. International Journal of Pavement

Engineering, 22(13), 1659-1672.

Fang, W., Wang, L., & Ren, P. (2019). Tinier-YOLO:

A real-time object detection method for

constrained environments. IEEE Access, 8, 1935-

1944.

Girshick, R., Donahue, J., Darrell, T., & Malik, J.

(2014). Rich feature hierarchies for accurate

object detection and semantic segmentation.

In Proceedings of the IEEE conference on

computer vision and pattern recognition (pp. 580-

587).

Girshick, R. (2015). Fast r-cnn. In Proceedings of the

IEEE international conference on computer

vision (pp. 1440-1448).

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial
pyramid pooling in deep convolutional networks

for visual recognition. IEEE transactions on

pattern analysis and machine intelligence, 37(9),

1904-1916.

Horvat, M. (2013). Generation of multimedia stimuli

based on ontological affective and semantic

annotation (Doctoral dissertation, Zagreb:

University of Zagreb Faculty of Electrical

Engineering and Computing).

Horvat, M., Grbin, A., & Gledec, G. (2013). WNtags:

A web-based tool for image labeling and retrieval
with lexical ontologies. Frontiers in artificial

intelligence and applications, 243, 585-594.

Horvat, M., Grbin, A., & Gledec, G. (2013). Labeling

and retrieval of emotionally-annotated images

using WordNet. International Journal of

Knowledge-based and Intelligent Engineering

Systems, 17(2), 157-166.

Horvat, M., & Jagušt, T. (2020). Emerging

Opportunities for Education in the Time of

COVID-19-Adaptive e-Learning Intelligent Agent

Based on Assessment of Emotion and Attention.

In Central European Conference on Information
and Intelligent Systems (pp. 203-210). Faculty of

Organization and Informatics Varazdin.

Ieamsaard, J., Charoensook, S. N., & Yammen, S.

(2021, March). Deep learning-based face mask

detection using yolov5. In 2021 9th International

Electrical Engineering Congress (iEECON) (pp.

428-431). IEEE.

Jiang, X., Gao, T., Zhu, Z., & Zhao, Y. (2021). Real-

time face mask detection method based on

YOLOv3. Electronics, 10(7), 837.

Jiang, P., Ergu, D., Liu, F., Cai, Y., & Ma, B. (2022).
A Review of Yolo algorithm

developments. Procedia Computer Science, 199,

1066-1073.

Jocher, G. (2020). YOLOv5. Retrieved from

https://github.com/ultralytics/yolov5

Jocher, G. (2020). YOLOv5: Train Custom Data.

Retrieved from

https://github.com/ultralytics/yolov5/wiki/Train-

Custom-Data/

Proceedings of the Central European Conference on Information and Intelligent Systems ___ 355

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

https://github.com/AIZOOTech/FaceMaskDetection
https://github.com/AIZOOTech/FaceMaskDetection
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data/
https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data/

Kim, D., Park, S., Kang, D., & Paik, J. (2019,

September). Improved center and scale prediction-

based pedestrian detection using convolutional

block. In 2019 IEEE 9th International Conference

on Consumer Electronics (ICCE-Berlin) (pp. 418-

419). IEEE.

Krišto, M., Ivasic-Kos, M., & Pobar, M. (2020).

Thermal object detection in difficult weather

conditions using YOLO. IEEE access, 8, 125459-

125476.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012).

Imagenet classification with deep convolutional

neural networks. Advances in neural information

processing systems, 25. .

Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona,

P., Ramanan, D., ... & Zitnick, C. L. (2014,

September). Microsoft coco: Common objects in

context. In European conference on computer

vision (pp. 740-755). Springer, Cham.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed,

S., Fu, C. Y., & Berg, A. C. (2016, October). Ssd:
Single shot multibox detector. In European

conference on computer vision (pp. 21-37).

Springer, Cham.

Maranhão, A. (2020). Face Mask Detection.

Retrieved from

https://www.kaggle.com/andrewmvd/face-mask-

detection

YOLOv6: a single-stage object detection framework

dedicated to industrial applications. (2022).

Retrieved from

https://github.com/meituan/YOLOv6

Nelson, J., & Solawetz, J. (2020). Responding to the
Controversy about YOLOv5. Roboflow Blog.

Retrieved from https://blog.roboflow.com/yolov4-

versus-yolov5/

Nott, G. (2017). Explainable artificial intelligence:

Cracking open the black box of AI. Computer

world, 4.

Padilla, R., Netto, S. L., & Da Silva, E. A. (2020,

July). A survey on performance metrics for object-

detection algorithms. In 2020 international

conference on systems, signals and image

processing (IWSSIP) (pp. 237-242). IEEE.

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A.

(2016). You only look once: Unified, real-time

object detection. In Proceedings of the IEEE

conference on computer vision and pattern

recognition (pp. 779-788).

Redmon, J., & Farhadi, A. (2017). YOLO9000:

better, faster, stronger. In Proceedings of the IEEE

conference on computer vision and pattern

recognition (pp. 7263-7271).

Redmon, J., & Farhadi, A. (2018). Yolo: Real-time
object detection. Pjreddie. com. Retrieved from

https://github.com/pjreddie/darknet/wiki/YOLO:-

Real-Time-Object-Detection

Redmon, J., & Farhadi, A. (2018). Yolov3: An

incremental improvement. arXiv preprint

arXiv:1804.02767.

Sharma, V. (2020). Face mask detection using yolov5

for COVID-19 (Doctoral dissertation, California

State University San Marcos).

Sukkar, M., Kumar, D., & Sindha, J. (2021, July).

Real-Time Pedestrians Detection by YOLOv5.
In 2021 12th International Conference on

Computing Communication and Networking

Technologies (ICCCNT) (pp. 01-06). IEEE.

Solawetz, J. (2020). Yolov5 new version-

improvements and evaluation. Roboflow. Seach

date. Retrieved from

https://blog.roboflow.com/yolov5-improvements-

and-evaluation/

Wang, C. Y., Bochkovskiy, A., & Liao, H. Y. M.

(2022). YOLOv7: Trainable bag-of-freebies sets

new state-of-the-art for real-time object

detectors. arXiv preprint arXiv:2207.02696.

Wang, W., Xie, E., Song, X., Zang, Y., Wang, W.,

Lu, T., ... & Shen, C. (2019). Efficient and

accurate arbitrary-shaped text detection with pixel

aggregation network. In Proceedings of the

IEEE/CVF International Conference on Computer

Vision (pp. 8440-8449).

Yang, G., Feng, W., Jin, J., Lei, Q., Li, X., Gui, G., &

Wang, W. (2020, December). Face mask

recognition system with YOLOV5 based on image

recognition. In 2020 IEEE 6th International

Conference on Computer and Communications

(ICCC) (pp. 1398-1404). IEEE.

356 ___ Proceedings of the Central European Conference on Information and Intelligent Systems

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

https://www.kaggle.com/andrewmvd/face-mask-detection
https://www.kaggle.com/andrewmvd/face-mask-detection
https://github.com/meituan/YOLOv6
https://blog.roboflow.com/yolov4-versus-yolov5/
https://blog.roboflow.com/yolov4-versus-yolov5/
https://github.com/pjreddie/darknet/wiki/YOLO:-Real-Time-Object-Detection
https://github.com/pjreddie/darknet/wiki/YOLO:-Real-Time-Object-Detection
https://blog.roboflow.com/yolov5-improvements-and-evaluation/
https://blog.roboflow.com/yolov5-improvements-and-evaluation/

