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Abstract. Creating predictive models using machine 

learning algorithms is often understood as a job where 

Data Scientist provides data to the algorithm without 

much intervention. With the rise of ethics in machine 

learning, predictive models need to be made fair. In 

this paper, we inspect the effects of pre-processing, in-

processing and post-processing techniques for making 

predictive models fair. These techniques are applied to 

the hospital readmission prediction problem, where 

gender is considered as a sensitive attribute. The goal 

of the paper is to check whether unwanted 

discrimination between female and male in the logistic 

regression model exists and if exists to alleviate this 

problem making classifier fair. We employed logistic 

regression model which obtained AUC = 0.7959 and 

AUPRC = 0.5263. We have shown that reweighting 

strategy is a good trade-off between fairness and 

predictive performance. Namely, fairness is greatly 

improved, without much sacrificing predictive 

performance. We also show that adversarial debiasing 

is a good technique which combines predictive 

performance and fairness, and Equality of Odds 

technique optimizes Theil index. 

 
Keywords. Fairness, Machine Learning, Bias 

Mitigation, Hospital Readmission 

1 Introduction 

Machine learning is one of the most interesting fields 

of Computer Science. We can define machine learning 

as a system that has the ability to find rules, or more 

generally learn patterns, for the problem at hand based 

on historical data without being explicitly programmed 

(Witten et al., 2016). The idea is to induce new 

knowledge about the problem based on examples, 

observations, direct experience or instructions without 

or with very limited human intervention. It is 

increasingly popular in various fields as developed 

algorithms are created for general purpose. This means 

that machine learning can be applied in any area using 

only historical data. New knowledge is used as a 

decision-making tool which drives and optimize for 

certain outcomes.  

Although machine learning models by its nature 

perform statistical discrimination, sometimes 

discrimination is systematic toward a certain group of 

people thus making classifier unfair. Additionally, 

often discrimination is made on sensitive attributes 

such as gender or race which is prohibited in many 

countries. However, if data used has bias the learned 

machine learning model will inherit that bias and most 

probably amplify it (Veale & Binns, 2017). This can 

lead to unethical outcomes such as discrimination of 

marginalized subpopulation due to underrepresentation 

in data, perceived race, ethnicity or other (Zarsky, 

2016).  

This unwanted bias raises the question of the 

applicability of machine learning models. Namely, 

consequences of those models can be catastrophic (i.e. 

convict certain person because of race or ethnicity 

(Berk & Hyatt, 2015)). An assumedly good solution to 

the raising concern is to remove features that can cause 

unwanted bias. However, removing those features does 

not guarantee that unwanted bias will be removed. For 

example, one subpopulation exists solely in one part of 

the feature space which is specific just for that 

subpopulation (i.e. certain ethnicity lives in a certain 

neighborhood). Therefore, other strategies need to be 

employed. 

In this paper, we want to create a 30-day hospital 

readmission classification model with regard to 

possible gender bias. Hospital readmission is defined 

as unplanned hospital admission within 30 days after 

the previous discharge. The reasons for hospital 

readmission vary from lack of patient care or lack of 

hygiene to medical errors or diagnoses complications. 

Because hospital readmissions can be related to lack of 

medical care, it poses serious insurance threat for a 

medical institution. Namely, it is estimated that 

hospital readmissions costs in US hospitals sum up to 

$17-$29 billion per year (Zuckerman et al., 2016). 

Having that in mind, one can try to find a pattern that 

leads to hospital readmission using machine learning 
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algorithms. However, one wants to mitigate unwanted 

gender bias without sacrificing prediction accuracy. 

Therefore, in this paper, we employ existing 

strategies for the mitigation of unwanted bias and show 

how much predictive performance suffers when 

unwanted bias is eliminated. 

The paper is structured as follows. In Section 2 

literature review is provided. In Section 3 we present 

methodology, with an explanation of data, 

experimental setup and used mitigation techniques. In 

Section 4 we discuss obtained results on pediatric 

hospital readmission dataset. We conclude the paper in 

Section 5. 

2 Literature Review 

What is fairness in machine learning systems? The 

answer is hard to formulate both qualitatively and 

quantitatively. Based on anti-discrimination laws that 

exist in the majority of countries one can define 

fairness as unequal treatment based on sensitive 

attributes, such as race, gender or religion (Žliobaitė, 

2017). Most often unfair behavior of the decision 

model, machine learning or any other decision-making 

model, originates from bias. 

