Proceedings of the Central European Conference on Information and Intelligent Systems 385

Some modeling technologies in educating of young IT experts
in the field of formal languages and their semantics

William Steingartner, Valerie Novitzka, Pavol Zorvan

Technical University of KoSice

Faculty of Electrical Engineering and Informatics
Letnd 9, 04200 Kosice, Slovak Republic
{william.steingartner, valerie.novitzka}@tuke.sk, pavol.zorvan@student.tuke.sk

Abstract. Visualization of calculations in the field of
semantic methods significantly contributes to a better
understanding of the individual steps of the methods
used. The use of virtual machines to design and prove
the language properties is an important element in
teaching compiler design. In this paper, we present
visualization software that for a given input source in
the model (toy) language Jane generates bytecode for
an existing Computron virtual machine platform and a
sequence of instructions for an abstract machine for
operational semantics.

Keywords. abstract implementation, code translation,
compiler, formal language, semantics, university di-
dactics, virtual machine, visualization

1 Introduction

The training of future software experts requires a rel-
atively broad knowledge base that the university can
provide. Experience shows that teaching technology
alone and programming principles are not enough due
to rapid changes in information and communication
technologies. In addition to advanced languages and
technologies, curricula commonly include courses that
provide theoretical knowledge of languages, correct-
ness, and semantics, including the principles of lan-
guage design. The curriculum for the study field of In-
formatics at the Faculty of Electrical Engineering and
Informatics in KoSice contains two important courses
that provide a broad theoretical and practical frame-
work in the field of formal languages and semantics:
Formal languages (undergraduate course) and Seman-
tics of programming languages (graduate course).

At present, when the contact of educators and stu-
dents is limited mostly to online events, it is the in-
teractive teaching software tools that play an irreplace-
able role in the teaching process. The fact that theoret-
ically oriented courses, such as Semantics of program-
ming languages (and other courses focused on formal
methods and theoretical foundations of computer sci-
ence (Mihalyi et al., 2017)) require special support for
students, has forced a reassessment of the course teach-

ing method and the design and development of new
interactive teaching software tools. Similar software
tools (even for other courses) were created to sim-
plify the understanding process of the basics, for ex-
ample, the course on Dynamic Geometry (Radakovié¢
and Herceg, 2018; Herceg et al., 2019), Formal Logic
(Schreiner, 2019), Object-oriented Programming (Va-
clavkova et al., 2019), Operating Systems (Genci et al.,
2017) or general formal methods in software develop-
ment (Korecko et al., 2014).

The paper is organized as follows: in Section 2, we
present a pedagogical background and we explain our
motivation for this research and development. Section
3 contains all necessary basic notions and the theory
about the abstract machine and Computron Virtual Ma-
chine (VM). In Section 4 we present basic information
about compilation and the main phases of the compiler
concerning the software that is a subject of this article.
Then, Section 5 describes the developed software and
its main features and Section 6 presents on a specific
example the use of our software and focuses on ini-
tial experience after software deployment. Finally, the
Section 7 concludes our article.

2 Pedagogical background and mo-
tivation

For a better understanding of formal methods, we are
currently focusing our research on the visualization of
these methods. This research is covered by the KEGA
project, which we refer to in the Acknowledgments
section of this article. As a part of the project, we have
already implemented some software tools that are used
to visualize formal semantics for imperative languages.
Some results are presented in the works (Steingartner,
2020, 2021). Because we want to continue this trend
and prepare the basis for the visualization of semantic
methods for domain-specific languages, we consider it
necessary to expand the set of semantic methods in this
field.

The course Formal languages is devoted to algo-
rithms and techniques for processing text strings, es-

32nd CECIIS, October 13-15, 2021

Varazdin, Croatia

386 Proceedings of the Central European Conference on Information and Intelligent Systems

pecially parsing and processing sentences of formal
languages. After completing the course, the students
should be able to use regular expressions and under-
stand the definition of formal languages using gram-
mars. Students will be able to design grammar and im-
plement a simple context-free language parser. In addi-
tion, they will know the basic algorithms for searching
for strings and patterns in the text. For this course, a
very useful tool has been developed — Computron VM.
The software Computron VM is a virtual machine,
which associates theoretical knowledge and practical
compiler technology. For details, the readers are re-
ferred to (Kollar, 2012).

