
Designing Secure Architecture of Health Software using

Agile Practices

Alexander Pirker, Nadica Hrgarek Lechner

MED-EL Elektromedizinische Geräte GmbH

Fürstenweg 77a, 6020 Innsbruck, Austria

{alexander.pirker, nadica.hrgarek}@medel.com

Abstract. Software is becoming increasingly

important as a way of increasing clinical effectiveness

and reducing costs in healthcare. Companies need to

design robust security and privacy into health

software to avoid unauthorized access and disclosure

of sensitive data, modification of data, or loss of

function. The main purpose of this paper is to present

appropriate agile practices and approaches which

explicitly allow for a secure-by-design architecture in

a healthcare context. Specifically, we show how to

apply principles, practices, and patterns from

Domain-Driven Design (DDD) in an agile

environment to control the design process of health

software to build a secure solution.

Keywords. agile, DDD, domain-driven design, health

software, privacy, security, software architecture

1 Introduction

The healthcare industry is highly regulated and relies

on integrated risk management to manage risks to

patient safety. Risk management in healthcare can

mean the difference between life, injury, serious

injury, and death. Therefore, security and privacy

expectations from regulators and users of safety-

critical health software are very high. Cybersecurity is

an area with increasing risk to patients as more

medical devices use wireless, Internet, and network

connectivity in order to deliver care, remotely monitor

patients, or transfer patient data. The networked

functionalities introduce new risks that can adversely

affect device functionality, disrupt the delivery of

health services, and lead to patient harm. Any medical

device that is configured to use networked

functionalities is at risk of a cyber-attack, if the device

does not have adequate security controls.

Information security and user privacy are two

major challenges when designing health software.

Health software can be defined as ‘software intended

to be used specifically for managing, maintaining or

improving health of individual persons, or the

delivery of care’ (IEC 82304-1: Health software –

Part 1: General requirements for product safety,

2016, p. 8). It includes software as a part of medical

device and software that is a medical device on its

own (i.e., standalone software, mobile medical apps).

In the past, health software was usually developed

using a traditional waterfall model in which each

activity is taken in sequence and outputs are

created/updated, reviewed, and approved. This

approach expects the requirements to be stable during

a project. Software change requests, requirement

changes, and bug fixes during implementation,

verification, or validation require development to go

back through the entire sequential process. Big design

up front approach tried to tackle this challenge by

fully completing the detailed design before

implementation is started. However, when trying to

predict the future and to define all the requirements

for large, complex applications up front, years may

elapse between defining requirements and actual

implementation. During this period, many factors

influencing product development may change:

technology, customer needs, old markets disappear,

competitors offer a substitute or similar product, new

attack vectors come from unexpected places, etc.

In the last decade agile methodologies have been

gaining importance in the medical device industry due

to the ability to quickly respond to the evolving

business needs. An agile approach relies on cross-

functional team collaboration and expects that the

customer is engaged throughout the development

process to increase the chances to build the successful

product the customers want. In iteration-based agile

projects value is delivered from the start and often.

Explorative studies such as that conducted by Hadar

& Sherman (2012) showed that while architects

practicing only plan-driven methodologies perceive

architecture activities as being related only to the first

phases of the development process, architects

involved in agile projects perceive architecture

activities to be related to most or all phases of the

development lifecycle.

Security and privacy, as non-functional

requirements, turned from a desirable (‘nice to have’)

to a ‘should have’, and finally arrived at an essential

(‘must have’) requirement. In this light, when

healthcare organizations did not explicitly define

Proceedings of the Central European Conference on Information and Intelligent Systems___269

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

security controls a priori, former approaches like

waterfall failed completely, since most software

vendors tried to implement such non-functional

requirements at very late development stages. Hence,

security was implemented on top of, or into an, almost

finished software product, which is very challenging,

and often fails.

Babar (2009) found that lack of focus on quality

attributes for making design decisions usually results

in architectural structures that can hardly meet quality

requirements later. Nord et al. (2012) found that lack

of desirable security in an architecture can necessitate

enormous rework. According to McGraw (2006, pp.