However, formalizing fairness of the decision-

making process must have at least two distinct notions 

of disparate treatment and disparate impact (Barocas 

and Selbst, 2016). Disparate treatment means that 

decisions are influenced, in less degree or greater 

degree, by sensitive attribute. It is often regarded as 

intentional discrimination or discrimination that is 

available in data collection process. Disparate impact 

means that decisions are disproportional between 

subjects with different values of sensitive attributes 

(i.e. certain subpopulation have greater benefit 

compared to other subpopulation). It is often regarded 

as unintentional discrimination or discrimination that is 

created by machine decision model. This is not the only 

part of fairness in machine learning models. Another 

notion of fairness discusses whether fairness means 

achieving parity or satisfying the preference (Gajane & 

Pechenizkiy, 2017). 

If fairness is to be achieved in disparate treatment 

and parity then one can hide sensitive attributes from 

the learning process. This way algorithm is unaware of 

sensitive information, thus learned model will not 

explicitly use sensitive information in the decision-

making process. For some specific tasks this approach 

did work, but there are many unacceptable models in 

practice (Marx, 2005; Taslitz, 2007). One can find 

critiques of this approach because sensitive attribute 

can be deduced from already available non-sensitive 

attributes. Another approach for disparate treatment 

and parity fairness is called counterfactual measures 

(Kusner et al., 2017). Namely, the algorithm is 

counterfactually fair if prediction remains the same no 

matter what the value of the sensitive attribute is. 

Machine learning fairness is often understood in 

term Statistical parity which can be interpreted such 

that predictions should be approximately the same for 

individuals across the subgroups based on a sensitive 

attribute (Dwork et al., 2012). This way we are 

measuring disparate impact and parity. A similar 

measure is called equality of opportunity (Zafar et al., 

2017a) which is defined that true positive rate should 

be the same across the subgroups regarding sensitive 

attribute. 

For preference-based fairness definitions, one can 

find preferred treatment and preferred impact (Zafar et 

al., 2017b). The preferred treatment is satisfied if each 

group benefits (have a higher or lower value of 

predictions based on benefit direction) more from 

predictor compared to any other predictor. The 

prediction model is said to have preferred impact if the 

model has as much benefit as another model for all 

subgroups of subjects based on sensitive attributes. 

Mitigation of bias in machine learning algorithm is 

a topic of increasing importance. Namely, 

consequences of the decision that origins from the 

machine learning model can come with a cost which 

hinders the usability of such models. However, 

determining the actual impact of an algorithm is very 

difficult. The impact may arise from limited data, 

inadequate parameter setting or even hard-coded rules 

for automatic decision making. In the era, deep 

learning and deep neural networks learned models 

introduce uncertainty over how and why decisions are 

made (Mittelstadt et al., 2016). Additionally, some 

decisions can be the result of noise which is often 

called “bug” example. Analysis, whether that example 

is a bug or systematic bias toward certain 

subpopulation, is practically impossible (Burrell, 

2016). 

To the best of our knowledge, there are three 

approaches to bias mitigation for fair predictions. 

Those are: 

 Pre-processing techniques, 

 In-processing techniques, and 

 Post-processing techniques. 

Pre-processing techniques are dataset 

transformation techniques that attempt to reduce or 

remove unwanted bias present in the original dataset. 

Transformation of the dataset can be suppression of the 

correlated columns, massaging the label attribute (i.e. 

changing labels of some data points in order to ensure 

disparate treatment), instance weighting or sampling 

(Kamiran & Calders, 2012). Suppression of the 

correlated columns seems like a good starting point for 

bias mitigation. However, this approach was 

abandoned since sensitive attribute can be represented 

using more complex rules, rather than plain correlation. 

Massaging the label attribute is rather an intrusive 

approach that can change the distribution of the data 

and consequently create less accurate prediction 

models (Calders et al., 2009; De Laat, 2018). 

Reweighing of the instances is used much more 

compared to other approaches because it ensures 
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complete removal of the unwanted bias using 

probability theory. Additionally, almost all (at least the 

most common) learning algorithms have the capability 

to include instance weights (Glauner & Valtchev, 

2018; Suresh & Guttag, 2019). Another interesting 

approach is to transform data into latent space via 

learning a fair representation of data (Zemel et al., 

2013; Johansson et al., 2016). 

