
A Case Study on Finding Convenient Approach to Practice

Agile Methodologies in Software Engineering Courses

Boris Milašinović, Toni Bakarčić

University of Zagreb, Faculty of Electrical Engineering and Computing

Unska 3, 10000 Zagreb, Croatia

{boris.milasinovic, toni.bakarcic}@fer.hr

Abstract. Dominance of agile methodologies triggered

the need to include elements of agile methodologies in

software engineering education. However, it turns out

that finding convenient approach to practice agile

methodologies in software engineering courses is not

an easy task and could be full of pitfalls and obstacles.

Based on the previous experiences and literature

overview it can be concluded that it is not possible, or

it could be extremely ineffective to use a methodology

“as-is” in educational context, due to various

problems in terms of course organization, work

schedule and shortage of staff. Instead, method

tailoring must be done, and the authors propose a

method for a gentle introduction to agile

methodologies by combining use of agile techniques

like user stories and Kanban with continuous

integration/deployment as one of the common

engineering practices. The approach is a result of

analysis of the mistakes from the past attempts and two

semester long experiment conducted in authors’

environment. The introduction to agile techniques

could be done in an optional manner not obligating

students to strictly follow it. They would not be graded

for following it, as its purpose is that students should

conclude that it could be useful to them and that it is

not just another (from their perspective) useless

obligation. Initial questionnaires show that students

understand the benefits of the used techniques and they

would continue to explore other agile techniques.

Keywords. software engineering, education, agile,

Kanban, Scrum.

1 Introduction

In a competitive and changing IT market, practical

experiences in various real-life projects could give

students a distinct advantage over those who lack such

experience (Orr, 2015). Therefore, traditional teaching

based on theoretical fundamentals has been replaced or

at least enriched with new practices trying to introduce

real-life problems (Fertalj, Milašinović, & Nižetić,

2013) into software engineering courses. However,

replacing hypothetical problem topics in courses with

practical ones do not solve the gap between market

needs and education system practices, and it is not the

only issues that must be dealt with.

Project planning and estimation in terms of

software cost, development time and effort is one of the

most complex tasks (Čeke & Milašinović, 2015). As

(Král & Žemlička, 2014) summarized in their paper,

the problems frequently occur in the planning and

managing phase rather than in the developing phase, or

as a failure of development responsibilities. The afore

mentioned papers, and remarks from (Martin, Anslow,

& Johnson, 2017) leads to conclusion that technical

excellence is not the sole important factor and that

some other skills beyond programming are needed, and

those skills are not always easy to learn or acquire

(Alfonso & Botia, 2005).

The rise of agile methodologies, especially of

Scrum or Scrum in combinations with Extreme

programming (XP) and Kanban as the most dominant

agile methodologies (CollabNet VersionOne 13th

Annual State of Agile Report, 2019), inevitably causes

need to include these methodologies to software

engineering education. However, it turns out that it is

not an easy task and could be full of obstacles

(Milašinović, 2018; Milašinović & Fertalj, 2018).

More on these problems is discussed in the next section

that gives an overview of related works that elaborate

general problems of course organization and students’

preparation, followed by the discussion of problems

somehow unique to education context like problem of

grading and work schedule. The second section ends

with an overview of works on method tailoring that

supports the authors’ approach conducted and

described in this paper. Authors’ context is described

in the third section. As a response to spotted problems,

two questionnaires and some experiments had been

done in the current academic year which is elaborated

in the fourth section, followed by the results discussion

and description of threats to validity. The paper ends

with conclusion and guidelines for further work and

improvements.

Proceedings of the Central European Conference on Information and Intelligent Systems___305

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

2 Related Works

Various issues in adopting agile methods in software

engineering education e.g. lack of training, resistance

to changes, problematic teamwork, administrative

effort, etc. had been already noticed as potential

problems by (Rico & Sayani, 2009) in their papers

survey, and further extended in systematic literature

reviews of (Mahnič, 2015). In addition to those papers,

systematic literature review on agile method tailoring

(Campanelli & Parreiras, 2015) and the latest

CollabNet VersionOne agile report (CollabNet

VersionOne 13th Annual State of Agile Report, 2019)

were used to track trends on usage of agile tools.