In the course of Semantics of programming lan-
guages, the students will get acquainted with differ-
ent approaches to defining the semantics of program-
ming languages. They will learn the most important
methods of semantic description, such as operational,
natural, denotational, algebraic, axiomatic, action and
newly defined categorical semantics. They gain knowl-
edge about the applications of various methods in the
design, definition and implementation of programming
languages. On the example of a simple procedural lan-
guage, they will be able to define the semantics of stan-
dard and some extended language constructions.

As part of the mentioned KEGA project, we imple-
mented some software tools enabling the visualization
of selected semantic methods. We realize the visual-
ization of semantic methods on the model abstract lan-
guage Jane, which contains typical constructs (or pat-
terns) known from imperative languages. Because a
language based on the same principles also serves as
the basis for constructing a compiler on the course of
Formal languages, we are inspired to provide a tool
to verify the translation from Jane to Computron VM
code and for translating an input code into an abstract
implementation for operational semantics. This will
provide students with an interesting software tool that
will be usable for both mentioned courses and can be
successfully used in practice to verify the properties of
compilation and some parts of the language.

3 Theoretical foundations

In this section, we present some necessary theoreti-
cal foundations and basic notions. In subsection 3.1,
we present a language that is the subject of a study
of both a Formal languages course and a Semantics
course. Then in subsection 3.2, we present the Com-
putron VM which serves as a main software tool for
the course Formal languages. Subsection 3.3 briefly
describes the main aspects of the abstract implemen-
tation of imperative languages and defines one kind of
abstract machine.

3.1 Language Jane

For both mentioned courses, a simple abstract (toy)
language for constructing a compiler into Computron
VM code and for defining the semantic methods and
proving their properties and equivalences is used. It
is a non-real programming language grounded in im-
perative paradigm, epitomizing a tiny core fragment of
conventional mainstream languages such as C or Java:
standard imperative constructs as sequences of state-
ments, selection (conditional), repetition (loops) and
handling the values in memory (variables assignment).
Moreover, statements for user input and output and
nested blocks are defined. For the research and devel-
opment, this language has been adopted by many au-
thors and researchers. Moreover, there have been for-
mulated also many approaches thanks to this abstract
language. Some authors refer to this language as IMP
(as simple imperative language) (Rosu and Serbénuta,
2010) or as While (defined for instance in (Nielson and
Nielson, 2007)). We adopted the structure of this lan-
guage as well, and we refer to this language as Jane
(Steingartner et al., 2019).

Since the definition of this language is well-known
(Nielson and Nielson, 2007), we do not repeat it and we
present basic aspects only briefly. We build on the pre-
liminaries that the definition of the language consists
of (Dedera, 2014):

e syntax definition using EBNF, inductive definition or
derivation rules,

e formal definition of the semantics of a particular lan-
guage using an appropriate semantic method.

The abstract syntax of the language Jane is defined
by the set of rules taking the syntactic elements from
the following syntactic domains (or syntax categories):

n € Num (strings of digits)

x € Var (variables’ names)

e € Expr (arithmetic expressions)
b € Bexpr (Boolean expressions)
S € Statm (statements)

D € Decl (declarations)

For each syntactic domain, we define exactly one
production rule given in EBNF. Moreover, we consider
for the language the declarations of variables.

e the elements in domains for numerals and variables’
names have no internal structure from the semantic
point of view, so we do not define rules for them;

e production rule for arithmetic expressions:
ex=nlzletele—elexel|(e), (1)
e production rule for Boolean expressions:

bu=true|false|e=¢cle<e|-b|bAb]| (D),
2)

32nd CECIIS, October 13-15, 2021

Varazdin, Croatia

Proceedings of the Central European Conference on Information and Intelligent Systems 387

e production rule for the statements:

Su= z:=e|skip|S;S|if bthen S else S |
| while bdo S | read z | print e | {S}
(3)
e production rule for the declarations:
D:= varz;D]|e, 4

where ¢ stands for an empty declaration.