In-processing techniques for bias mitigation are a 

classification or regression models that simultaneously 

maximize prediction accuracy (or minimizing loss 

function) and reducing model ability to determine the 

sensitive attribute based on other attributes. In a paper 

(Kamishima et al., 2012) adds a regularization term to 

the loss function which is discrimination-aware 

regarding sensitive attribute. Adversarial debiasing 

(Zhang et al., 2018) learns an adversarial network 

which controls model accuracy and adversary's ability 

to determine the sensitive attribute from the predictions 

thus creating the fair classifier. 

Post-processing techniques deal with predictions 

and try to adjust predictions in order to make 

predictions fair. Most often equal odds technique is 

employed. This technique solves a linear program to 

find probabilities with which to change output labels to 

optimize equalized odds (Pleiss et al., 2017). 

3 Methodology 

The methodology section consists of two parts. First, 

we give a brief overview of the dataset used and 

classification problem tackled. Next, we introduce the 

experimental setup and evaluation measures used. 

3.1 Problem definition 

In this paper, we want to create a classification model 

for hospital readmission based on patient diagnoses. 

Hospital readmission is defined as admission to the 

hospital within 30 days after discharge. In this paper, 

we utilized data from State Inpatient Database (SID), 

Healthcare Cost and Utilization Project (HCUP), 

Agency for Healthcare Research and Quality (NIS, 

2011). SID database aims to track hospital admissions 

for all patients. One admission contains, besides 

demographic and insurance related data, diagnoses 

associated with admission. One patient can have at 

most 25 diagnoses for each hospital admission, having 

each diagnosis presented in ICD-9-CM code. Data 

preprocessing is performed in such a manner that one 

row presents one admission, while columns present 

diagnosis. Therefore, the dataset can contain over 

15,000 attributes. We selected pediatric subpopulation 

of hospital readmission data from California in the 

period from January 2009 to December 2011. 

Additionally, we removed rare diagnoses, having 

selected only diagnoses that appeared in over 0.5% of 

admissions. The final dataset contains 66.994 hospital 

admissions and 851 diagnoses. It is worth to mention 

that label attribute (hospital readmission) is very 

skewed with the majority of the patients not 

readmitting to the hospital within 30 days after 

discharge (~16% readmit to the hospital). 

The goal of the paper is to check whether unwanted 

discrimination between female and male in the logistic 

regression model exists and if exists to alleviate this 

problem making classifier fair. Since this will surely 

hinder classification performance our goal is to check 

what the cost of making classifier fair is. 

3.2 Logistic regression 

In this paper, we will learn and evaluate the logistic 

regression model. Logistic regression is a linear 

classification model (James et al., 2013) that can be 

presented in the form presented in Eq. 1. 

log (
𝑝

1 − 𝑝
) =  θ0 + θ1𝑥1 + ⋯ + θ𝑛𝑥𝑛 (1) 

where log (𝑝/(1 − 𝑝)) present logarithm of the 

odds ratio, θ coefficient associated to input attribute 𝑥 

with exeption of θ0 which is called intercept. Positive 

value of θ tells us that increasing attribute 𝑥 increases 

odds of hospital readmission, while a negative value 

decreases the odds. One must optimize θ so the loss is 

minimized. Loss function is defined in eq. 2. 

min(𝐿(θ)) = ∑ log(1 + exp (−𝑦𝑖(𝑥𝑇θ + 𝑐))

𝑚

𝑖=1

 (2) 

where 𝑥 represent input attribute, 𝑦  binary attribute 

which is often called output or dependent attribute, θ 

coefficient associated with 𝑥 which are interpreted as 

weights of input attributes, 𝑚 number of examples and 

𝑐 random noise. Loss function given in Formula 2 

present maximum likelihood loss function obtained 

from Formula 1. It is convex and continuous, and 

therefore gradient descent can be applied. 

3.3 Fairness measures 

 

However, we would like to create fair logistic 

regression model regarding the gender of the patient. 