16-17), Microsoft reports that more than 50% of the

problems the company has uncovered during its

ongoing security push are architectural in nature. In

this paper we show how to overcome these issues by

using agile practices in combination with an iterative

and incremental architectural approach applied to

health software. Particularly, designing software

incrementally in an agile environment with a constant

focus on security aspects enables developers and

architects, but also stakeholders, to intervein at early

development stages when the solution evolves into an

unsecure direction. This in turn allows for tight

control of the design process and contributes to

building health software which is secure by design.

The overall structure of the paper takes the form

of five sections, including this introductory section.

The second section provides a brief overview of

relevant related work. The third section deals with

embedding security and privacy into architecture of

health software and presents the implementation of

the proposed design. A set of agile practices for a

secure software architecture is presented in the fourth

section and shows a different approach to the state-of-

the-art. Finally, the conclusion summarizes the results

of this paper, draws conclusions, and identifies areas

for further research.

2 Related Work

In April 2019 we performed a literature research to

find available full-text sources relevant to the topic

being explored. We used the EBSCOhost online

research platform and found several articles. The most

articles were found in the IEEE Xplore® Digital

Library. Afterwards, we evaluated which material

makes a significant contribution to the understanding

of the research topic. Finally, we discuss the findings

and conclusions of relevant literature in this paper.

2.1 Security Architecture

Embedding security into software architectures has

been investigated by researchers in many fields. For

example, Moriconi et al. (1997) describe a new

application independent approach to secure system

design in which the desired security properties of the

system are proven to hold at the architectural level.

Chivers et al. (2005) illustrate how to grow

security within an agile project, by using an

incremental security architecture which evolves with

the code. The term iterative security architecture has

been used by the authors to refer to an architecture

that develops with the system and includes only

features that are necessary for the current iteration or

delivery. In their case study of costs associated with

architecture-related waste, Nord et al. (2012) were

able to demonstrate that architecting in many smaller

increments reduces the cost of delay that results from

waiting for an entire architecture to be completed.

They also found that rework is costlier, because it

might involve rearchitecting.

In his introduction to an agile security

architecture, Harkins (2016) emphasizes the need of

an architecture that quickly and automatically learns

and adapts to new challenges as they emerge. With

delivery cycles shortening it is essential to build

security into every step of application delivery

(Freeform Dynamics: Integrating Security Into the

DNA of Your Software Lifecycle, 2018). Special

attention should be paid to avoid architecting in

security vulnerabilities.

Vai et al. (2015) draw our attention to an

embedded system architecture that decouples secure

and functional design aspects. Such an architecture

addresses confidentiality and integrity by protecting

the boot process, information, and communications

from unauthorized access and alternation. The major

limitation of the architecture is that a security

coprocessor that implements cryptographic primitives

in hardware does not ensure a system’s availability.

Asokan et al. (2018) propose design of

Architecture for Secure Software Update of Realistic

Embedded Devices (ASSURED), a secure and

scalable update framework for Internet of Things

devices. Santos et al. (2017) present a new CAWE

(Common Architectural Weakness Enumeration)

concept, a catalogue of total 224 architectural

weaknesses, such as information exposure through log

files, reliance on security through obscurity, improper

authentication, use of hard-coded cryptographic key,

insecure storage of sensitive information, improper

certificate validation, download of code without

integrity check, etc.

Pedraza-Garcia et al. (2014) present a

methodological approach to address and specify the

quality attribute of security in architecture design

applying the following security tactics: detect attacks,

resist attacks, react to attacks, and recover from

attacks.

Houser (2014) suggest integrating the following

security controls for software architecture and design

into system development lifecycle process: threat

modeling, attack trees, misuse cases, identity and

access management, least privilege, formal methods,

secure design patterns and session management.