We note, that the sets of arithmetic and Boolean ex-
pressions are in general not limited to listed syntactic
constructs and both rules can be extended by providing
other correct syntactic constructs.

3.2 Computron VM architecture

Computron VM is a virtual machine based on a word-
oriented architecture consisting of CPU and memory.
The CPU has four single-word registers: A — accumu-
lator, PC — program counter, SP — stack pointer and
X — index register, and one double-word register R.
Computron memory is organized as an array of capac-
ity of 64K, i.e. 65536 single-word cells where indices
of array M are considered as memory addresses. Com-
putron Instruction Set consists of the following instruc-
tion categories:

. No Operation Instruction

. Control Flow Instructions

. Input from keyboard Instructions

. Output to screen Instructions

. Stack PUSH and POP Instructions (single and double
word)

. Load accumulator A from memory

. Load register R from memory

. Store accumulator A and register R to memory

. Load/Store index register X and stack pointer SP
from/to memory

10. Boolean operations

11. Comparisons of words using register A and double

words using register R
12. Arithmetic operations on integer and real numbers

O R O R N R

Nelie BN Bo)Y

As an example, we show the semantics of the instruc-
tion named BZE addr. This is a standard control-flow
instruction: branch if zero, which makes a conditional
jump to address addr:

if (A =0) then PC := addr else PC := PC + 2;

For a complete description of the operational seman-
tics of Computron VM, we refer the reader to the tech-
nical report (Kollar, 2011). The Computron User Inter-
face is depicted in Figure 1.

In the course, students learn how to define the gram-
mar and how to design and develop their compiler that
transforms the input code written in Jane to the byte-
code that is executable on Computron VM. We can

&) compuTRON VM - o x

Pomacka - Help

R R
CPU REGISTER SWITCH

200000

PC SP A X RH RL

CPU REGISTER
MIPCI MIPCPCHTT
REGISTER ADDRESS PROGRAM

LOAD STORE INCR DECR TRACE RUN

CR T R T

COMPUTRON VM

ODFCPROGRAMMING DEVICE

2

Figure 1: Computron User Interface

simply say that the compiler generates the Computron
data to the output binary file, where the binary file is a
file of unsigned short values and it can be loaded by the
ODFC Programming device of Computron VM.

3.3 Abstract implementation

A formal specification of the semantics of a program-
ming language is useful when implementing it. In par-
ticular, it becomes possible to argue about the correct-
ness of the implementation. This is usually realized as
a translation of the higher-level language into a struc-
tured form of assembler code for a selected abstract
machine. The next step is the proof of whether the
translation is correct (Nielson and Nielson, 2007). An
abstract machine is an intermediate language with a
small-step operational semantics (Plotkin, 2004). Ab-
stract machines provide an intermediate language stage
for compilation. They bridge the gap between the high
level of a programming language and the low level of
a real machine. The instructions of an abstract ma-
chine are tailored to the particular operations required
to implement operations of a specific source language
or class of source languages (Diehl et al., 2000). First,
the meaning of the abstract machine instructions is de-
fined by operational semantics. Then translation func-
tions that will map expressions and statements in the
higher-level language into sequences of such instruc-
tion are defined. The correctness result then states that
if a program is translated into code and the code is exe-
cuted on the abstract machine then the same result must
be provided as by semantic functions for structural op-
erational semantics.

The description of particular computational steps of
abstract machine is usually given by configurations of
the form

<C7 0—3 S>)

where
e ¢ stands for a code — the sequence of instructions to

be executed,
e (o is the evaluation stack, and

32nd CECIIS, October 13-15, 2021

Varazdin, Croatia

388 Proceedings of the Central European Conference on Information and Intelligent Systems

® srepresent a storage.