For that purposes, we will measure the disparate impact 

of the dataset and statistical parity of dataset before 

creating a prediction model. Disparate impact is 

defined as presented in Eq. 3. 
𝑃(𝑦 = 1|𝑔𝑒𝑛𝑑𝑒𝑟 = 𝑓𝑒𝑚𝑎𝑙𝑒)

𝑃(𝑦 = 1|𝑔𝑒𝑛𝑑𝑒𝑟 = 𝑚𝑎𝑙𝑒)
 (3) 

which present the ratio of readmitted patients of the 

female and male gender. Disparate impact ratio 

between 0.8 and 1.2 is acceptable, but more restrictive 

boundary can be applied i.e. from 0.9 to 1.1. From the 

disparate impact, we can derive measure commonly 

used in fairness definition called statistical parity. It is 

defined in Eq. 4. 
𝑃(𝑦 = 1|𝑔𝑒𝑛𝑑𝑒𝑟 = 𝑓𝑒𝑚𝑎𝑙𝑒) −  𝑃(𝑦 = 1|𝑔𝑒𝑛𝑑𝑒𝑟 = 𝑚𝑎𝑙𝑒) (4) 
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One can find that statistical parity is often called the 

mean difference between groups. (Zemel et al., 2013) 

Both the disparate impact and statistical parity can 

be applied before the prediction model and on 

predictions obtained after the prediction model are 

created. Besides afore-mentioned measures, we will 

use additional measures which work only on 

predictions. First one is the Theil index (Speicher et al., 

2018). Theil index is defined in Eq. 5. 

𝑇 =
1

𝑛
∑

𝑏𝑖

𝜇
ln (

𝑏𝑖

𝜇
)

𝑛

𝑖=1

 (5) 

where 𝑛 is a number of examples, 𝑏𝑖 = 𝑦�̂� − 𝑦𝑖 + 1 

which can be interpreted as individual example 

deviation. Namely, if the correct value of the individual 

label is 1 (patient will readmit to the hospital within 30 

days) and the predicted value is 0, then 𝑏𝑖 will be 0 – 1 

+ 1 = 0. Similarly, if the correct value is 0, and the 

predicted value is 1 then 𝑏𝑖 will be 1 – 0 + 1 = 0. 

Symbol 𝜇 present percentage of readmission within a 

sensitive group. Appropriate values of the Theil index 

are between 0 and 0.2. However, boundaries that are 

more restrictive can be used, i.e. from 0 to 0.1. 

Finally, we will use the average odds difference 

between sensitive groups. The formula is presented in 

Eq. 6. 
1

2
((𝐹𝑃𝑅𝑠=𝑈 − 𝐹𝑃𝑅𝑠=𝑃) + (𝑇𝑃𝑅𝑠=𝑈 − 𝑇𝑃𝑅𝑠=𝑃)) (6) 

where 𝐹𝑃𝑅 present false positive rate, i.e. the 

percentage of false alarms and 𝑇𝑃𝑅 true positive rate, 

i.e. the percentage of detection of hospital 

readmissions. One should notice additional 

information presented in eq. 6. False positive rates and 

true positive rates are calculated for unprivileged (𝑠 =
𝑈) and privileged (𝑠 = 𝑃) values of the sensitive 

attribute. 

3.4 Experimental Setup 

In this paper, we used data from January 2009 to 

December 2010 for training dataset where logistic 

regression model is learned, while evaluated on data 

originating from January 2011 to December 2011. 

We will first train and evaluate plain logistic 

regression model. Evaluation of the model is done 

using afore-mentioned fairness metrics and also using 

standard evaluation metrics for binary classification 

which will be defined below. As a sensitive attribute 

which disturbs fairness, we use the gender of the 

patient. We further employ different strategies for 

mitigating bias regarding the gender of the patient. 

The first strategy is called Reweighting (Kamiran 

& Calders, 2012) and this approach falls into 

preprocessing bias mitigation strategies. The idea of 

this approach is to assign a weight to an example in 

order to reduce possible bias presented in data. This 

compensation is done by weighting example with a 

ratio of the expected probability of sensitive attribute 

value and the class gave independence and the 

observed probability of sensitive attribute value and the 

class gave independence. The formula is presented in 

Eq. 7. 

𝑤𝑖 =
𝑝exp(𝑆 = 𝑋(𝑆)  ∧ 𝐶𝑙𝑎𝑠𝑠 = 𝑋(𝐶𝑙𝑎𝑠𝑠))

𝑝𝑜𝑏𝑠(𝑆 = 𝑋(𝑆)  ∧ 𝐶𝑙𝑎𝑠𝑠 = 𝑋(𝐶𝑙𝑎𝑠𝑠))
 (7) 

where 𝑖 is an example, 𝑆 sensitive attribute, and 

𝐶𝑙𝑎𝑠𝑠 label attribute. Reweighted dataset will ensure 

that bias will be 0. Therefore, the predictive model 

which is learned on this dataset will have a higher 

probability to be discrimination-free (Kamiran & 

Calders, 2012). We will use weight information and 

inject it into logistic regression. 

