
Proposed architecture for ETL workflow generator*

Matija Novak, Dragutin Kermek, Ivan Magdalenić
University of Zagreb

Faculty of Organization and Informatics
Pavlinska 2, 42000 Varaždin

{matija.novak, dragutin.kermek, ivan.magdalenic}@foi.hr

Abstract. The most important process, on which most
time is spent, when building data warehouses is the
Extract Transform Load (ETL) process. Automation
of such process is an expected thing to do. In this
work the focus is on automation for generating ETL
workflows which is currently not very well researched.
The idea is to build systems which model the ETL
process based on semantics and suggest the needed
transformation and mappings for automatic genera-
tion of ETL workflows. In this work an architecture
is presented to automatically integrate the system
which generates mappings and transformations based
on ontologies and the traditional ETL tools. The
architecture of the prototyped system is message based
which enables parallel processing.

Keywords. ETL, data warehouse, architecture, gener-
ator, ontologies, message based

1 Introduction
Extract Transform Load (ETL) process [1] is the most
important process of data warehouse. Around 70% of
resources and time when building data warehouse go to
ETL process. ETL is used to extract data form different
sources, transform the data which includes cleaning the
data and align the data between different sources in a
common way and load the data into data warehouse.
[2] A lot of research is done in the field of ETL, some of
the main research topics are: how to do ETL efficiently
[3, 4], how to optimize it [5, 6], how to model ETL at
conceptual and logical level [7, 8], how to automatize
the whole process [9, 10], how to test it [11, 12] and so
on.

In this work the focus is on the ETL automation.
There are various aspects of ETL automation like: au-
tomation to recognize needed mapping and transforma-
tion, automation for ETL testing, automation for gener-
ating ETL workflows, etc. Our focus is on automation
for generating ETL workflows and the idea is to use
systems which model ETL process based on semantics
and suggest the needed transformations and mappings
for automatic generation of ETL workflows. Publica-
tions that described such systems (e.g. [13, 14, 15]) are
focused on suggesting information about the needed

transformations and mappings, but the usage of this in-
formation is not researched enough. During literature
review we did not find the use of this information for
automatic generation of ETL workflows.

In this work we plan to use the information about the
needed transformations and mappings, got from previ-
ous systems, and use it in traditional ETL tools auto-
matically. To be able to do that in this work an ar-
chitecture of an ETL workflow generator is proposed
and a prototype was built using Apache Camel [16].
ETL workflow generator is a tool that uses the informa-
tion about transformations and mappings and generates
ETL workflows for existing traditional ETL tools.

While in this work we will focus on ETL in the do-
main of data warehouses in the future we could ex-
pand this idea to be used in operational applications.
As Poess et al. say [12]: “Recently, ETL was replaced
by the more comprehensive acronym, data integration
(DI).” They define DI as follows: “DI describes the
process of extracting and combining data from a vari-
ety of data source formats, transforming that data into
a unified data model representation and loading it into
data store.”[12] While ETL has been used for build-
ing data warehouses, DI can be used for building data
warehouse and for synchronizing data between oper-
ational applications. Also, recently some ideas have
arisen like content driven ETL process [10]. This is
because of the large amount of different data on the
web that is not all structured and needs to be somehow
integrated, but this is also out of the scope of this work.

The work is structured as follows. Section 2 gives
an overview of related work in the field of ETL pro-
cess. Section 3 describes the ETL workflow generator,
shows the proposed architecture of ETL workflow gen-
erator with description of needed patterns for imple-
menting such system. Section 4 gives the conclusion
and future work.

2 Related work on ETL process
Various researches deal with optimization, modelling
and automation of ETL process. Vassiliadis made in
2009 a systematic review [17] of work in the field of
ETL technology where he describes what are the con-
ceptual and logical modelling problems, what are the

Proceedings of the Central European Conference on Information and Intelligent Systems___297

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

*This paper is published and available in Croatian language at: http://ceciis.foi.hr

problems within each stage of ETL and he gave review
of some prototype tools. From his work one can see
that the ETL process can be viewed on three levels:

• Conceptual - highest level of abstraction, at this level
all data sources are treated equally and not distanced
by the source type, because it is unknown whether
this is a file or a database or something else. Trans-
formations are usually data union, intersection, dif-
ference, filter, join, etc. Also for data warehouse
it is unknown what kind it will be, star schema or
snowflake. Articles like [18] try to optimize and
make it easy the conceptual modelling of the ETL
process.