Here, the evaluation stack is used to evaluate arithmetic
and Boolean expressions. Formally, it is defined as a
list of values that are elements of the semantic domain

Stack = (ZUB)",

where Z stands for a set of integers and B is a set of se-
mantic values of Boolean constants, B = {ff, tt}. For
the simplicity, the storage is assumed to be a memory
state, an abstraction of memory. The complete defini-
tion can be found in (Nielson and Nielson, 2007).

The language of abstract machine is a structured as-
sembler, which consists of instructions. These instruc-
tions are given by the following abstract syntax ex-
pressed by Backus-Naur form:

instr = PUSH—n | ADD | SUB | MULT |
TRUE | FALSE | EQ | LE | AND | NEG |
FETCH—2 | STORE—1 |
EMPTYOP | BRANCH(c, ¢) | LOOP(c,)
¢ = elinstr:c

A meta-variable c is ranging over a syntactic domain
Code of sequences of instructions.

The semantics of the instructions of the abstract ma-
chine is given by operational semantics. The usual way
of specifying the execution steps is by a transition sys-
tem. The definition of a transition system for an ab-
stract machine and the formal semantics of instructions
can be found in (Nielson and Nielson, 2007).

A code for the abstract machine is generated by the
translating functions. For each syntactic domain, one
translating function is defined. Arithmetic and Boolean
expressions are evaluated on the evaluation stack of the
machine and the code to be generated must to effect
this. This is accomplished by the following total func-
tions:

J& : Expr — Code

and
% : Bexpr — Code.

In both functions, the code generated for binary ex-
pressions consists of the code for the right argument
followed by that for the left argument and finally the
appropriate instruction for the operator. In this way, it
is ensured that the arguments appear on the evaluation
stack in the order required by the instructions.

The translation of statements into abstract machine
code is given by the function

7. : Statm — Code.

Specifications of functions .7&, J% and 7. are in
the Table 1 and Table 2.

The specifications of translation functions listed in
Tables 1 and 2 serve as the basis for the design of the
compiler, which is the subject of this article.

Table 1: Translation of arithmetic and Boolean expres-
sions

JI&[n] = PUSH—n
J&[x] = FETCH—z
TEe1+ e = TE[ea] : TEe1] : ADD
TEer —es] = TE[es] : TE[es] : SUB
TEer xex] = TEea] : TE[er] : MULT
TH[true] = TRUE
T A[false] = FALSE
TBle1 = es] = TE[es] : TEJen] : EQ
TBler < ex] = TE[es] : TE[er] : LE
TB[-b] = TBY] : NEG
TBby Nby] = TB[bo] - TRB[by] : AND

Table 2: Translation of statements in Jane

TSz :=e] = TE[e] : STORE—zx

7.7 [skip] = EMPTYOP

TL[51; %] = T7L[51]) : T7[S-]
F.7[if b then S, else S5 =

= JP[b] : BRANCH(.Z.[S4], 7-L[S2])

7.7 [while b do S| = LOOP(ZB[b], 7-7[S])

4 Code compilation

Programs are written in a specific programming lan-
guage according to the target platform, on which they
are executed. Usually, the code is written in higher-
level languages. The next step is then a translation into
the low-level language to be readable by a target plat-
form (Kollar, 2012).

Programs used to perform a translation process of
code from one form to another are commonly called
compilers. In the case of translation from high-level
to low-level language, they are also called compilers
and in the case of source-to-source translation, they are
referred to as transpilers (Herlihy et al., 2019).

At the end of the translation process is supposed to
be the code in the target form, which should have ex-
actly equal semantics as the original program. If we

32nd CECIIS, October 13-15, 2021

Varazdin, Croatia

Proceedings of the Central European Conference on Information and Intelligent Systems 389

want to perform translation of code, first we must be
sure that the source code does not contain any errors.
That is why every compiler have two parts: analysis
and synthesis (Aho et al., 2006).

4.1 Analytic part of translation

The analysis divides the input source code into tokens
and assigns them a grammatical structure. It creates a
tree form of the source program that is passed to the
synthesis.

If the analysis detects that the source program con-
tains syntactic or semantic errors, instead of creating
translation in the target language it provides a message
with information about found errors, so the user can
review the input code. The analysis consists of three
standard phases:

e lexical analysis,
e syntax analysis,
e semantic analysis.