The second approach is to use a specialized 

algorithm for fair classification. For that purposes, we 

use the adversarial network (Zhang et al., 2018). The 

predictive model will use the neural network which 

corresponds to the generative adversarial network with 

two steps. The first step, called predictor tries to 

discriminate examples using input features. In this 

paper we utilize a deep neural network with three 

levels, each containing convolutional layer, 

normalization layer and sigmoid layer, followed by a 

max pooling layer. The second step is called the 

adversary step which is responsible for the satisfaction 

of fairness. (Zhang et al., 2018) 

Finally, we employ postprocessing technique 

which finds the optimal value of decision threshold 

which for maximal satisfaction of fairness. This 

technique is called Equality of Odds and it solves linear 

programming problem to find the best decision 

threshold to optimize equalized odds. (Pleiss et al., 

2017) 

As evaluation measures, we used the area under the 

ROC curve (AUC). This measure calculates the area 

under the curve that is calculated using values of TPR 

and FPR for every possible decision threshold values. 

It can be interpreted as the probability that the random 

positive example (hospital readmission example) has a 

greater probability of readmission than random 

negative example (non-hospital readmission example). 

Since probability (or confidence) score for hospital 

readmission is not that important for AUC, but that 

positive example has a higher probability of 

readmission compared to negative example one can 

relate AUC with Mann-Whitney U test (Branco et al., 

2016). Random classifier would have 0.5 for AUC. 

Values closer to one are better. 

We used additional evaluation measure called area 

under the precision-recall curve (AUPRC). AUPRC is 

interpreted using the relation of true positive rate 

(recall) and precision. Namely, AUPRC can be viewed 

as a probability of positive example among those 

examples whose output values exceed a randomly 

selected threshold (Boyd et al., 2013). Higher values of 

AUPRC suggest that predictive model has greater 

power discriminating positive and negative examples, 

where random classifier would have a value of the ratio 

of positive class (class imbalance ratio). It is 

considered that AUPRC is more appropriate for class 

imbalance problems since true positive examples 

(which are most likely easy to discriminate due to class 
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imbalance) raises starting point (left side of AUC plot) 

when calculating AUC (Saito & Rehmsmeier, 2015). 

4 Results 

The results of the pre-model fairness metrics are 

presented in Table 1. Pre-model fairness metrics are 

used to check if there are errors in the data collection 

process, or if there exists a systematic difference in 

sensitive groups. If there exists unfairness in the 

dataset, one must consider not creating a predictive 

model based on that dataset since obtained predictions 

could lead to catastrophic consequences. 

 

 

Table 1. Pre-model Fairness metric values 

 

 
Original Reweighting 

Adversarial 

Network 

Disparate 

Impact 
0.9092 1 0.9092 

Statistical 

Parity 
-0.0160 0 -0.0160 

 

We can observe that Reweighted dataset has perfect 

fairness metrics. This is expected behavior because the 

reweighting procedure ensures that sensitive attribute 

will not have an effect on the Original and Adversarial 

network has the same values for pre-model fairness 

since they operate with the original dataset. Based on 

Dispare impact our dataset has a satisfactory level of 

fairness (acceptable level is between -0.1 and 0.1, but 

boundaries that are more restrictive are often used i.e. 

between -0.05 and 0.05). However, based on statistical 

parity our dataset can be considered just fair with value 

0.9092. From Table 1 Equality of Odds is omitted since 

this technique operates on predictions. 

After learning the logistic regression model we 

obtained performance measures presented in Table 2. 

 

Table 2. Performance measures 

 

 
Original Reweighting 

Adversarial 

Network 

AUC 0.7959 0.7953 0.7254 

AUPRC 0.5263 0.5256 0.4411 

 

The best performing model is the logistic 

regression model that uses original dataset. Logistic 

regression is the best one on both performance 

measures used, AUC and AUPRC. Obtained AUC is 

close 0.8 which is a very good performance for hospital 

readmission problem (Radovanovic et al., 2015). This 

means that our model discriminates between hospital 

readmission patients and non-hospital readmission 

patients, in such manner that ~80% of true hospital 

readmission patients has a greater probability of 

readmission compared to non-hospital readmission 

patients. Also, AUPRC is 0.5263 which is ~3.5 greater 

than class imbalance ratio. This can be interpreted that 

the learned predictive model is ~3.5 better than the 

random model. 

