
Data modelling for Blockchain Oriented Software
Engineering

Patrik Rek, Muhamed Turkanović
Faculty of Electrical Engineering and Computer Science, University of Maribor

Koroška cesta 46, Maribor, Slovenia
{patrik.rek,muhamed.turkanovic}@um.si

Abstract. Blockchain Oriented Software Engineering
(BOSE), which includes the specifics of blockchain
ledgers, smart contracts, tokens and decentralized
applications, is becoming an interesting topic due to
its ever growing popularity, both to the scientific, as
well as the professional community. Although there
are already some defined aspects and good practices
in the design and modelling of blockchain oriented
software, these aspects mainly cover the structure and
process perspectives. However, since blockchain is a
form of a distributed and decentralized database, the
BOSE has an evident shortcoming of covering only the
data perspective of BOSE. The paper focuses on this
shortcoming by proposing an extension towards the
Entity-Relationship model, which covers the core data
aspects of modelling blockchain-oriented software.
The proposed enhanced data model was validated on
a real-world use case.

Keywords. blockchain, software engineering, mod-
elling, smart contracts, ethereum, ER model, entity re-
lationship, token, ledger

1 Introduction
Blockchain, supported with smart contracts, is becom-
ing more and more popular as a platform for decen-
tralized applications for various sectors. Decentralized
applications are applications for which business logic
depends on a blockchain platform, mainly, but not ex-
clusively, supported by smart contracts. Decentralized
applications, also called dApps, are mainly web appli-
cations where the back-end is an integrating blockchain
and/or smart contract features, while the front-end, in
the majority of cases, enables a connection to dedicated
digital wallets, which enable users to authenticate and
trigger actions based on their decentralized identities
(e.g., blockchain addresses). Due to the specific nature
of design and development of blockchain-oriented ap-
plications i.e., dApps, classical software engineering is
not entirely applicable, hence IT architects and devel-
opers have to confront it with specific approaches. This
requirement brought about the need for a dedicated
approach, called Blockchain Oriented Software Engi-

neering (BOSE) (Porru, Pinna, Marchesi, & Tonelli,
2017).

BOSE presents a challenge for many engineers
trying to incorporate existing approaches to the
blockchain. The first issues are the existing modelling
techniques, which are not customized for BOSE, and
therefore do not offer enough options for engineers to
design appropriate models. There is no standardized
solution for modelling blockchain-oriented software.

In this paper, we have addressed this challenge from
a data perspective, which, in comparison to the process
and structure perspectives, is not yet addressed appro-
priately for blockchain-oriented software.

1.1 Methodology and contributions

A literature review was conducted on existing ap-
proaches for BOSE, and specifically its connection to-
wards modelling techniques. The literature review is
documented in sections 2 and 3.

As the core contribution, we propose a modelling
technique for BOSE focused on the data perspective,
which is presented in section 4.

A validation of the proposed data modelling tech-
nique is provided through a real-world case, presented
in sections 4 and 5.

2 Related works

Our paper addresses modelling techniques for
blockchain applications. Therefore, a research was
conducted of existing work done on that field. Since
blockchain modelling is not yet addressed in many
researches, this paper recognises only two existing
papers.

Marchesi, Marchesi and Tonelli have addressed the
agile blockchain decentralized application engineering
(Marchesi, Marchesi, & Tonelli, 2020). They proposed
the usage of agile software development practices be-
cause they are suited for systems with unclear starting
requirements and changing systems. They have based
their proposed system ABCDE on Scrum, and sepa-
rated activities to blockchain oriented, such as smart

Proceedings of the Central European Conference on Information and Intelligent Systems___377

32nd CECIIS, October 13-15, 2021

Varaždin, Croatia

contracts, libraries and data structures, and out-of-
chain components, such as web or mobile applications.
Together these activities form the design of a decen-
tralized application. They advised usage of UML dia-
grams to help with the designing and modelling of soft-
ware engineering. They used a UML class diagram for
structural purposes, and a UML sequence diagram for
communication purposes. Both UML diagrams were
upgraded by the authors with stereotypes specific to
BOSE.

Meanwhile, Rocha and Ducasse have addressed the
issue of modelling blockchain-oriented software and
the deficit of a standardized solution. They have cov-
ered the data, structure and process perspectives of
blockchain-oriented software modelling using tradi-
tional modelling techniques. They also used a refined
UML class diagram for structure modelling with addi-
tional stereotypes. However, the authors have not re-
fined an ER diagram for data modelling, but used a tra-
ditional ER model notation (Rocha & Ducasse, 2018).