Lexical analysis, also known as scanning, reads the
stream of characters and groups them into meaningful
language symbols called lexemes. For each lexeme,
it produces a token, which is usually pair of a token
name and a specific attribute value. Lexical errors oc-
cur when the compiler is unable to recognize some spe-
cific sequences of characters as lexemes of the source
language.

Syntax analysis uses a stream of tokens produced by
lexical analysis to create a tree-like representation of
the code that depicts the grammatical structure of the
token stream. Typically, it uses a syntax tree in which
each interior node represents an operation and leaves
represent arguments of the parental operation. Syntax
errors occur when some operators in interior nodes do
not have the required number of arguments.

The semantic analysis uses a syntax tree to check
the semantic consistency of the source program with
the language definition. An important part of semantic
analysis is type checking, where the compiler checks
that each function has attributes of expected type (Aho
et al., 2006).

4.2 Synthetic part of translation

The synthetic part creates translation from an interme-
diate representation of the source program, which is the
result of the analysis part. If the analysis ends without
errors, synthesis maps the syntax tree of the source pro-
gram into the target code. An important part of code
generation is also the assignment of registers to hold
variables used in code. The result of synthesis should
be semantically equivalent code executable on target
platform (Aho et al., 2006).

5 Generator of byte-code

We have developed a software tool that reads input
code written in an extended version of language Jane
and translates it into several forms. The software is de-
veloped as a web application, so the user can access
it directly through a web browser without having to
install it directly. The user only needs to connect to
the server on which the application is running (Zorvan,
2021).

The generator produces outputs into three target
forms. The first one is the translation into instructions
of virtual machine Computron, which is used in course
Formal languages. The executable code for the Com-
putron VM is stored in a binary file, where each in-
struction is stored in a one-word position (instruction
without an argument) or a two-word position (instruc-
tion with an argument). Therefore, an output for the
Computron is done in two different forms — one is bi-
nary which is executable for the virtual machine, the
other form is user-readable (textual) and it provides the
full instruction names.

The second is a translation into instructions of an
abstract machine which is used as one of the methods
to evaluate the semantics of programming languages.

The last form of output code is an XML structure,
that can be used as a descriptive form for exporting an-
alyzed language to another platform or for other exten-
sions.

For realizing the compilation and construction of
the Jane compiler, the ANTLR tool (Parr, 2013) has
been used, which is one of the best known and most
widely used language parsers used to implement com-
pilers and language processors. The generated com-
piler performs lexical and syntax analysis based on the
language definition and automatically creates a syntax
tree of the program. Then it allows the compiler to
walk through tree in node-by-node mode, calling spe-
cific translation functions for each type of node on en-
tering and exit and build translated code by using them
(Parr, 2013).

Semantic analysis is not performed automatically
but is implemented directly in translation functions.

The application consists of these main components:

e editor used for writing or loading of input code,
e buttons to switch the display between editor and

translations into various forms,

o the button that performs translation,
e panel with translation settings,
e buttons to load code from file and to save translated

codes into the local device,

e output field with reported errors that were found dur-

ing the analytic part of translation.

The Graphical user interface of our application is de-
picted in Figure 2.

32nd CECIIS, October 13-15, 2021

Varazdin, Croatia

390 Proceedings of the Central European Conference on Information and Intelligent Systems

Editor Abstract Machine

Computron XML

var x;
var y;
var z;
begin
z:=0;
read x;
read y;

while (y < x) do {

1=Z+1;
1=X-Y;

Figure 2: Byte-code Generator User Interface

5.1 Editor

To allow the user to easily enter the input source code,
we added a code editor component into the application
UI, that reads input source code from the user (man-
ually or by uploading). For that purpose, we used
Monaco editor! which also powers VS Code and has
several useful utilities.