2.1 Course Organization and Students’

Preparation

Usually, a common place to introduce agile

methodology is a capstone project (“Capstone Project

Definition - The Glossary of Education Reform,”

2016). Although some of authors suggest how a

capstone project should be organized e.g. (Mahnič,

2012), there is no unique opinion on its duration and

organization as there are many different approaches as

enumerated in (Milašinović & Fertalj, 2018).

There are also many different approaches to

students’ preparation to such course as using agile

games, having previous training, doing initial few

weeks of observations, etc. Various approaches had

been already summarized in (Milašinović & Fertalj,

2018) and can be additionally extended by two new

papers which further disperse set of possible

approaches: (Chauhan, Probst, & Babar, 2019) suggest

that first sprint should start 2 weeks of the first lecture,

and (Hurbungs & Nagowah, 2019) had divided a

course into classroom activities in which games typical

for a particular agile methodology have been played,

and labs activities for using agile tools to create user

stories, maintain backlog, do pair programming etc.

2.1 Education context problems -

Motivation, grading, work schedule,

and role distribution

In addition to curriculum and capstone project

organization problems, there are also some other

elements that significantly differs in real-life situation

and in educational context.

Students usually get into a habit of solving the

assigned tasks focusing on the grades and deadline

instead of on product quality (Murphy, Sheth, &

Morton, 2017) and find themselves more comfortable

in some kind of waterfall approach (Rodriguez, Soria,

& Campo, 2016). Although according to (Hurbungs &

Nagowah, 2019) pair programming increase students

retention and confidence, this practice that is desired in

real projects could jeopardise grading process by

masking individual contribution. Thus, an individual

work must be recognized and valued appropriately

(Fertalj et al., 2013) or even with custom metrics for

deliverables (Gamble & Hale, 2013).

Companies usually adopt practices from a field of

project management to improve efficiency where such

practices are not beneficial to students in such extent;

one of the reasons could be the differences in work and

schedule organization, and lack of common working

place. Distributed environment may cause additional

effort for organizing meetings (Freitas Santana et al.,

2017; Rodriguez et al., 2016), and lack of face to face

meetings can lead to misunderstandings and mistrust

(Rodriguez, Soria, & Campo, 2015). Although

(Masood, Hoda, & Blincoe, 2018) reported usage of

virtual collaborative environment and chat bots instead

of classical stand-up meetings, they still suggest that

the meetings should rather be done in person when

possible even with reduced frequency, and this practice

has been done by some other authors, e.g. every third

day (Olszewska, Ostroumov, & Olszewski, 2017) or

every two weeks with virtual meetings in between

(Freitas Santana et al., 2017).

The problem of role distribution also remain

unsolved or at least without unique opinion on that.

(Mahnič, 2015) notes two main approaches for Scrum

master role assignments: a teacher or a student, but

there are also some hybrid approaches like rotating role

(Meier, Kropp, & Perellano, 2016; Rodriguez et al.,

2016), use of research assistants (Scharf & Koch,

2013), engaging of students that previously passed the

course both as teaching assistants and as project

managers (Murphy et al., 2017) or introduction of

coaching roles taken by lecturer (Meier et al., 2016)

desirably not a member of the team (Rodriguez et al.,

2016). (May, York, & Lane, 2016) recommend that

those who are enrolled as Scrum master should have

Scrum certificate.

2.3 Method tailoring

Systematic literature surveys of agile method tailoring

done by (Campanelli & Parreiras, 2015), and (F. Tripp

& Armstrong, 2018) supported by (CollabNet

VersionOne 13th Annual State of Agile Report, 2019),

shows the percentage of adoption rates of agile and

engineering practices and the benefits of adoption of a

particular practice. From the cited sources, it can be

concluded that the most adopted practices are

categorized in project management category where

only unit testing and coding standards from software

development approach category are in top 10 adopted

agile techniques and engineering practices. There are

also some examples of successful applications of agile

methodologies not necessary related to software

development, e.g. in learning and teaching units

described by (Judd & Blair, 2019), stressing even more

that the biggest benefit of agile practices is in

management area. Naturally, this is expected and

aligned with the claim that something more beyond

technical excellence is needed (Martin et al., 2017).