Other articles related to this paper address software
modelling for traditional software, which doesn’t have
specific focus on blockchain oriented software. This
article is by Rumbaugh and Booch, who addressed the
UML in detail, with recommendations for application
in structural, behavioral and architectural modelling in
software engineering (Rumbaugh, Jacobson, & Booch,
2004).

While Rumbaugh and Booch address structure soft-
ware modelling, Gorman and Choobineh focus on data
modelling. They apply a traditional Chen’s ER di-
agram on object-oriented software with its specifics
(Gorman & Choobineh, 1990).

3 Background

3.1 Blockchain
Blockchain was first introduced by Satoshi Nakamoto
in 2008 as an online decentralized and distributed
ledger providing transparent data sharing (Nakamoto,
2009). Each of the transaction data, which are gener-
ated and stored in blockchain network nodes, are com-
pressed and added to blocks. Various data are stored
in distributed blocks. All the nodes containing the ap-
proved and prepared blocks form a chain of recursively
connected blocks, thus, a blockchain. Once data are
inserted into the blockchain, they becomes immutable,
allowing verification of data on each block. Each op-
eration is open to the public, transparent, and secure
(Cheng, Lee, Chi, & Chen, 2018).

Blockchain provides different areas of usage. The
most significant use case of blockchain technology is
in the financial sector with crypto-currencies. There
are more than 2,000 crypto-currencies currently on the
market. The first among them was Bitcoin, introduced
by Satoshi Nakamoto as a peer-to-peer electronic cash
system (Nakamoto, 2009).

Following Bitcoin, which was defined as Blockchain
1.0, Ethereum was introduced by Vitalik Buterin as
Blockchain 2.0, with support for smart contracts,
which is, nowadays, a widespread blockchain use case
(Aleksieva, Valchanov, & Huliyan, 2020; Wood, n.d.).

Ethereum is a decentralized platform, including Tur-
ing completeness with different options for applica-
tions. Most smart contracts are created using Ethereum
blockchain networks. Bitcoin is considered a global
payment network, while Ethereum may be considered
a global computing system, due to its Ethereum Virtual
Machine (EVM), which is located on every Ethereum
blockchain node, and acts as the virtual machine for
running smart contracts (Cheng et al., 2018).

3.2 Smart contracts

Ethereum enables developers to create applications
which are stored in Ethereum-based blocks and are run-
ning on the EVM. These applications are incorruptible,
secure and permanent, and are called smart contracts
(Cheng et al., 2018).

Smart contracts are executed with the transaction
validation. Deployment of the smart contract is exe-
cuted as a special transaction, which sends the smart
contract to the ledger. When the transaction is exe-
cuted, a smart contract is assigned a unique address,
and its code is uploaded to the blockchain. Smart con-
tracts consist of an address, balance, executable code
and state. Users of the blockchain may interact with
a contract by sending transactions to a known contract
address. Users can read or update the state using these
interactions, interact with other contracts, or transfer
value to others. Transactions can include the execution
fee. When the transaction is accepted, all network par-
ticipants execute the contract code. Afterwards, they
agree on the output and the next state of the contract
(Wohrer & Zdun, 2018).

3.2.1 Ethereum Virtual Machine

A decentralized virtual machine, which handles com-
puter tasks and the state of smart contracts is called
EVM. It is a network of smaller discrete machines in
constant communication. All transactions executing
the smart contracts are handled locally on each node
and processed synchronously. Each node validates and
groups the transactions in blocks, and tries to append
them to the blockchain to collect a reward. This is
known as mining. Every operation on the EVM has
a cost, measured in units of gas. Operations that are
computationally more demanding cost more gas than
easier operations. This ensures the system is not over-
loaded. A transaction fee in Ethers is paid as the gas
(Wohrer & Zdun, 2018).

378___Proceedings of the Central European Conference on Information and Intelligent Systems

32nd CECIIS, October 13-15, 2021

Varaždin, Croatia

3.2.2 Solidity

EVM operates in bytecode, which is a low-level oper-
ation instruction. Most smart contracts are written in
higher-level programming languages, which are later
compiled to EVM bytecode. There are more such lan-
guages, but the most prominent and widely adopted
programming language for smart contracts is Solidity
(Wohrer & Zdun, 2018).