Monaco editor automatically provides line numbers
at the beginning of each line. Monaco allows the pro-
grammers to define their language and then it offers by
auto-complete function all available code snippets and
commands to the user, which makes programming in
an editor much faster and easier. It also replaces special
keywords with symbols that are usually not on com-
puter keyboards but are used in language Jane. For ex-
ample, the editor replaces keyword /neq with the sym-
bol #, or the keyword /leq with the symbol <.

There are four buttons in the upper right corner of
the window above the textarea. They allow the user
to switch between the editor and individual transla-
tions. Each button opens a specific tab below the ed-
itor, which displays the corresponding type of trans-
lation after a successful translation process. If an er-
ror occurs during the translation process, all translation
windows remain blank.

If the source code was entered without errors, a
translated form is provided when the compilation pro-
cess is complete. However, if the specified source code
contained errors, the program will provide an error list-
ing.

5.2 Panel with settings

Panel with settings contains three translation specifi-
cations (Figure 3). First, it allows the user to choose,
which translations should be performed — every trans-
lation is represented by its checkbox.

"https://microsoft.github.io/monaco-editor/

Translations:

B Computron

W xML
B Abstract Machine

XML form:
® Normal form

Simplified form

XML expression order:
@ Pre-order
In-order

Post-order

Figure 3: Compilation settings (white color represents
checked option)

The second and the third setting applies to XML
form only. User can choose normal XML form, in
which expression annotations correspond to the Jane
grammar in detail, or simplified form, that use the
same wording for each arithmetic and logical expres-
sion. Lastly, the user can choose the order, in which
are arithmetic and logical expressions written, specif-
ically we can choose the position of operation signs —
before operands, between them or at the end (prefix,
infix or postfix form).

5.3 Loading and saving code

The load button allows the user to load some code from
a file into the editor. The download button opens a
dropdown menu with an option for every translation.
After clicking on a specific translation, it opens "Save
as..." pop-up window, which allows the user to set a
name and select a location in the local device, where
the user wants to save the output after the compilation.
Every translation also uses its file format.

5.4 Compilation errors

If the compilation process returns errors instead of out-
put code, a new panel will appear at the bottom of the
screen. Error panel contains all errors, that have been
found during the translation process. Each error con-
sists of an info message that describes the error and the
exact location in code given by line and character num-
bers.

6 Using a software tool

As we introduced in the previous sections, our software
tool realizes a compilation of input source code written

32nd CECIIS, October 13-15, 2021

Varazdin, Croatia

Proceedings of the Central European Conference on Information and Intelligent Systems 391

PUSH-@ : STORE-z : READ-X :
LE, PUSH-1 : FETCH-z : ADD :

READ-y : LOOP(FETCH-X : FETCH-y :
STORE-z : FETCH-y : FETCH-x : SUB :
FETCH-Xx : PRINT

STORE-x) : FETCH-z : PRINT :

Figure 4: Compiled code for abstract machine

in the language Jane and based on selected preferences
of the user, it provides three possible outputs: byte-
code for the Computron VM, descriptive XML form
and the sequence of instructions of the abstract ma-
chine for the structural operational semantics.

In Subsection 6.1, an example of using the software
is presented. Subsection 6.2 focuses on initial experi-
ence after the software deployment.

6.1 Example of use

As an example, we show the particular visualization
phases on a simple example of the integer quotient and
remainder. Let the input program be as follows:

var r;
var y;
var z;

begin
z = 0;
read z;
read y;

while (y < z) do {

z:=z4+1;
Ti=x—;
¥
print z;
print z;
end;

In this program, user is allowed to provide input val-
ues: dividend is stored in the variable x, and divisor
in variable y. After the calculation, the result is stored
in two variables: the quotient is in the variable z and
remainder after the division is in x.

The result of compiling an input source code into the
abstract machine code is in Figure 4.
The result after compilation into the Computron VM
code is in Figure 5 (the input is arranged in three
columns for better readability).
A fragment of the descriptive XML form is in Figure
6.
Finally, when running the compiled code on the Com-
putron VM and giving as input values: x = 17 (divi-
dend) and y = 5 (divisor), we get a result 3 (quotient,
stored in z) and 2 (remainder, stored in x). This situ-
ation is listed in Figure 7. We note that in the current
version of Jane, we do not recognize a visual offset in
the form of LF. So we can see the result as one string
32.