• Logical - at this level we know exactly what kind
of source is it, what type of data warehouse (star
schema or snowflake) but it is still unknown whether
a relational database is used as data warehouse (DW)
or something else.

• Physical - physical implementation of the process.

Most researches today are focused on conceptual
and logical level while the physical level was re-
searched before (e.g., Kimball[19]).

For modelling at conceptual and logical level there
are two main approaches:

• Approach Based on unified modelling language
(UML) [20, 21, 22]

• Semantic approach [14, 15, 23]

Each of these approaches has their benefits and prob-
lems. UML has the benefit that it is based on standard
modelling language that is well-accepted. The prob-
lem with UML is that one must follow the restrictions
that came with this language. Other approaches have
the benefit that they can represent ETL process with-
out any restrictions that come with previously defined
generic language, but they might not be well accepted
by others. [15]

Naiqiao et al. [24] propose “a semantic-aware data
generator for ETL workflows, where ETL workflow ac-
tivity semantics are transformed to symbols and a set
of constraints over them, and concrete data sets are
derived by solving constraints.” In this work we will
focus on semantic approach using ontologies because
it gives the possibility to reason over data and adding
knowledge to the whole system. Usually web ontol-
ogy language (OWL) is used for defining the ontolo-
gies. As Abelló et al. say [25]: “... the use of an OWL
ontology, instead of a global schema, provides a formal
model on which automated reasoning mechanisms may
be applied.”

Researches that focuses on using ontology based
ETL process are [13, 14, 23, 26]. What is not cov-
ered in these articles is the implementation of the ETL
process. Implementation in the articles only gives the
info what should be done but it is not explained how

this is used in the ETL process itself. In article [14] the
idea is to perform SPARQL queries directly on the data
that are normally done in data warehouses. The prob-
lem with this method is that it is slower than traditional
ETL in the meaning of execution of the process.

This work focuses on automatize the mappings be-
tween source and destination and defining transforma-
tions that should be applied on the data using ontolo-
gies. So the idea is to use the speed of traditional ETL
and optimizations that were made there and take the
advantage of the knowledge and information got by
semantic modelling. ETL workflow generator is sug-
gested to transform this semantic knowledge into tradi-
tional ETL tools rather than to build an new ETL tool
or framework as it is done in previous research like in
[27, 28].

3 ETL workflow generator
As already said there have been articles from Skoutas
like [13, 23] that have described how to model the ETL
process from ontologies. In short the process is to cre-
ate ontology for every source, create domain ontology
and ontology of the destination and then querying the
created ontologies. One can get the mappings between
destination and source, and what transformations need
to be performed. On the other hand there are existing
ETL tools that are fast and useful (like Talend Open
Studio [29] or Pentaho Data Integration [30]) but ETL
workflow still must be created manually. Our idea is to
create ETL workflow generator which will convert the
knowledge got from systems about needed transforma-
tions and mappings and generate specification needed
for traditional tools.

In the next subsections are presented: high level
architecture, detailed message flow of ETL workflow
generator and description of used design patterns.

3.1 Proposed architecture
In Figure 1 high level architecture is presented and it
can be seen that ETL workflow generator communi-
cates with following parts:

• Sources — present the data sources like databases,
files, web, etc.