270___Proceedings of the Central European Conference on Information and Intelligent Systems

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

Recently, Derdoura et al. (2015) investigated the

design of an architecture meta-model that considers

security connectors. They propose a generic meta-

modelling approach called SMSA (Security Meta-

model for Software Architecture) to describe a

software system as a collection of components that

interact through security connectors. In their work we

observed that security connectors should be integrated

at a high level of design by using distribution

concepts (e.g., domain giving an assembly structure

and providing multiple spaces of abstraction).

2.2 Agile Architecture

Agile was originally developed for the software

industry (“Manifesto for Agile Software

Development,” 2001). However, demand for faster

development and delivery of new products and

services has led to the adoption of agile and lean

approaches by many industries including healthcare.

The results of the 12th annual summary report on agile

sponsored by CollabNet VersionOne (2018) showed

that accelerating software delivery, managing

changing priorities, increasing productivity, better

business/IT alignment, and increased software quality

are the top five reasons for adopting agile. In general,

the term agile has been considered throughout the

entire development life cycle ranging from agile

architectures (Isham, 2008; Waterman, 2018) to agile

testing.

Mekni et al. (2018) describe the methodology for

software architectural design in agile environments.

The proposed methodology consists of the following

steps: 1) definition of architectural requirements, 2)

identification of software architecture styles, 3)

evaluation of software architecture, 4) determination

of architecture scope, 5) description of software

architecture, 6) integration of software architecture,

and 7) continuous architectural refinement. Waterman

(2018) discovered that teams design agile

architectures using five tactics: 1) keep designs

simple, 2) prove the architecture with code iteratively,

3) use good design practices, 4) delay decision

making, and 5) plan for options (i.e., make decisions

that retain flexibility and don’t close off future

options). Fontdevila & Salías (2013) propose the

following agile architecture patterns and practices: a)

“sashimi” approach to the architectural definition, b)

the concentric approach, which starts with overall

vision and keeps growing as we get closer to final

implementation, c) managing quality-attribute

requirements, and d) architecture validation.

Sturtevant (2018) concludes that a balanced focus

on agile process and agile product architecture is

needed to achieve long-term agility. When using agile

approaches, Babar (2009) identifies the following key

architecture-related challenges: incorrect prioritization

of user stories, lack of time and motivation to

consider design choices, unknown domain and untried

solutions, and lack of focus on quality attributes.

As shown in Fig. 1, Woods (2015) identifies

twelve practices for successful agile architecture

covering the core values of the agile manifesto.

Allow for change

• Deliver incrementally

• Capture clear architecture

principles
• Capture decisions and

rationale

• Define components clearly

People over processes and

tools

• Share information using

simple tools
• Have customers for every

deliverable

Software over documents

• Create “good enough”
architectural artifacts

• Deliver something that runs

• Define solutions for cross-
cutting concerns

Collaboration over contracts

• Work in teams, don’t just
deliver documents

• Focus design work on

stakeholder concerns
• Focus on architectural

concerns

Figure 1. Practices for successful agile architecture

(Woods, 2015)

2.3 Security Architecture of Health

Software

As discussed above, a considerable amount of

literature has been published on security architecture

and agile architecture. Security architecture of health

software starts from inception and ends with

decommissioning and disposal. To the authors'

knowledge, very few publications are available in the

literature that identify appropriate agile practices and

approaches which explicitly allow for a secure-by-

design software architecture in a healthcare context.

Therefore, this paper considers security architecture

and agile architecture that can be used for any

software project. The agile architecture is interesting

because this paper seeks to define a set of agile

practices in combination with an iterative and

incremental architectural approach applied to health

software.

Pauli & Xu (2015) present an approach to the

architectural design and analysis of secure software

systems based on the system requirements elicited in

the form of use case and misuse case diagrams. They

have demonstrated through a case study on a security-

intensive hospital information system that dealing

with security issues at the software architecture level

can make a system more resistant to vulnerabilities.

Alibasa et al. (2017) discuss a software

architecture for storing and managing data collected

in mobile health apps. Their software architecture is

designed to separate identifiable from non-identifiable

data that can be kept anonymous.