LDS 4
JMP 8
81 //WORK MEMORY ADDRESS
NOP
NOP
NOP
LDAM @
PUSH
POP
STA
INP
STA
INP
STA 6
LDA &
PUSH
LDA 5
PUSH
POP
STA 4

M
N & 0

w

AWoW W W W ow W
B o o o A

B
[

Figure 5: Compiled code for Computron VM

<program>
<declarations>
<var>x</var>
<var>y</var>
<var>z</var>
</declarations>
<statements>
<assign>
<var>z</var>
<value>
<term>a</term>
</value>

</assign>

<read>
<var>x</var>
</read>
<read>
<var»y</var>
</read>
<while>
<condition>
<expr>
<operation><</operation>
<var>y</var>
<var>x</var>

Figure 6: Description of an input code in XML format

17

32

Figure 7: Computron screen with input and output (a
fragment)

32nd CECIIS, October 13-15, 2021

Varazdin, Croatia

392 Proceedings of the Central European Conference on Information and Intelligent Systems

6.2 Using the tool in a real environment

Teaching tools often facilitate the teaching process. In
the teaching of information technologies, such tools are
various modeling and visualization tools that allow us
to visualize the individual steps of various procedures
and processes.

The teaching of the formal foundations of computer
science is often associated with mathematical founda-
tions, which are still taught in the classical form — us-
ing blackboard and chalk and accompanying interpre-
tation. The social situation since 2020 has required the
transfer of most of the teaching process to the online
space, where classical methods were very limited or
impossible to use. During the online teaching, short ex-
planatory videos proved to be useful, but they did not
allow interactive intervention into the content. There-
fore, we focused on the main idea — to support the
classical interpretation of the curriculum using visual-
ization tools. For the courses Formal Languages and
Semantics of Programming Languages, we have in-
troduced a new tool that connects aspects from both
courses. Its use is intended for teachers in the phase
of curriculum interpretation (demonstrating and com-
menting on individual steps), for students (in the phase
of study and experimentation as well as during labo-
ratory work) and for experts from practice who need
to formally verify language properties and so find out
critical points in the programs.

Our experience so far shows that students and new
educators who join the team positively welcome the
individual software visualization tools, which equally
contribute to the attractiveness and simplification of the
teaching process. The use of the program in pedagogi-
cal practice is currently still in its beginning, so deeper
feedback from students will be the subject of further
research in the future.

7 Conclusion

In this article, we have presented the results achieved
in the field of design and development of visualiza-
tion software tools, which are part of the KEGA project
cited in the Acknowledgments section. The inspiration
for this research was for us also the current situation,
when a large part of the educational process moved
to the online space. We believe that software support
aimed at visualizing computational steps will make a
significant contribution to making the teaching of for-
mal methods for software engineering more attractive.
This will greatly facilitate the clarity of semantic meth-
ods as well as the design of one’s language or verifica-
tion of its properties.

In our future research, we want to focus on explor-
ing other properties of imperative languages and ex-
tend existing methods in the field of semantic model-
ing or visualization of semantic methods. We want to
extend this area to some domain-specific and concate-

native languages, which are evolving rapidly, and we
see their use in the field of software engineering as a
benefit for the future. Secondly, we also want to focus
on the active use of this tool in teaching, its full inte-
gration during the tuition of the mentioned courses and
to deal with and explore the satisfaction of the users,
learning performance and progress.

Acknowledgments

This work was supported by project KEGA 01 1TUKE-
4/2020: “A development of the new semantic technolo-
gies in educating of young IT experts”, granted by the
Cultural and Education Grant Agency of the Slovak
Ministry of Education.

References

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J.
(2006). Compilers: Principles, Techniques, and
Tools (2nd Edition). Addison Wesley.

Dedera, L. (2014). Computer languages and their pro-
cessing. Armed Forces Academy of General Milan
Rastislav Stefanik. (in Slovak).