Solidity is a high-level Turing-complete program-
ming language with a JavaScript similar syntax. It
is typed statically, supports inheritance and polymor-
phism, as well as libraries and complex user-defined
types. Smart contracts in Solidity are structured sim-
ilarly to classes in object-oriented programming lan-
guages. The code consists of variables and functions,
which manipulate them, like in traditional imperative
programming (Wohrer & Zdun, 2018).

Functions in Solidity can be designated as private
or public, which manages the external access. Vari-
ables can be of different types, which are similar to tra-
ditional imperative programming languages. Specific
types in Solidity are (1) Address, (2) Members of ad-
dress, like balance and transfer, (3) Struct, (4) Map-
ping, and (5) Events (Dannen, 2017).

Additionally, Solidity defines special variables (msg,
block, tx), which are always accessible in the global
namespace, and contain information about the trans-
action and the blockchain. A developer may obtain
complete call data, remaining gas, the transaction’s
sender, the value of the transaction, gas price, cur-
rent block number, current block timestamp and cur-
rent block miner’s address. (Dannen, 2017; Wohrer &
Zdun, 2018).

Another Solidity difference to JavaScript is modi-
fiers and events. Modifiers are enclosed code units that
modify functions’ code execution flow. They allow
condition-oriented programming that removes condi-
tional paths in function bodies. Modifiers are speci-
fied after the function name. They are used to check
conditions before function execution. Events are dis-
patched signals that smart contracts can fire. Different
applications can contain listeners to these events with-
out cost. Events also help with logging, since they are
all contained in a transaction’s log and their arguments.
The transaction’s log is a special data structure in the
blockchain that connects all the way up to the block
level. (Wohrer & Zdun, 2018).

3.3 Software modelling
Software engineering is the process of design, devel-
opment, testing and delivery of software to final cus-
tomers. A large part of software engineering is soft-
ware modelling. Models are built and analysed before
implementation for achieving the most acceptable final
result (Gomaa, 2011).

Since blockchain smart contracts may be different
for various areas and applications, the agile software

development approach such as SCRUM, or non-agile
approach such as waterfall, may be used (Beck et al.,
2013; Balaji & Murugaiyan, 2012).

Both the approaches utilize software modelling in a
large amount. Graphic representation of models helps
in communicating the different views on software. A
better understanding of software can be obtained by
considering different perspectives, which is best rep-
resented with graphical models (Gomaa, 2011).

There are three perspectives of software modelling,
which we will address separately. (Rocha & Ducasse,
2018):

• structure,

• process and

• data.

3.3.1 Structure software modelling

The main deficiency in data software modelling for
blockchain-oriented software are functions, which can
be represented using structure software modelling.
The main Standard to specify, design, visualize and
document software system from a structural perspec-
tive is Unified modelling Language (UML) (Rocha &
Ducasse, 2018).

It unifies more object-oriented modelling notations.
The Object Management Group (OMG) controls the
UML Standard, which defines 13 diagrams classified
into three categories (structure, behavior and interac-
tion). UML structure diagrams consist of a class di-
agram, an object diagram, a component diagram, a
composite structure diagram, a package diagram and
a deployment diagram. For modelling smart contracts,
UML class diagrams may be used with a few modifica-
tions (Rumbaugh et al., 2004).

3.3.2 Process software modelling

The functional behavior of blockchain-oriented soft-
ware requirements can be described using the Business
Process Model and Notation (BPMN), a graphical rep-
resentation of a business process. BPMN is controlled
by OMG and represents a flow-oriented representation
of software (Rocha & Ducasse, 2018).

It is aimed to be understandable by all business
users, from analysts that create the initial drafts of the
processes to the technical developers. BPMN con-
sists of Collaboration diagrams, Process diagrams and
Choreography diagrams, and provides a simple means
of communicating process information (OMG, 2013).

3.3.3 Data software modelling

In this paper, we focus on the data perspective of soft-
ware modelling for blockchain-based solutions, includ-
ing smart contracts and dApps.

Proceedings of the Central European Conference on Information and Intelligent Systems___379

32nd CECIIS, October 13-15, 2021

Varaždin, Croatia

There are more different known data models. First,
there were three major data models (network, rela-
tional, entity set). In 1976, Chen provided a gener-
alized Entity-Relationship (ER) model. It is identi-
fied by its graphical representation - ER diagram. It
is known as the most natural representation of soft-
ware, and can be extended for object-oriented soft-
ware engineering (Chen, 1976; Gorman & Choobineh,
1990). Since smart contracts are similar to conven-
tional classes in object-oriented programming, data in
Blockchain-Oriented Software (BOS) can be specified
using an ER model for the conceptual and logical de-
sign (Rocha & Ducasse, 2018). As Gorman intro-
duced, there are some analogies between the object-
oriented programming (OOP) and ER models. These
identified analogies are presented in Table 1 (Gorman
& Choobineh, 1990).