3 Embedding Security and Privacy

into Architecture of Health

Software

Proceedings of the Central European Conference on Information and Intelligent Systems___271

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

3.1 Motivation

The design of software which shall solve a complex

task, such as controlling an airplane, controlling an

active implantable medical device, or programming

an embedded device, is very challenging, and many

companies fail (after years) for a number of reasons

including a lack of proper software design. But what

is causing software design for such complex tasks to

be so hard? There are basically many different

reasons for this. One certainly is due to a variety of

ways to design and structure software solutions.

Early architectural approaches follow layered

architectures with separated layers (Sharma et al.,

2015). For example, many applications use the

common “user interface – business logic –

persistence” three-tier architecture pattern. Here, the

dependencies (should be) are directional, meaning

that the business logic layer depends on the

persistence layer but not vice versa. After years of

development, architectural constraints, such as project

dependencies, start to elute and the software

architecture turns into a big-ball of mud. Suddenly

each small change in the software triggers a huge

development and testing effort to tweak the code in

such a way, that the product supports new features or

bugs get fixed. Such unexpected rework causes

considerable costs which increase and slow down the

overall project progress. Furthermore, security does

not have a pre-defined place to be built in, it is spread

over different components and layers, thereby leading

to a potentially unsecure product. This finding

corroborates the ideas of Fernandez et al. (2008), who

described that the three-tier architecture and its

variants do not consider security and therefore

security aspects should be added by applying

appropriate security services at each layer. Tang &

Shen (2009) studied how classical Model Driven

Architecture framework can be extended to consider

the security aspect which helps to identify security

flaws early in the software development process.

Health software often operates in very complex

environments. On the one hand, health software runs

in a highly heterogenous software landscape in a

hospital, which often involves many other software

systems. But on the other hand, health software may

also need to connect and communicate with

(implanted) medical devices. For instance, software

for programming a cochlear implant communicates

with a Hospital Information Management System

(HIMS) and the implant itself. Furthermore, there

may also be the need to communicate with a back-end

server system in cloud. Security in such an

environment has many different facets: privacy,

access control, communication security, etc. Some of

these facets even vary from country to country due to

regulatory requirements that software manufacturers

have to comply with. Recently, such regulations were

more pushed towards cybersecurity (FDA, 2014),

which highlights the need for secure medical devices.

If security controls to tackle these facets are spread

over the code, complexity increases, and it becomes

very hard to comply with current regulations.

3.2 Domain-Driven Design

Domain-driven design (Evans, 2003; Millett & Tune,

2015) provides a well-established framework to

design and build the business logic in hexagonal

architectures that are discussed in the next section.

The goal of DDD is to align software artefacts, such

as design, code, and documentation, with the business

domain which the software aims to solve. This results

in several interesting advantages. First, it enables

software companies to respond very fast to changing

requirements, which usually happen due to changes in

the business domain. Second, it allows for a

collaborative engineering process which may even

involve domain experts, thereby reducing the chance

of developing into wrong directions, resulting in high

costs and unsatisfied users. Third, DDD puts the focus

on what is essential to the user and its core needs,

thereby leading to a successful product.

DDD basically distinguishes two spaces: the

problem space, and the solution space. The problem

space abstractly models the underlying business

domain, with all its processes and dynamics. Here, the

domain experts carry all the knowledge about these

processes. The solution space, corresponding to the

software artefacts, shall solve or assist, the processes

of the problem space. Developers, working on the

solution space, need to get to the domain knowledge

of the experts, which is done in so-called “knowledge

crunching sessions”. To prevent misunderstandings in

such sessions, developers and experts agree on a

common language, also referred to as ubiquitous

language. This language is more than a glossary, as it

also defines the names of coding artefacts (e.g., class

names), which allows for interactive engineering

sessions with experts. Following such an approach

directly without any further considerations leads in

many cases to one problem: What happens if different

experts use the same vocabulary to describe their

domain?