• Destination — presents the data warehouse to which
data should be loaded, here can be different models
like star schema or snowflake;

• Extract semantic knowledge — represents the exist-
ing systems which can tell what mappings and trans-
formations need to be performed based on source,
destination and domain ontology;

• Current ETL tools — represents existing ETL tools
like Talend Open Studio, Pentaho, Web ETL tool,
etc. Each of this systems has its own specification
based on which it performs the ETL process;

298___Proceedings of the Central European Conference on Information and Intelligent Systems

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

Figure 1: High level architecture of ETL workflow
generator

• ETL workflow generator — generates specification
for existing ETL workflow system based on map-
pings and transformation that it gets. In the next sub-
section detailed description of ETL workflow gener-
ator is given. As it can be seen in the Figure 1, ETL
workflow generator has four template objects which
contain information what is needed for certain source
types (databases, files, ...), sources (MySQL, Post-
greSQL, XML, TXT, etc.), transformations (split,
merge, duplicate, date format, ...) and destination
(star schema, snowflake).

The internal architecture of ETL workflow generator
(further in text just referred as ETL generator) is based
on messages and its internal structure is presented as
message flows (Figure 2). Flow goes from the mo-
ment the generator gets the first message, that is the
mappings and transformation (M&T) specification to
the final specification for some existing ETL tool. The
figure uses the symbols for message flows which rep-
resent standard message patterns.

Used messaging patterns are one type of enterprise
integration patterns and are used to successfully ma-
nipulate with messages. These patterns and their sym-
bols were taken from the book Enterprise Integration
Patterns from Hohpe and Woolf [31] and are shown
in Table 1. To build the diagram MS Visio was used
with using templates available at Apache Camel web
site [16].

The benefit of using messaging is that the initial
message of M&T can be split into smaller messages.
These messages represent one unique transformation
that needs to be performed on one, two or more at-
tributes and sources. Now each of this single messages
can be processed separately and in parallel. With sys-
tem like this instead of just generating the specification
for existing ETL systems one can use it to perform the
ETL process. In this work the focus is on generating
the specification. So while each message is processed,
the necessary description is added and sent further to
other processing parts.

Figure 2: ETL workflow generator - message flow

3.2 Description of message flow
To better understand what is going on the whole mes-
sage flow will be described. First, initial message with
M&T is created based on input data. Input data is
got from existing system that recognizes the needed
mappings and transformations. This initial message is
transformed (by message transformer) into XML for-
mat which will be used for message inside of ETL gen-
erator. XML is chosen because it can be easily manip-
ulated (like adding a new child or adding properties as
attributes). At the same moment as the initial message
is sent, one command message is sent to first router to
configure the router.

System consists of three main modules: GEN1,
GEN2 and GEN3. GEN1 module is responsible for
adding information to messages which contain infor-
mation about M&T that require only one source and
transformations that are made on one attribute (like
date convert). One Content Enricher exists for every
source which adds data to messages that it gets based
on templates.

GEN2 module is responsible for messages that re-
quire one source and transformations are made on two
or more attributes (like merge transformation). One
GEN2 module consist of multiple Content Enrichers
for every source and it adds data to incoming messages
based on templates. Each of Content Enrichers knows
what it has to add to fully describe the source that it
is responsible for. GEN3 module works similar to one
GEN2 module, but differs in that it is responsible for
messages that require multiple sources.

When the initial message is in the correct format it
is split into multiple messages where each represents
one transformation with info on which source attribute
is performed and to what destination should be loaded.

This message could look as flows:

<message i d ="1" >
< sou rce >

< u s e r _ s o u r c e >Source_1 < u s e r _ s o u r c e >
<name>employees < / name>
< a t t r i b u t e > d a t e o f employment
</ a t t r i b u t e >

Proceedings of the Central European Conference on Information and Intelligent Systems___299

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

Table 1: Used enterprise integration patterns

Pattern
name

Symbol [31,
16]

Short description

Chanel
Adapter Enables that one system connects to a message channel.

Message
translator

Translates one data format into another, it has the same purpose as
Adapter from GOF [32].

Resequencer Transforms the stream of incoming messages into correct order.

Content
Based Router

Routes messages based on their content.

Detour
Some messages go directly to destination while some go over context
based router to process.

Content
Enricher

Extends the message with missing information.

Aggregator Aggregate separate related messages into one single message.

Splitter Splits message into separate messages.