OOP ER

class entity set
instance entity
variables attributes
methods none

object ”visibility” relationships
sending & receiving objects roles

Table 1: Analogies between object oriented program-
ming and ER model (Gorman & Choobineh, 1990).

Identified analogies were also used for modelling the
data perspective of smart contract in this paper.

4 Data modelling for BOSE
In this section, we focus on the data perspective of
BOSE due to the lack of contributions in the field,
which we see as a shortcoming. The fact that BOSE
is focused mainly around smart contracts, which per-se
are stored on the data layer and executed as relational
database based functions and/or procedure, calsl for a
more data modelling technique. Such a modelling tech-
nique, if presented correctly, would emphasize the data
perspective of decentralized applications, and outline
the different database topology clearly.

In this sense we propose an extension of the de
facto Standard for data modelling i.e., the Entity-
Relationship Model, which would be modified for
BOSE.

Smart contract
<<contract>>

Ledger
<<transaction>>

Figure 1: Proposed ER model extension with stereo-
types.

4.1 Proposed ER Model extension
Our proposed extension of the Entity-Relationship
Model for BOSE contains stereotypes for specific
blockchain elements, similar to the proposed UML di-
agram extension by Marchesi, Marchesi and Tonelli
(Marchesi et al., 2020).

The most common blockchain specific element is a
smart contract. Since a smart contract is very similar
to a class in OOP, we can model it as an entity, where
we propose an additional stereotype for distinction be-
tween entities in traditional databases and blockchain
smart contracts.

Structs in smart contracts can be modeled as attribute
type inside a smart contract entity, since they cannot be
used outside of the smart contract context.

Variables in smart contracts are modeled as at-
tributes, like in OOP modelling.

Mapping and address are data types in blockchain
applications, and can therefore be represented as at-
tribute types.

Ledger is specific element containing all transactions
on the blockchain network. Since it represents a set of
transactions, it can be modeled as an entity. For distinc-
tion between other types of entities, we propose usage
of a specific ”transaction” stereotype.

Functions, modifiers and events are structural ele-
ments which do not hold any data, so they are not being
modeled using an ER diagram.

The proposed entities, with stereotypes, are repre-
sented in Figure 1. The proposed modelling technique
was validated using the example iPOT application in
the following sections.

4.2 Application sample
In order to represent and describe the proposed mod-
elling attributes better, we present these on a case that
is built around a real world application, which incor-
porates blockchain related elements. The application
sample covers the support for integrated token pay-
ments as part of a comprehensive smart city solu-
tion, called iPOT. It contains users and dedicated to-
ken (ERC 20) purchases, together with their respective
payment types (e.g., paypal), which are all stored in a
traditional relational database. On the other side, there
are vendors, who provide different services for a spe-
cific token price. Users may purchase iPOT tokens,
which are later used for the consumption of services.
The tokens are minted by a smart contract, which also
covers the management and transactions of those. Con-
sumption of services are all stored on the blockchain
ledger as transactions to iPOT tokens. The whole his-
tory of the blockchain network can be tracked in the
ledger log.

The iPOT example application was used for our so-
lution validation, because it represents a real-world ap-
plication, which incorporates both blockchain and off-
chain elements, which can lead to ambiguity if using

380___Proceedings of the Central European Conference on Information and Intelligent Systems

32nd CECIIS, October 13-15, 2021

Varaždin, Croatia

the existing ER modelling technique.

4.3 Conceptual data model

As a first step in the data modelling approach, we cover
the conceptual model.

Using the ER diagram notation, we have modeled
our application sample as shown in Figure 2. There are
seven entities: Entities User, Token purchase, Payment
type, Service and Vendor can be implemented as Tables
in a relational database, while entities iPOT token and
Ledger log are Blockchain-based entities.

The implementation of blockchain entities differs
from the off-chain entities. Consequently, it makes
sense to introduce a different notation for blockchain
entities for developers to understand the requirements
of the project in detail. Therefore, we have added
stereotypes for a blockchain transaction log and smart
contracts in our modified diagram, shown in Figure 2.
From that diagram, it is evident that the iPOT token
and Ledger are blockchain entities. These entities are
marked with stereotypical annotations in our proposed
diagram for better visual distinction. Foreign keys are
marked with underlined notation, where blockchain ad-
dresses are treated as such.