306___Proceedings of the Central European Conference on Information and Intelligent Systems

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

3 Authors’ context

There have been two possible courses during six

semesters long undergraduate study of Computing in

which authors could introduce or practice elements of

agile methodologies: the course Project in the 5th

semester and the course Development of Software

Applications in the 6th semester.

Student at the third year of the study should be

familiar with object-oriented programming and able to

create a database and manage it using SQL. Some

elements of software engineering as models of

software engineering processes, requirement

engineering, UML modelling, and software testing are

introduced in the 5th semester in course Software

Design.

3.1 The course Project

The course Project consists of mentorship work, and

has loose week schedule with only few formal

checkpoints, thus making it ideal to serve as a capstone

project. However as its loose structure is a benefit, also

it could be a drawback. Common perception of a course

with small number of formal obligations combined

with the lack of students’ seriousness and proper

attitude to regular work is common cause of problems

as students (in most cases) tend to give priority to other

courses in semester that have more strict rules.

 Another drawback of the course lies in the current

study program in terms of previous students’

knowledge, as they lack the knowledge of general

software engineering concepts and advanced

programming techniques. The lack of knowledge and

proper organizational skills caused that a lecturer must

be not only a teacher that acts as a product owner and

agile coach, but also some kind of lead developer at the

same time, that is somehow schizophrenic and hard to

successfully emulate.

Furthermore, number of students that would get

insight to agile methodology in this course is rather

small and depends on lecturers’ affinity and free time.

3.2 The course Development of Software

Applications

The average number of students enrolled to

Development of Software Application each year is

usually between 90 and 110. Organization of the

course, teams organization and week schedule had

been described in (Fertalj et al., 2013) and it has been

used with slight modifications through the years. The

last significant modification was to increase homework

share in the final grade to 55% and make use of user

stories as an optional task. The rest of points is divided

on two exams with theoretical question (2 x 20%) and

5% for active participation during lectures.

Table 1. Homework elements in Development of

Software Applications course

 Weeks
Percent of

grade

Interview minutes 2 2%

Conceptual model 2-3 3%

Physical model 2-3 4%

Project plan 4-6 2%

Requirements

specifications
4-7 2%

Design specifications 4-7 2%

Web-application (part 1.

CRUD operations)
6-11 15%

Web-application (part 2.

Complex interaction,

reporting, layering)

11-15 20%

Technical documentation 15 2%

User manual 15 3%

The homework elements are shown in Table 1. The

table shows homework topics with weeks in which

students are expected to work on particular homework

for a semester consisting of 15 weeks. Grading process

is mostly individualized by dividing students inside a

group by theme in order to enable students not to be

penalized for failures of other members. Common

tasks are related to modelling, planning, integration

process, and development of common libraries.

The structure and topics of the course follow the

elements of software engineering techniques and thus

it looks like a good place for addition of agile elements,

although agile methodology is not mandatory nor one

of course outcome. As it is noted that students could

have significant problems in creating correct database

model based on user requirements, and errors in model

would amplify errors in development phase, their

models and specifications are checked and corrected in

weeks 6 and 7.

Due to that, the first 6 to 7 weeks resemble more to

waterfall model, but in the next 9 weeks students have

to elaborate requirements, do detailed design and

develop a web application and it is the good place to

introduce an agile methodology or some of its

elements.