Composed
message
processor

Is a combination of splitter and router it splits the incoming message
flow into separate messages which need to be processed differently and
at one point combines them back together.

</ sou rce >
< d e s t i n a t i o n >

<name> employees </ name>
< a t t r i b u t e > da te < / a t t r i b u t e >

</ d e s t i n a t i o n >
< t r a n s f o r m a t i o n >

< type > c o n v e r t < / type >
< format > European da te < / fo rmat >

</ t r a n s f o r m a t i o n >
</ message >

The message has three sub nodes: a) source —
that has basic information about the source (source
name, table name, and attribute name) from which data
should be extracted; b)destination — that has basic
information about the destination (table and attribute
name) to which data should be loaded. As ETL gen-
erator can only be used at the same time to work with
workflows for one data warehouse there is no special
information about the destination name, because all
messages have the same destination name; c) transfor-
mation — basic information about transformation (like
type and format) that needs to be performed.

Two types of message exits: normal and command
message. Command messages are used to configure
the system. Normal messages are messages containing

information about mappings and transformation. The
messages are resequenced so that command messages
are send first. The messages are next routed based on
their type. Normal messages go to the first router and
are then sent to one of the Content Enrichers inside
GEN1 module to which the message belongs. Each
message is processed and enriched.

For example, our previous message can be enriched
as follows (new parts are written in bold):

<message i d ="1" >
< sou rce >

<name>employees < / name>
< a t t r i b u t e > d a t e o f employment
</ a t t r i b u t e >
< u s e r _ s o u r c e > Source_1
< u s e r _ s o u r c e >
< type >MySQL</ type >
<ip > 1 9 2 . 1 6 8 . 5 . 1 < / ip >
<username >pero < / username >
<password >123456 </ password >

</ sou rce >
< d e s t i n a t i o n >

<name> employees </ name>
< a t t r i b u t e > da te < / a t t r i b u t e >
< type >DIM</ type >
<ip > 1 9 2 . 1 6 8 . 5 . 2 < / ip >
<username >dw</ username >
<password >654321 </ password >

300___Proceedings of the Central European Conference on Information and Intelligent Systems

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

</ d e s t i n a t i o n >
< t r a n s f o r m a t i o n >

< type > c o n v e r t < / type >
< format >dd .mm. yyyy . < / fo rmat >

</ t r a n s f o r m a t i o n >
</ message >

Content enricher has added in source and destination
part of enriched message following elements: type, ip,
username and password. They are information that
must be provided for final workflows to be able to con-
nect to the source and destination. Also, transforma-
tion part has changed. The format of the transformation
is changed from European Date to specific type of the
date to which the date attribute should be converted.

Every message might not contain transformation,
therefore it could just contain source and destination.
Templates of transformation contain for every transfor-
mation info what is necessary to do. For example, mes-
sage would require split transformation on “Name Sur-
name” into “Name” and “Surname”. Then two new
messages would be generated. Command messages
that involve two attributes from same source or mul-
tiple sources are send to modules GEN2 and GEN3.

In GEN2 command messages tell that something
must be done on two different attributes of the same
source. For example merge of name and surname. In
this case the GEN2 instantiates Aggregator and Con-
tent Enricher and adds new rule to dynamic router that
new channel exists. Aggregator has the info how many
messages should it get (in the name and surname case
only two messages are expected) and when these mes-
sages are received they are copied into one new mes-
sage and then this message is sent to Content Enricher.
The Content Enricher in this case adds info like Con-
tent Enricher in GEN1. The original messages that the
aggregator got are further sent without entering Con-
tent Enricher. If the transformation is name and sur-
name merging of name and surname then these two
messages are wrapped around with info needed for
merge transformation. The same is with GEN3 com-
mand messages. Only difference is that GEN3 module
is used, as already described, for messages that work
with multiple sources. Normal incoming messages that
are not needed in GEN2 or GEN3 skip them and are
send directly to the next dynamic router.