For example, let us assume that a software

company needs to deliver a solution which assists an

online warehouse. Suppose that during a knowledge

crunching session a sales person talks about an order

item. The sales department characterizes an order

item by its price, article name, etc. However, if a

shipping person talks about an order item, it only

cares about the weight or size. From a coding point of

view, even though they correspond to the same

physical item, these persons are talking essentially

about different things. This ambiguity motivates

bounded contexts, one of the most important concepts

in DDD. Bounded contexts introduce boundaries for

terms of the ubiquitous language to prevent ambiguity

in software artefacts. More specifically, the solution

space is broken down into several bounded contexts,

272___Proceedings of the Central European Conference on Information and Intelligent Systems

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

each solving one (or several) sub-domains in a highly

cohesive manner without any linguistic ambiguity.

Health software tremendously benefits from

applying techniques from DDD, due to several

reasons. Processes in hospitals tend to be very

complicated, and often involve a lot of people with

different roles and responsibilities. Keeping the

software artefacts as close as possible to the real-

world domain processes of the hospital ensures that

the software really helps its users and does not lead to

dissatisfaction due to failing knowledge logistics. We

interpret this as meaning that all necessary

information is present to the correct user at the right

time in the most accurate form. This is not only

important for the health software provider to be

successful, it is also of high relevance to the hospital.

We feel strongly that applying techniques from DDD

may efficiently reduce waiting times for patients, and

medical errors and adverse events because of a lack of

information sharing.

Dividing the business logic, or domain, into

several bounded contexts is also interesting from an

architectural point of view in hexagonal architectures.

The business logic defines in a hexagonal architecture

via ports how it wants to communicate with the

environment. Therefore, because a bounded context

solves one or several sub-domains, it comprises

together with the implementing adapters of the ports it

defines, a full aspect of the complete system. Observe

that this leads to independence: if companies structure

their teams cross-functionally according to bounded

contexts, then teams may evolve the overall software

product independently. Furthermore, teams can

develop each bounded context in an incremental way,

which means that they introduce new software

artefacts user story by user story rather than designing

the whole system at the very beginning.

3.3 Hexagonal Architectures

Hexagonal architectures (also known as ports and

adapters architectures) provide an alternative way of

tackling the complexity of software solutions. Such

architectures follow a very simple idea: settle the

business logic/domain at the core of your application

and let the environment depend on it. More precisely,

the domain itself does not depend on surrounding

aspects or components (e.g., database, user interface,

security, etc.), it only defines in terms of interfaces

(also referred to as ports) how it wants to

communicate with the outside world. Surrounding

components implement these ports (also referred to as

adapters), thereby providing the missing functionality

which the domain relies on.

For example, consider a software product for a

radiology department of a hospital. Such software is

intended to support various processes, including the

diagnosis of patients, or the management of medical

x-ray images. When the software follows a hexagonal

architecture, the core of the application (i.e., the

domain component) implements these domain

processes. Observe that some processes will need to

communicate with the HIMS, for instance to send the

diagnosis of a patient to the HIMS. In a hexagonal

architecture, domain components define a port (e.g., a

HIMS port) which an environment component (e.g., a

HIMS communication component) shall implement

(see Fig. 2). An instance of this implementation (i.e.,

an adapter for this port) is passed to the domain

component during start-up of the application, thereby

providing the missing functionality to the domain

component. As shown in Fig. 2, the radiology domain

component which implements domain specific logic

for a radiology is independent, and it defines in terms

of ports (e.g., IRepositoryPort, IHIMSPort, and

ILoggingPort) how it needs to communicate with the

environment.

Observe that such an approach allows to easily

exchange the environment of a domain component.