Some previous attempts to introduce agile elements

were quite unsuccessful. Except common problems

found in literature like project quitting, delays due to

sicknesses of team members, distraction with other

obligations, lack of staff to fulfil the tasks has shown

as one of the key elements. Most of the papers does not

reveal the staff to students ratio, but from some notable

examples, e.g. 3 course instructors and 35 students in

(Chauhan et al., 2019) or having local industry

representatives as product owners in (Masood et al.,

2018), it is obvious that most courses organizations

cannot be replicated due to lack of staff. Therefore,

Proceedings of the Central European Conference on Information and Intelligent Systems___307

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

making recommendations for educators stated by

(Masood et al., 2018), looks like a set of nice but not

achievable wishes.

To introduce some basic agile elements, an initial

idea was to create new homework consisting of

entering user stories that would be refined later and that

should be used to track developing progress. As the

most points are awarded for development and the fact

that students are individually graded, students were

more focused on own development (practices) and

could not (significantly) benefit from a better

teamwork and organization in latter phases of the

course. Also, they were not able to understand the

benefits of refining user stories and treated them just as

another obligation they have to do. Moreover, in most

cases they finished development tasks and then write

user stories to mirror the tasks they had already done.

In the meantime, course staff was unable to work more

with students and could not practice and control

meetings, product backlog refining, etc., and students

have just found those elements as an additional work

that has to be done only because they have been told to

do that.

4 A case study

In order to avoid previous pitfalls described in the

previous sections a different approach has been used

for courses Project, and Development of Software

Applications in academic year 2018/19. The first

change was to exclude lecturers from any kind of agile

coach roles or Scrum master role in order to be able to

focus on emulating a customer and on grading process,

and to find out how it affects the whole process. Those

roles have been assigned to a master degree student as

part of his project preceding his master thesis and as a

test how much students would be relaxed when

working in less formal context with the student that

leads them.

4.1 Preparation

4.1.1 Agile tools analysis

Initial preparation consisted of an analysis of agile

tools conducted to find an appropriate tool for use in

the classroom. The tools were divided into the

following categories: communication tools,

repositories, versioning tools and issue tracking tools.

Although the tools test was not a systematic review, in

authors’ opinion several most important have been

tested and based on the conducted test and some

previous experiences the decision was to use Slack for

communication with the students, and Google Docs for

writing the documentation. In the course Project, both

GitHub and BitBucket were used as source code

repositories together with BitBucket Pipelines used for

continuous integration. They were replaced with

Microsoft Team Foundation Server (academic licence)

in the course Development of Software Applications in

order to enable continuous deploy to on premise

servers. Initially JIRA was used for project

management, but it was replaced with Trello as usage

of JIRA for large teams would generate significant

costs due to its licencing model.

After defining the tools, the appropriate method had

to be chosen. Given the drawbacks described

previously, it was decided that none of the agile

methods could be used in its full capacity, and that

method tailoring should be used.

4.1.2 Course Project as a “dress rehearsal”

In the second phase of preparation the course Project

was chosen as a playground and “dress rehearsal”.

Having decided on the approach to the class, and seen

the general foreknowledge of the students, the course

started with more insight on what the students need to

learn and how.

The 9 students were divided into 2 groups of 5,

with one student being assigned for the continuous

integration in both teams. Given that one of the teams

was more experienced and homogeneous, Scrum was

selected for them. For the less experienced team a

simpler variant with Kanban board and the elements of

Extreme programming was chosen. The Scrum team

obtained slightly better results but it can be explained

by the fact that the team already had better cohesion

and better development skills so comparison between

two used methods cannot be established.

The important observation is that it turned out that

use of Kanban have raised the awareness of all team

members and motivated them to be more responsible.

Seeing that team progress would be jeopardized by

waiting someone’s tasks is important motivational fact.

4.1.3 Students survey

To have a better overview of the students’ experience

and foreknowledge, a survey was conducted among the

students who have just finished their fifth semester and

enrolled to Development of Software Application

course.

Figure 1. Students’ knowledge about agile methods

0

3

6

9

12

15

1 2 3 4 5

N
u

m
b

er
 o

f
st

u
d

en
ts

Level of knowledge about agile methods

(on a scale of 1 to 5)

308___Proceedings of the Central European Conference on Information and Intelligent Systems

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

Figure 2. Students’ familiarity with agile methods

It showed that students had some theoretical

knowledge about agile methods, but less than a third

had used them. That is because they had only worked

on a couple of team projects beforehand, and none of

those required the use of agile methods.