One interesting situation is, for example, when
Name and Surname would not be stored into destina-
tion. In this case only “Name Surname” is stored. The
messages Name and Surname would never exist and in
GEN2 nothing would happen. So to eliminate this pos-
sibility for every such case at the beginning are gener-
ated messages for name and surname which don’t have
destination info. When such messages get to GEN2 or
GEN3 they are copied into new merged message and
then destroyed.

After GEN3 there is an aggregator which merges all
messages into one specification. Based on the com-
mand message that it gets at the beginning it knows
how many messages it should receive. When all mes-

sages are merged final specification is send to router
which then routes the specification message to one
adapter which will convert that message to specifica-
tion expected by existing ETL tools.

The benefits of this system are that messages are pro-
cessed independent of one another which enables par-
allel execution. Also, the system can be distributed on
several servers for example each module from GEN1 to
GEN3 could be on separate server and elements inside
one GEN module could also be on separated servers.
If the system would be distributed over several servers
then there would be a bigger benefit to perform the ETL
process itself then just generate the specification.

3.3 Implementation
Java programming language was used for a system im-
plementation. Figure 3 presents used patterns and im-
portant classes that are important. Template based meta
programming was used for the generation of features
in GEN2 and GEN3 modules. The used meta model
is described in [33]. Templates where created for
ETLGen2AgregatorAndCE, ETLGEN2Router, ETL-
GEN3Router, ETLSourceRouter, and so on. Every
template contains keywords that can be configured dur-
ing execution like “//ADD RULE” or “//ADD FROM”.

In the next example the source-code of ETL-
SourceRouter template is presented.

package t e m p l a t e s ;
i m p o r t o rg . apache . camel . b u i l d e r . R o u t e B u i l d e r ;
p u b l i c c l a s s ETLSourceRouter

e x t e n d s R o u t e B u i l d e r {
@Override
p u b l i c v o id c o n f i g u r e () t h r o w s E x c e p t i o n {
from (" f i l e : t a r g e t / g e n 1 _ r o u t e r ? noop= f a l s e ") .

c h o i c e () .
when (x p a t h (" / message / command = ’ yes2 ’ ")) .
t o (" f i l e : t a r g e t / cmd_rou te r_gen2 ") .
o t h e r w i s e () .
when (x p a t h (" / message / command = ’ yes3 ’ ")) .
t o (" f i l e : t a r g e t / cmd_rou te r_gen3 ") ;

/ /ADD RULE
}}

The keyword ?//ADD RULE? can be seen at the end
of the router. We will explain how the system is built
based on this simple example. When a command mes-
sage is received that has a new source, the code for

Figure 3: Class diagram - generation of GEN modules

Proceedings of the Central European Conference on Information and Intelligent Systems___301

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

this source is added to the ETLSourceRouter template.
More precisely the template is copied and the rule is
added to the copy of the template which is used for ex-
ecution.

When the new copy of the ETLSourceRouter is
ready the class is compiled and imported into the pro-
gram. At this point the new class is ready to be used.
This process is shown in the following code example.

s t a t i c S t r i n g c o m p i l e T e m p l a t e C l a s s (F i l e f)
t h ro w s C o m p i l a t i o n E x c e p t i o n {

J a v a C o m p i l e r j c =
T o o l P r o v i d e r . g e t S y s t e m J a v a C o m p i l e r () ;

S t a n d a r d J a v a F i l e M a n a g e r f i l e M a n a g e r =
j c . g e t S t a n d a r d F i l e M a n a g e r (n u l l , n u l l , n u l l) ;

D i a g n o s t i c C o l l e c t o r < J a v a F i l e O b j e c t > d i a g =
new D i a g n o s t i c C o l l e c t o r < J a v a F i l e O b j e c t > () ;

L i s t < F i l e > f i l e L i s t = A r r a y s . a s L i s t (f) ;
I t e r a b l e <? e x t e n d s J a v a F i l e O b j e c t >

c o m p i l a t i o n U n i t s 1 = f i l e M a n a g e r .
g e t J a v a F i l e O b j e c t s F r o m F i l e s (f i l e L i s t) ;

b o o l e a n ok = j c . g e t T a s k (n u l l , f i l e M a n a g e r ,
d iag , n u l l , n u l l , c o m p i l a t i o n U n i t s 1) . c a l l () ;

t r y { f i l e M a n a g e r . c l o s e () ; }
c a t c h (IOEx cep t ion ex) { . . . }

p r i n t D i a g n o s t i c s (d iag , ! ok) ;