For example, if the HIMS provider changes, then

developers just need to exchange the HIMS

communication component of the system rather than

re-implementing several components of the

application. Similarly, if the database provider

changes, then database engineers simply need to

implement a new persistence component. Again, the

domain component will not be affected by such

changes. Importantly, the same principles also apply

to the user interface of an application. More precisely,

because the domain component does not depend on

the user interface, manufacturers can develop a

completely user interface on top of an existing

domain component without even touching it. We

illustrate this fact in Fig. 2 by the component “User

Interface V2.0”, which simply reuses existing domain

logic which the workflow service

“XrayDiagnosisService” in the “Radiology Domain”

component already implements. Observe that no

further modifications are necessary to implement a

new user interface.

A full list of environment components of the

radiology software product’s hexagonal architecture

illustrated in Fig. 2 lies beyond the scope of this

paper. As stated in Section 3.1, health software

operates in a very complex environment. This

environment includes other systems within a hospital

(to which the software ultimately has to talk to),

databases, audit logs, archiving, and potentially also

embedded devices, or medical devices in general.

Furthermore, at each interface between systems,

different communication standards may apply (e.g.,

HL7, DICOM, etc). One way to prevent that such

complex environments diffuse into the business logic

of health software is to follow a hexagonal

architecture. This ensures that business logic stays

very clean, and the environment is strictly separated

from it.

Proceedings of the Central European Conference on Information and Intelligent Systems___273

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

cmp Hexagonal architecture

Radiology Domain

User Interface V1.0

Persistence Logging

«interface»

Radiology Domain::

IRepositoryPort

«interface»

Radiology Domain::

ILoggingPort

«interface»

Radiology Domain::

IHIMSPort

HIMSCommunicationComponent

Persistence::

RepositoryAdapter

Logging::

LoggingAdapter

HIMSCommunicationComponent::

HIMSAdapter

«interface»

Radiology Domain::

IXrayDiagnosisService

Domain::

XrayDiagnosisService

User Interface V1.0::

XrayDiagnosisView

User Interface V2.0

UserInterface V2.0::

XrayDiagnosisView

Figure 2. Schematic illustration of a radiology software product which follows a hexagonal architecture. Further

environment components are necessary to comprise a full radiology information system.

3.4 Security in DDD and Hexagonal

Architectures

Having one team which incrementally develops one

bounded context is very beneficial from a security

point of view. Since the development team knows

best about the security considerations (due to

knowledge crunching sessions with the domain

experts) in a given sub-domain they can abstract

security controls as ports in the bounded context and

implement them in a dedicated security assembly.

From an architectural point of view such an approach

has several advantages since it leads to isolation of

security controls:

1. Security controls grow and evolve together with

the bounded context which they support, thereby

explicitly allowing for incremental changes as

requirements (may) change.

2. Security controls are easily testable due to their

high isolation. In our opinion, testing security

controls of software which does not isolate

security controls properly can be very tedious,

time consuming, and error-prone, leading to

insecure products. Furthermore, since health

software often also has to communicate with

embedded devices, it also provides a great way to

test security controls protecting communications

with such medical devices, since those can easily

be simulated by implementing ports of the

bounded context.

3. If bugs concerning security are discovered,

developers can fix them quickly by just modifying

the affected security assembly. This is a huge

advantage from a regulatory point of view, since it

minimizes the effort of verification testing and re-

validation of the parts of the health software that

have been affected by the software maintenance.

In case of detected errors that can have an impact

on safety and/or security, this approach ensures

timely security patches and updates, also enforced

by regulations (IEC 82304-1: Health software –

Part 1: General requirements for product safety,

2016). For former architectural approaches, such

fixes have triggered a tremendous amount of

retesting and regression testing, thereby slowing

down the rollout and response time of the bug fix.

4. Because not all countries have the same

regulations regarding security (and their controls)

of health software, security assemblies offer a

great opportunity to comply with different

regulations from various countries without

274___Proceedings of the Central European Conference on Information and Intelligent Systems

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

affecting domain assemblies carrying business

logic at all.

5. Secure code reviews, security audits and

penetration tests, either conducted internally or

even externally by security consultants or

providers, get vast more efficient, since the focus

and scope of the security review narrows down to

a single dedicated security assembly for a bounded

context.