Figure 3. Students’ previous experience

4.2 Kanban tutorial

After the results of the survey came in, a project

organization exercise was held for the students of the

course. Students were given their project assignment,

and in the following week, a short tutorial was held on

agile methods and Trello. After the tutorial, they were

given 20 minutes to create a Kanban board in Trello

and fill the backlog with at least 5 user stories, broken

down into at least 3 subtasks.

A total of 54 students took part in the exercise,

divided into 9 equal groups of 6 members. 3 teams fully

completed their assignment, 3 teams created enough

user stories but didn’t break them down into subtasks,

while the remaining 3 teams struggled and couldn’t

identify the main requirements of their project.

Through talking with the teams, it was noticeable

that the teams that did well had at least one member

with previous working experience, where they used

agile methods. The teams that did not complete the task

had no students with working experience; however,

they said that they had knowledge about agile methods,

and that they had worked on student projects.

4.3 Results and threats to validity

The Kanban exercise and the survey showed that there

is a lack of practical knowledge among the students

that only attend previous courses at the university but

have not be involved in any other projects. The project

showed that the students were excited about using agile

methods, and it had an impact on their teamwork skills.

A couple of weeks after the Kanban exercise took

place, the same students were asked to rate the

likelihood of using agile methods on their upcoming

projects on a scale from 1 to 5. The results showed that

the majority of students are very likely to use them

which shows that they are interested in bringing a

practical use of agile methodologies in our courses.

Figure 4. Students’ likelihood of using agile methods

The main threat of the results is the small number

of students involved in the project. Roughly 10% of the

generation took part in the Kanban exercise, 5% filled

out the survey, but only 3% were selected for the

project.

5 Conclusions

Introduction of agile elements is inevitable, but in

cases when there is a shortage of staff, industry partners

and/or enough project problem themes (topics), and

where the significant part of the course is devoted to

learning development techniques then using a

particular methodology as-is could be a wrong step

depending on the course organization and main ideas.

Instead, some kind of method tailoring must be done.

However, tailoring by just following the trends and

introducing mostly adopted practices from companies

(i.e. daily stand-up, retrospectives, reviews) also could

lead to discrepancies between expectation and results.

Putting accent on project management part requires

different grading model and week schedule that makes

students free to organize being not limited by lecturing

progress and homework topics, which is not always

achievable due to curriculum and course aim. Thus, it

could be only suitable for capstone projects with no (or

small number of) lectures on which development

depends. If the course accent is set on development

techniques and individual grading is inevitable like in

authors’ context, then strictly formalizing the most

0

10

20

30

N
u

m
b

er
 o

f
st

u
d

en
ts

I have used agile methods

True False

0

5

10

15

20

25

0 1 2-5 5+

N
u

m
b

er
 o

f
st

u
d

en
ts

Number of team projects worked on

0

4

8

12

16

20

1 2 3 4 5

N
u

m
b

er
 o

f
st

u
d

en
ts

How likely are you to use agile methods in

the future (on a scale of 1 to 5)

Proceedings of the Central European Conference on Information and Intelligent Systems___309

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

adopted agile techniques like meetings, planning, and

retrospectives could just create an additional effort to

students and staff, and lead to frustrations. If the

homework elements are known in advance and

students are divided by project topics in order to be

graded individually, then meetings are just done per se

as the only planning that could be done is how to divide

topics inside the group. Reduced meetings frequency

would happen anyway and students would benefit

more from using a collaborative tool (e.g. Slack) then

doing a formal meetings, although it must be done

periodically to avoid misunderstandings and mistrust.