Most of the blockchain software solutions can use a
ledger of all transactions, which may be used to verify
the history of all interactions with the software. Each
blockchain-oriented software may contain one or more
smart contract entities, where each smart contract
may have one or more instances, according to the
implementation logic of each smart contract.

4.4 Logical data model

After defining the high level conceptual data model,
the next step is transforming it into the logical data
model, which adds additional technical information to
the conceptual model, as well as solves possible many-
to-many relationships etc. The logical model can be
modeled with the extended ER diagram or in a textual
format.

Off-chain entities, which may be implemented using
a relational database, are modeled using the ER model
specifications and data types, as seen in Figure 3. ID
is an integer with a primary key role in all off-chain
entities. Since a blockchain address consists of 40 hex-
adecimal characters with 0x prefix, it is presented as an
array of 42 characters. Other attributes were assigned
data types according to their roles. A blockchain ad-
dress may work as a foreign key in some situations,
therefore, it is underlined.

As marked in Figure 2, an iPOT token is a smart con-
tract containing properties, owner and points. Both of
these properties are of data types that are not stated in
the ER specification. Therefore, additional data types
were used for this logical model design, as shown in

Figure 3. An owner is a type of address, which is spe-
cific for smart contracts and contains additional mem-
bers as stated in section 3.2.2. Points are assigned data
type mapping, which maps from the data type address
to an unsigned integer. Mapping is another specificity
of Solidity programming language, which cannot be
seen elsewhere.

Furthermore, an entity Ledger is an independent en-
tity, which logs all transactions on the blockchain net-
work. The ledger doesn’t need to be implemented, but
can be used in any other blockchain entity for obtaining
a log of activities on the network.

5 Discussion

The proposed conceptual and logical ER model exten-
sions for the purpose of supporting BOSE present the
data structure and requirements of the proposed soft-
ware. For conceptual design, there are some limita-
tions in the existing specifications of the ER model.
Contrary to (Rocha & Ducasse, 2018), we have pro-
posed a stereotype solution to separate blockchain enti-
ties from off-chain entities. We propose stereotypes for
smart contracts and other blockchain entities, as shown
in Figure 3.

Furthermore, we can propose a Table of analo-
gies between BOSE and classical data (ER) model at-
tributes. The analogies are shown in Table 2. There is
uncertainty about struct, which may be represented as
data type or entity, but since each struct must be part
of a smart contract, we have decided to use attribute
type as the representation. Functions, modifiers and
events are not applied on a data-oriented perspective,
since they represent the functionality of smart contracts
and not the data structure itself, thus, they are covered
in the structure perspective.

BOS ER

smart contract entity with stereotype
struct attribute type

variables attributes
function n/a
modifier n/a
mapping attribute type
address attribute type
ledger entity with stereotype
event n/a

Table 2: Proposed analogies between blockchain ori-
ented software and the ER model.

Logical data model design was appropriate with ad-
ditional data types, specific for smart contracts in So-
lidity programming language.

We have validated our proposed model on a real-
world case with a specified iPOT application.

Proceedings of the Central European Conference on Information and Intelligent Systems___381

32nd CECIIS, October 13-15, 2021

Varaždin, Croatia

Token purchase

+ID
+Amount
+Timestamp

User

+ID
+Blockchain address
+Username
+Password hash

Vendor

+ID
+Name
+Blockchain address

Service

+ID
+Price
+Name

iPOT token
<<contract>>

+owner
+points

Ledger
<<transaction>>

Payment type

+ID
+Name

Figure 2: Conceptual data model with modified ER model.

Token purchase

+ID: int
+Amount: decimal(5,2)
+Timestamp: timestamp

User

+ID: int
+Blockchain address: varchar(42)
+Username: varchar(100)
+Password hash: varchar(100)

Vendor

+ID: int
+Name: varchar(100)
+Blockchain address: varchar(100)

Service

+ID: int
+Price: decimal(5,2)
+Name: varchar(100)

iPOT token
<<contract>>

+owner: address
+points: mapping(address=>uint)

Ledger
<<transaction>>

Payment type

+ID: int
+Name: varchar(100)

Figure 3: Proposed logical data model design.

6 Conclusion

Existing literature on blockchain-oriented software
modelling was analysed in the paper. We focused on
the data perspective of modelling, which was not yet
addressed in the literature. In order to overcome this
shortcoming, we proposed an extension of the tradi-
tional ER modelling technique and its ER diagram in
order to support the blockchain-based aspects.