Diehl, S., Hartel, P., and Sestoft, P. (2000). Ab-
stract machines for programming language imple-
mentation. Future Generation Computer Systems,
16(7):739-751.

Gendi, J., Bilanova, Z., Dedk, A., and Vrabel, M.
(2017). Project and team based teaching of system
programming in the course of operating systems. In
2017 15th International Conference on Emerging
eLearning Technologies and Applications (ICETA),
pages 1-6.

Herceg, D., Radakovi¢, D., Ivanovi¢, M., and Herceg,
D. (2019). Possible improvements of modern dy-
namic geometry software. Computer Tools in Edu-
cation, (2):72-86.

Herlihy, A., Khineika, A., and Shestak, I. (2019). Tran-
spiling between any programming languages (part
1). https://engineering.mongodb.com/post/
transpiling-between-any-programming-
languages-part-1. accessed: 2021-06-12.

Kollar, J. (2012). Computron VM: Identification of ex-
pert knowledge in virtual computer architecture de-
velopment. In CSE 2012 : International Scientific
Conference on Computer Science and Engineering,
pages 87-94.

Kollar, J. (2011). Computron VM. http:
//people.tuke.sk/jan.kollar/FJ/
ComputronVM/help/CvmHelp.pdf. accessed:

2021-05-28.

32nd CECIIS, October 13-15, 2021

Varazdin, Croatia

Proceedings of the Central European Conference on Information and Intelligent Systems 393

Korecko, g., Sorad, J., Dudlakova, Z., and Sobota, B.
(2014). A toolset for support of teaching formal soft-
ware development. In International Conference on
Software Engineering and Formal Methods, pages
278-283. Springer.

Mihalyi, D., PeniaSkovd, M., Perhd¢, J., and Mihe-
lic, J. (2017). Web-based questionnaires for type
theory course. Acta Electrotechnica et Informatica,
17(4):35-42.

Nielson, H. and Nielson, F. (2007). Semantics with
Applications: An Appetizer (Undergraduate Topics
in Computer Science). Springer-Verlag, Berlin, Hei-
delberg.

Parr, T. (2013). The Definitive ANTLR 4 Reference.
Pragmatic Programmers, LLC, The, Raleigh.

Plotkin, G. (2004). A structural approach to operational
semantics. Journal of Logic and Algebraic Program-
ming, 60-61:17—-139.

Radakovié, D. and Herceg, D. (2018). Towards a com-
pletely extensible dynamic geometry software with
metadata. Computer Languages, Systems & Struc-
tures, 52:1-20.

Rosu, G. and Serbdnutd, T. F. (2010). An overview of
the k semantic framework. The Journal of Logic and
Algebraic Programming, 79(6):397-434. Membrane
computing and programming.

Schreiner, W. (2019). Logic and Semantic Technolo-
gies for Computer Science Education. In Steingart-
ner, W., S. Korecko, and Szakal, A., editors, Infor-
matics’2019, 2019 IEEE 15th International Scien-
tific Conference on Informatics, Poprad, Slovakia,
November 20-22, pages 415-420. IEEE. invited pa-
per.

Steingartner, W. (2020). Support for online teaching
of the semantics of programming languages course
using interactive software tools. In Proceedings of
the International Conference ICETA 2020.

Steingartner, W. (2021). On some innovations in teach-
ing the formal semantics using software tools. Open
Computer Science, 11(1):2—-11.

Steingartner, W., Novitzka, V., and Schreiner, W.

(2019). Coalgebraic operational semantics for an
imperative language. Computing and Informatics,
38(5).

Vaclavkova, M., Kvet, M., and Sedlacek, P. (2019).
Graphical development environment for object pro-
gramming teaching support. In INFORMATICS
2019 — IEEE 15th International Scientific Confer-
ence on Informatics, Proceedings, pages 77-82.
IEEE.

Zorvan, P. (2021). Byte-code generator for educational
imperative language. Technical report, Technical
University of KoSice, Slovakia. (in Slovak).

32nd CECIIS, October 13-15, 2021

Varazdin, Croatia