Therefore, for such situations authors suggest using

some kind of hybrid approach, avoiding previously

mentioned commonly known mistakes and applying

suitable practices and techniques which align with the

development process, e.g. iterative releases,

continuous deployment, etc. Use of techniques more

related to project management should be introduced to

students in such way that they can optionally use it

starting by an appropriate tool to capture user stories to

produce requirements specification followed by the use

of Kanban. The purpose of the approach should be that

students should conclude by themselves that agile

elements improves their efficiency, progress and

coordination, and that is not another (from their

perspective) useless obligation. Once when they find

out the benefits of those agile techniques they would

continue to explore other agile techniques which can

be supported by a course at master level study when

they significantly improve their development skills and

fill the gap on the project management side.

Future work would be focused on repeating

experiments in the next years in order to get larger

sample and possibly eliminate some threats to validity

and to measure in which extent this optional approach

paired with lab tutorials under staff supervision can

provide benefits.

References

Alfonso, M. I., & Botia, A. (2005). An Iterative and

Agile Process Model for Teaching Software

Engineering. 18th Conference on Software

Engineering Education & Training

(CSEET’05).

https://doi.org/10.1109/CSEET.2005.5

Campanelli, A. S., & Parreiras, F. S. (2015). Agile

methods tailoring – A systematic literature

review. Journal of Systems and Software, 110,

85–100.

https://doi.org/10.1016/J.JSS.2015.08.035

Capstone Project Definition - The Glossary of

Education Reform. (2016). Retrieved October 5,

2018, from http://edglossary.org/capstone-

project/

Čeke, D., & Milašinović, B. (2015). Early effort

estimation in web application development.

Journal of Systems and Software, 103.

https://doi.org/10.1016/j.jss.2015.02.006

Chauhan, M. A., Probst, C. W., & Babar, M. A.

(2019). Agile Approaches for Teaching and

Learning Software Architecture Design

Processes and Methods. In D. Parson & K.

MacCallum (Eds.), Agile and Lean Concepts for

Teaching and Learning (pp. 325–351).

Singapore: Springer Singapore.

https://doi.org/10.1007/978-981-13-2751-3_16

CollabNet VersionOne 13th Annual State of Agile

Report. (2019). Retrieved from

https://www.stateofagile.com/#ufh-i-

521251909-13th-annual-state-of-agile-

report/473508

F. Tripp, J., & Armstrong, D. J. (2018). Agile

Methodologies: Organizational Adoption

Motives, Tailoring, and Performance. Journal

of Computer Information Systems, 58(2), 170–

179.

https://doi.org/10.1080/08874417.2016.122024

0

Fertalj, K., Milašinović, B., & Nižetić, I. (2013).

Problems and Experiences with Student Projects

Based on Real-World Problems: A Case Study.

Technics Technologies Education Management,

8(1), 176–186.

Freitas Santana, L., Cirqueira, F., Santos, D., Suely,

T., Silva, C., Villar, V. B., … Gonçalves, V.

(2017). Scrum as a Platform to Manage

Students in Projects of Technological

Development and Scientific Initiation: A Study

Case Realized at UNIT/SE. Journal of

Information Systems Engineering &

Management, 2(7), 1–7.

https://doi.org/10.20897/jisem.201707

Gamble, R. F., & Hale, M. L. (2013). Assessing

individual performance in Agile undergraduate

software engineering teams. Proceedings -

Frontiers in Education Conference, FIE, 1678–

1684.

https://doi.org/10.1109/FIE.2013.6685123

Hurbungs, V., & Nagowah, S. D. (2019). A Practical

Approach to Teaching Agile Methodologies and

Principles at Tertiary Level Using Student-

Centred Activities. In D. Parson & K.

MacCallum (Eds.), Agile and Lean Concepts for

Teaching and Learning (pp. 355–389).

Singapore: Springer Singapore.

https://doi.org/10.1007/978-981-13-2751-3_17

Judd, M.-M., & Blair, H. C. (2019). Leveraging Agile

Methodology to Transform a University

Learning and Teaching Unit. In D. Parson & K.

310___Proceedings of the Central European Conference on Information and Intelligent Systems

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

MacCallum (Eds.), Agile and Lean Concepts for

Teaching and Learning (pp. 171–185).