Based on the performances of the other two 

approaches we can suggest that fairness comes with a 

cost (Zliobaite, 2015). Namely, one has to be aware of 

the tradeoff between predictive performance and 

fairness of the predictive model. We can see that 

Reweighting strategy did not lose on predictive 

performance. This is mainly due to the fact that the 

predictive model was logistic regression which utilized 

additional information in terms of weights. However, 

Adversarial network decreased in performance by ~7% 

in AUC and ~8% in AUPRC. 

However, in order to inspect whether the predictive 

model is fair one must inspect post-model fairness. 

Namely, preparing a dataset to be fair is not good 

enough effort. If the predictive model is unfair, no 

matter how fair original dataset is, consequences of 

usage can be huge (i.e. discriminate a person based on 

gender or race). 

Post-model fairness metrics are presented in Table 

3. In this analysis, we include Equal Odds technique 

which is used to optimize the performance of the 

logistic regression model. 

 

Table 3. Post-model Fairness metric values 

 

 Orig. RW. AN EO 

Disp. 

Impact 
0.9342 0.9781 0.9268 1.2841 

Stat. 

Parity 
-0.0051 -0.0017 -0.0087 0.035 

Theil 

Index 
0.1304 0.1302 0.1274 0.0319 

Avg. 

Odds 

Diff. 

0.0028 0.0092 -0.0088 0.1852 

 

Original logistic regression model obtained better 

values for disparate impact and statistical parity 

compared to pre-model fairness values. Namely, the 

improvement was ~3% for disparate impact and 0.01 

for statistical parity. This is an indicator that gender 

does not influence the predictive model with great 

impact. Also, the average odds difference is near 

perfect level with 0.0028. This can be interpreted that 

odds of hospital readmission for female and male 

pediatric hospital readmissions are nearly the same. 

However, concerning thing is that the Theil index is 

0.1304, which is above a restrictive threshold value. 

This means that entropy which is caused by the groups 

is greater than expected. Performance metric values on 

the reweighted dataset (column RW) is better 

compared to the original dataset by every metric used. 

Similarly, Adversarial network (column AN) also has 

satisfactory fairness metrics, expect Theil index. We 

can notice that the values of those metrics are lower 

compared to logistic regression with the original 
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dataset. The only difference is the Theil index which is 

slightly better. Finally, predictions are optimized for 

expected odds in Equality of Odds technique. As we 

see Theil index is much lower, but with the cost of 

rising of other fairness metrics. 

5 Conclusion 

In this paper, we wanted to inspect what is the cost of 

the fairness of the predictive model on hospital 

readmission application. We tried three approaches for 

achieving fair model present in the literature. Namely, 

we tried adjusting dataset in order for dataset to be fair 

(pre-processing techniques). Then we trained and 

evaluated specialized predictive models which take 

into account information notion of fairness and makes 

an optimal tradeoff between being fair and accurate 

(in-processing techniques). Finally, we found the 

optimal decision threshold, which is most fair (post-

processing technique). 

We have shown that the predictive performance of 

the logistic regression model on hospital readmission 

data can be made without much sacrificing the fairness 

notion. Namely, the reweighting strategy has shown 

that dataset can be prepared to be perfectly fair before 

predictive model learning. In addition, post-model 

fairness measures improve without greater loss of 

predictive accuracy (in terms of AUC and AUPRC). 

Namely, predictive performance decreased for less 

than 0.01%, but fairness metrics increased ~4% even 

up to ~7%. 

Adversarial networks, although mathematically 

sound, failed to beat logistic regression with AUC 

equal to 0.7254 and AUPRC equal to 0.4411. 

However, fairness metrics show that this model does a 

good job integrating discriminative and fairness notion 

into a single algorithm. 

Finally, Equality of Odds optimizes the Theil 

index. However, this optimization comes with the cost 

of deterioration of other fairness metrics. Therefore, in 

order to use this technique, one must take the effects of 

post-processing optimization. 

As a part of future work we will try to develop 

framework for integration of fairness metrics into 

logistic regression optimization procedure. One 

approach of integration would be through 

regularization, where coefficients of logistic regression 

would be controlled for fairness. Another approach 

where fairness could be achieved is by defining 

specific loss function while still remaining in 

regression like models. Namely, multi-goal function 

can be developed and learned using adversarial 

learning or meta-heuristics such as genetic algorithm, 

particle swarm optimization etc. 
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