/ /MOVE THE CLASS TO BUILD FOLDER
S t r i n g f = f . getName () .

s u b s t r i n g (0 , f . getName () . l a s t I n d e x O f (" . ")) ;
S t r i n g f i l e _ c l a s s _ n a m e = f_name + " . c l a s s " ;
S t r i n g b u i l d _ d i r =

System . g e t P r o p e r t y (" u s e r . d i r ")
+ F i l e . s e p a r a t o r + " b u i l d "
+ F i l e . s e p a r a t o r + " c l a s s e s " ;

S t r i n g f i l e _ p a r e n t _ d i r =
f . g e t P a r e n t () . s u b s t r i n g (f . g e t P a r e n t () .
indexOf (" s r c ") + 4) ;

b u i l d _ d i r += F i l e . s e p a r a t o r + f i l e _ p a r e n t _ d i r ;

moveCompiledClass (f . g e t P a r e n t () ,
f i l e _ c l a s s _ n a m e , b u i l d _ d i r) ;

S t r i n g c l a s s _ n a m e = f i l e _ p a r e n t _ d i r
+ F i l e . s e p a r a t o r + f_name ;

r e t u r n c l a s s _ n a m e . r e p l a c e (F i l e . s e p a r a t o r , " . ") ;
}

One problem with this implementation is that a com-
piled code is created in the same directory as the
source-code file so it needs to be moved to the build
folder. To import the newly compiled class Java reflec-
tion is used which is shown in the next example.

C l a s s c = C l a s s . forName (f u l l C l a s s N a m e) ;
e t l s o u r c e r o u t e r =

(R o u t e s B u i l d e r) c . n e w I n s t a n c e () ;
. . .
/ / add e t l s o u r c e r o u t e r t o Apache Camel c o n t e x t
c o n t e x t . addRoutes (e t l s o u r c e r o u t e r) ;

Finally, since the system is built as a messaging sys-
tem every template is basically a class that extends
RouteBuilder class from Apache Camel, so the last
thing that needs to be done is to add this class to

the running context as shown in the previous exam-
ple. Once this is done the RouterBuilder can start do-
ing his job and that is read incoming messages, pro-
cess it and generate output messages. The source-
code is available at https://github.com/matnovak-
foi/ETL_WorkflowGenerator under the GPLv3 license.

4 Conclusion and future work
In this work it was presented the architecture to auto-
matically integrate the system which generates map-
pings and transformations based on ontologies using
traditional ETL tools. The architecture of presented
system is based on messages and it enables processing
multiple different messages at the same time.

The system built in this way is flexible and can be
implemented as distributed system. Also it is very fast
because many messages can be processed in parallel.
Presented system generates specification that can be
used in existing ETL tools which is the main differ-
ence to existing semantic ETL tools which are imple-
mented from scratch. Also, the system can be easily
modified to generate source code or to perform the ETL
process right away. Other benefit of this architecture is
possibility to change destination type. This is possible
because a destination is described by templates. Dif-
ferent destination could be described by other template
and load data into any kind of destination. In future
we plan to use this ETL system for other purposes than
DW.

Prototype implementation of the presented ETL gen-
erator was made in Camel because it supports all the
necessary messaging patterns that are needed to imple-
ment the intended ETL generator.

The current work is focused on usage of generative
programming techniques to make the system more flex-
ible. Right now for every new case the system needs to
be manually configured. For every new source type
manual creation of new Content Enricher in GEN1
module is needed. The future plan is to automate
this process based on message content. Other possi-
ble extension to this ETL generator would be to in-
clude subscriber pattern so that the tool could change
existing specification based on changes that occur in
the sources.