Singapore: Springer Singapore.

https://doi.org/10.1007/978-981-13-2751-3_9

Král, J., & Žemlička, M. (2014). Experience with

Real-Life Students’ Projects, 2, 827–833.

https://doi.org/10.15439/2014F257

Mahnič, V. (2012). A Capstone Course on Agile

Software Development Using Scrum. Ieee

Transactions on Education, 55(1), 99–106.

https://doi.org/10.1109/te.2011.2142311

Mahnič, V. (2015). Scrum in software engineering

courses: An outline of the literature. Global

Journal of Engineering Education, 17(2), 77–

83.

Martin, A., Anslow, C., & Johnson, D. (2017).

Teaching Agile Methods to Software

Engineering Professionals: 10 Years, 1000

Release Plans. In H. Baumeister, H. Lichter, &

M. Riebisch (Eds.), Agile Processes in Software

Engineering and Extreme Programming (pp.

151–166). Cham: Springer International

Publishing.

Masood, Z., Hoda, R., & Blincoe, K. (2018).

Adapting agile practices in university contexts.

Journal of Systems and Software, 144, 501–510.

https://doi.org/10.1016/J.JSS.2018.07.011

May, J., York, J., & Lane, M. (2016). Play Ball :

Bringing Scrum into the Classroom. Jourrnal of

Information Systems Education, 27(2), 87–93.

Meier, A., Kropp, M., & Perellano, G. (2016).

Experience report of teaching agile

collaboration and values: Agile software

development in large student teams.

Proceedings - 2016 IEEE 29th Conference on

Software Engineering Education and Training,

CSEEandT 2016, 76–80.

https://doi.org/10.1109/CSEET.2016.30

Milašinović, B. (2018). An overview of key aspects in

adopting Scrum in teaching process. In

“Cooperation at Academic Informatics

Education across Balkan Countries and

Beyond” workshop. Primošten, Croatia.

Milašinović, B., & Fertalj, K. (2018). Issues and

Challenges of Adopting Agile Methodologies in

Software Engineering Courses. International

Journal of Technology and Engineering Studies,

4(5), 197–202.

https://doi.org/10.20469/ijtes.4.10004-5

Murphy, C., Sheth, S., & Morton, S. (2017). A Two-

Course Sequence of Real Projects for Real

Customers. Proceedings of the 2017 ACM

SIGCSE Technical Symposium on Computer

Science Education - SIGCSE ’17, 417–422.

https://doi.org/10.1145/3017680.3017742

Olszewska, M., Ostroumov, S., & Olszewski, M.

(2017). To agile or not to agile students (with a

twist): Experience report from a student project

course. Proceedings - 43rd Euromicro

Conference on Software Engineering and

Advanced Applications, SEAA 2017, 83–87.

https://doi.org/10.1109/SEAA.2017.54

Orr, A. (2015). Learn By Doing: Agile Project Based

Learning in the Software Development

Classroom. Retrieved from

https://www.linkedin.com/pulse/learn-doing-

agile-project-based-learning-software-

development-orr/

Rico, D. F., & Sayani, H. H. (2009). Use of Agile

Methods in Software Engineering Education.

2009 Agile Conference, 1–12.

https://doi.org/10.1109/AGILE.2009.13

Rodriguez, G., Soria, A., & Campo, M. (2016).

Measuring the Impact of Agile Coaching on

Students’ Performance. IEEE Transactions on

Education, 59(3), 202–209.

https://doi.org/10.1109/TE.2015.2506624

Rodriguez, G., Soria, Á., & Campo, M. (2015).

Virtual Scrum: A teaching aid to introduce

undergraduate software engineering students to

Scrum. Computer Applications in Engineering

Education, 23(1), 147–156.

https://doi.org/10.1002/cae.21588

Scharf, A., & Koch, A. (2013). Scrum in a software

engineering course: An in-depth praxis report.

Software Engineering Education Conference,

Proceedings, 159–168.

https://doi.org/10.1109/CSEET.2013.6595247

Proceedings of the Central European Conference on Information and Intelligent Systems___311

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