Our proposed solution was validated on a real-
world case of a blockchain-oriented software based on
tangible tokens containing smart contracts and more
blockchain-specific entities.

In the future, this model will be evaluated on case
studies and in cooperation with experts in the area
of blockchain software engineering. There is addi-
tional space for research in structure software mod-
elling, which may help software engineers with the
design of the behavior of blockchain-based software.
Another additional field of research is Data Software
modelling for multiple blockchain networks, since our
model only applies to a single network.

382___Proceedings of the Central European Conference on Information and Intelligent Systems

32nd CECIIS, October 13-15, 2021

Varaždin, Croatia

7 Acknowledgments
This work was supported in part by the Slovenian Re-
search Agency (Research Core Funding No. P2-0057).

References
Aleksieva, V., Valchanov, H., & Huliyan, A. (2020,

June). Implementation of smart-contract, based
on hyperledger fabric blockchain. In 2020 21st
international symposium on electrical appara-
tus technologies (siela) (p. 1-4). doi: 10.1109/
SIELA49118.2020.9167043

Balaji, S., & Murugaiyan, M. S. (2012). Waterfall vs.
v-model vs. agile: A comparative study on sdlc.
International Journal of Information Technology
and Business Management, 2(1), 26–30.

Beck, K., Beedle, M. A., Bennekum, A. V., Cockburn,
A., Cunningham, W., Fowler, M., . . . Thomas,
D. A. (2013). Manifesto for agile software de-
velopment..

Chen, P. P.-S. (1976, March). The entity-
relationship model—toward a unified view of
data. ACM Trans. Database Syst., 1(1), 9–36.
Retrieved from https://doi.org/10.1145/

320434.320440 doi: 10.1145/320434.320440
Cheng, J.-C., Lee, N.-Y., Chi, C., & Chen, Y.-H. (2018,

April). Blockchain and smart contract for digital
certificate. In 2018 ieee international conference
on applied system invention (icasi) (p. 1046-
1051). doi: 10.1109/ICASI.2018.8394455

Dannen, C. (2017). Introducing ethereum and solidity
(Vol. 318). Springer.

Gomaa, H. (2011). Software modeling and design:
Uml, use cases, patterns, and software architec-
tures. Cambridge University Press.

Gorman, K., & Choobineh, J. (1990, Jan). An overview
of the object-oriented entity-relationship model
(ooerm). In Twenty-third annual hawaii inter-
national conference on system sciences (Vol. 3,
p. 336-345 vol.3). doi: 10.1109/HICSS.1990
.205364

Marchesi, L., Marchesi, M., & Tonelli, R. (2020).
Abcde –agile block chain dapp engineer-
ing. Blockchain: Research and Applications,
1(1), 100002. Retrieved from https://

www.sciencedirect.com/science/

article/pii/S2096720920300026 doi:
https://doi.org/10.1016/j.bcra.2020.100002

Nakamoto, S. (2009, 03). Bitcoin: A peer-to-peer elec-
tronic cash system. Cryptography Mailing list at
https://metzdowd.com.

OMG. (2013, December). Business Process Model and
Notation (BPMN), Version 2.0.2. Retrieved from
http://www.omg.org/spec/BPMN/2.0.2

Porru, S., Pinna, A., Marchesi, M., & Tonelli, R. (2017,
May). Blockchain-oriented software engineer-
ing: Challenges and new directions. In 2017

ieee/acm 39th international conference on soft-
ware engineering companion (icse-c) (p. 169-
171). doi: 10.1109/ICSE-C.2017.142

Rocha, H., & Ducasse, S. (2018, May). Preliminary
steps towards modeling blockchain oriented soft-
ware. In 2018 ieee/acm 1st international work-
shop on emerging trends in software engineering
for blockchain (wetseb) (p. 52-57).

Rumbaugh, J., Jacobson, I., & Booch, G. (2004). Uni-
fied modeling language reference manual, the
(2nd edition). Pearson Higher Education.

Wohrer, M., & Zdun, U. (2018, March). Smart con-
tracts: security patterns in the ethereum ecosys-
tem and solidity. In 2018 international work-
shop on blockchain oriented software engineer-
ing (iwbose) (p. 2-8). doi: 10.1109/IWBOSE
.2018.8327565

Wood, G. (n.d.). Ethereum: A secure decentralised
generalised transaction ledger.

Proceedings of the Central European Conference on Information and Intelligent Systems___383

32nd CECIIS, October 13-15, 2021

Varaždin, Croatia