References
[1] R. Kimball and J. Caserta, The Data Warehouse-

ETL Toolkit: Practical Techniques for Extracting,
Cleaning, Conforming, and Delivering Data. Wi-
ley, 2004.

[2] M. Novak and K. Rabuzin, “Prototype of a Web
ETL Tool,” International Journal of Advanced
Computer Science and Applications, vol. 5, no. 6,
pp. 97–103, 2014.

302___Proceedings of the Central European Conference on Information and Intelligent Systems

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

[3] K. Sun and Y. Lan, “SETL: A scalable and high
performance ETL system,” in System Science,
Engineering Design and Manufacturing Informa-
tization (ICSEM), 2012 3rd International Con-
ference on, vol. 1, (Software Engineering Insti-
tute, Beihang University, Beijing, China), pp. 6–
9, 2012.

[4] K. Rabuzin and M. Novak, “WebETL Tool - A
Prototype in Action,” in ICCGI 2014, The Ninth
International Multi- . . . , (Sevilja, Spain), pp. 67–
71, 2014.

[5] A. Simitsis, P. Vassiliadis, and T. Sellis, “Opti-
mizing ETL processes in data warehouses,” in
Data Engineering, 2005. ICDE 2005. Proceed-
ings. 21st International Conference on, pp. 564–
575, 2005.

[6] A. Behrend and T. Jörg, “Optimized incremen-
tal ETL jobs for maintaining data warehouses,”
in 14th International Database Engineering and
Applications Symposium, IDEAS ’10, (University
of Bonn, Germany), pp. 216–224, 2010.

[7] A. Simitsis, D. Skoutas, and M. Castellanos,
“Representation of conceptual ETL designs in
natural language using Semantic Web technol-
ogy,” Data & Knowledge Engineering, vol. 69,
no. 1, pp. 96–115, 2010.

[8] D. Skoutas, A. Simitsis, and T. Sellis, Ontology-
Driven Conceptual Design of ETL Processes Us-
ing Graph Transformations, vol. 5530 of Lecture
Notes in Computer Science. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009.

[9] X. Zhang, W. Sun, W. Wang, Y. Feng, and B. Shi,
“Research on generating incremental ETL pro-
cesses automatically,” Jisuanji Yanjiu yu Fazhan/-
Computer Research and Development, vol. 43,
no. 6, pp. 1097–1103, 2006.

[10] A. Berro, I. Megdiche, and O. Teste, “A Content-
Driven ETL Processes for Open Data,” 18th East
European Conference on Advances in Databases
and Information Systems and Associated Satellite
Events, ADBIS 2014, vol. 312, pp. 29–40, 2015.

[11] N. Du, X. Ye, and J. Wang, “A schema aware ETL
workflow generator,” Information Systems Fron-
tiers, vol. 16, no. 3, pp. 453–471, 2012.

[12] M. Poess, T. Rabl, H.-A. Jacobsen, and B. Cau-
field, “TPCDI: The first industry benchmark for
data integration,” Proceedings of the VLDB En-
dowment, vol. 7, no. 13, pp. 1367–1378, 2014.

[13] D. Skoutas and A. Simitsis, “Ontology-Based
Conceptual Design of ETL Processes for Both
Structured and Semi-Structured Data,” Interna-
tional Journal on Semantic Web and Information
Systems, vol. 3, no. 4, pp. 1–24, 2007.

[14] S. K. Bansal, “Towards a Semantic Extract-
Transform-Load (ETL) Framework for Big
Data Integration,” in 2014 IEEE International
Congress on Big Data, pp. 522–529, IEEE, 2014.

[15] S. Bergamaschi, F. Guerra, M. Orsini, C. Sartori,
and M. Vincini, “A semantic approach to ETL
technologies,” Data & Knowledge Engineering,
vol. 70, no. 8, pp. 717–731, 2011.

[16] The Apache Software Foundation, “Apache
Chamel: Enterprise Integration Patterns.”

[17] P. Vassiliadis, “A Survey of Extract-Transform-
Load Technology,” International Journal of Data
Warehousing and Mining, vol. 5, no. 3, pp. 1–27,
2009.

[18] S. Dupor and V. Jovanovic, “An approach to
conceptual modelling of ETL processes,” in
2014 37th International Convention on Informa-
tion and Communication Technology, Electronics
and Microelectronics (MIPRO), pp. 1485–1490,
IEEE, 2014.

[19] R. Kimball, The Data Warehouse Lifecycle
Toolkit. The Data Warehouse Lifecycle Toolkit,
John Wiley & Sons, 2008.

[20] L. Muñoz, J.-N. Mazón, and J. Trujillo, “A fam-
ily of experiments to validate measures for UML
activity diagrams of ETL processes in data ware-
houses,” Information and Software Technology,
vol. 52, no. 11, pp. 1188–1203, 2010.

[21] J. Trujillo and S. Lujan-Mora, “A UML based
approach for modeling ETL processes in data
warehouses,” in Conceptual modeling - ER 2003
Proceedings, vol. 2813 of Lecture notes in com-
puter science, (Berlin, Germany), pp. 307–320,
Springer-Verlag Berlin, 2003.

[22] S. Luján-Mora, P. Vassiliadis, and J. Trujillo,
“Data mapping diagrams for data warehouse de-
sign with UML,” in Lecture Notes in Computer
Science, vol. 3288 of Lecture notes in computer
science, (University of Alicante, Spain), pp. 191–
204, Springer-Verlag Berlin, 2004.

[23] D. Skoutas and A. Simitsis, “Designing ETL pro-
cesses using semantic web technologies,” in Pro-
ceedings of the 9th ACM international workshop
on Data warehousing and OLAP - DOLAP ’06,
(New York, New York, USA), p. 67, ACM Press,
2006.

[24] N. Du, X. Ye, and J. Wang, “A semantic-aware
data generator for ETL workflows,” Concur-
rency and Computation: Practice and Experi-
ence, vol. 28, no. 4, pp. 1016–1040, 2016.

Proceedings of the Central European Conference on Information and Intelligent Systems___303

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

[25] A. Abello, O. Romero, T. Pedersen, R. Berlanga
Llavori, V. Nebot, M. Aramburu, and A. Simit-
sis, “Using Semantic Web Technologies for Ex-
ploratory OLAP: A Survey,” IEEE Transactions
on Knowledge and Data Engineering, vol. PP,
no. 99, pp. 1–1, 2014.

[26] J. Chakraborty, A. Padki, and S. K. Bansal,
“Semantic etl - state-of-the-art and open re-
search challenges,” in 2017 IEEE 11th Inter-
national Conference on Semantic Computing
(ICSC), pp. 413–418, 2017.

[27] R. P. Deb Nath, K. Hose, and T. B. Peder-
sen, “Towards a programmable semantic extract-
transform-load framework for semantic data
warehouses,” in Proceedings of the ACM Eigh-
teenth International Workshop on Data Ware-
housing and OLAP, DOLAP ’15, (New York, NY,
USA), pp. 15–24, ACM, 2015.

[28] J. P. McCusker, K. Chastain, S. Rashid, S. Nor-
ris, and D. L. McGuinness, “Setlr: the semantic
extract, transform, and load-r,” PeerJ Preprints,
vol. 6, p. e26476v1, 2018.

[29] Talend, “Talend Open Studio Integration Soft-
ware Platform.”

[30] Pentaho Corporation, “Data Integration - Pentaho
Business Analytics Platform.”

[31] G. Hohpe and B. Woolf, Enterprise Integration
Patterns: Designing, Building, and Deploying
Messaging Solutions. Addison-Wesley, 2012.

[32] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-
Oriented Software. Pearson Education, Limited,
2005.

[33] M. Novak, I. Magdalenić, and D. Radošević,
“Common Metamodel of Component Diagram
and Feature Diagram in Generative Program-
ming,” Journal of Computer Science, vol. 12,
no. 10, pp. 517–526, 2016.

304___Proceedings of the Central European Conference on Information and Intelligent Systems

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