We highlight that this in stark contrast to former

architectural styles which were state of the art in

previous decades like e.g. layered architectures, where

security controls often spread over different

assemblies. Therefore, their testing, as well as their

evolvement over time or reviewability always

appeared in a very constrained way, and was not

solely concerning a single dedicated assembly, which

slowed down the development and review processes.

We illustrate these benefits by providing several

examples.

Suppose that a hospital wants to restrict the editing

of patient data to physicians only. Such a requirement

may emerge from a hospital directly, but also from

regulations. For that purpose, the hospital offers an

internal web service which allows to query the

internal employee directory. To support this

requirement, the developers abstract this security

check by introducing a port in the bounded context for

patient management and implement the check in a

new security component. In this component they

connect to the internal web service, query for the

logged in user, and check whether it is a physician or

not. Observe that in such a case the implementation of

the bounded context is free from this environmental

detail (i.e., how the security control is implemented).

Furthermore, if this requirement changes, developers

can easily exchange this security control since it

affects only the security component, but not the

bounded context implementation.

Another example is the protection of sensitive

patient data. For example, suppose that some

information of a patient (e.g., personally identifiable

information, medical data, etc.) needs to be encrypted

and authenticated (by law), but some does not.

Usually, such diverse data comes from different

bounded contexts, which implies that different teams

are responsible for it. Therefore, the teams can

independently apply different techniques to each

bounded context independently in the respective

security components to protect their data. For

example, sensitive patient data like personal

information or protected health information will

require strong encryption, authentication, and

authorization whereas non-sensitive data may only

require a valid authorization of the user of the system.

As Fig. 3 illustrates, the patient management

bounded context implements an update method for

patients. This update method is a pure domain

implementation, which enforces all the business

constraints which apply to a patient object. The

security controls which relate to updating a patient are

implemented in the patient management security

component, which accesses the internal web service

of the hospital to check whether the employee is a

physician, but also implements the proper patient

protection techniques like e.g. encryption and

authentication. In addition, also pseudo-

anonymization or full anonymization can be

implemented in a straightforward and easy manner.

Finally, the patient repository stores the protected

patient object. Observe that in such a case, not even

database administrators will have access to patient

data, which is in contrast to many other business

areas. This ensures the privacy of data throughout its

lifetime. Such access is granted only to users of the

medical application, particularly those users who

really need and are allowed to see it.

Also, the security of user interfaces and services,

also referred to as front-ends, for bounded contexts is

isolated. Recall that a bounded context

implementation is independent of all other concerns

and can function in isolation. Particularly, it does not

depend on the front-end which visualizes or provides

access to the domain information. In such a case, if

we deliver the bounded context (e.g., as a web page or

a web API), then we can also build the security of the

front-end into this component (including, e.g., the

validation of input data, communication security by

using HTTPS, etc.) without the need to modify or

change the bounded context implementation.

Interestingly, the bounded context does not even

know about this issue, since it has no knowledge

about the front-end at all. This also explicitly enables

for a simple exchange of front-ends and their security

controls as demands change over time.

Health software often needs to communicate with

embedded or even implanted medical devices. In this

light, our approach using hexagonal architecture with

an isolation of security controls in dedicated

assemblies provides a clean way to mitigate security

risks concerning the interface to such medical

devices: The business logic concerning the medical

device stays clean in the bounded context

implementation. However, the code implementing the

communication itself, as well as its security controls,

is developed in an isolated, dedicated assembly.

We finally highlight that an architectural approach

with independent bounded contexts also leads to fast

security incident response times. Precisely, in case of

a security breach, development teams easily identify

the affected bounded contexts where the breach

happened. Due to the isolation of security controls in

a dedicated security component it enables them to

quickly change and fix the inappropriate security

controls.

Proceedings of the Central European Conference on Information and Intelligent Systems___275

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

cmp Secure Hexagonal Architecture

Patient Management

Patient Management User Interface

Patient Management Persistence Patient Management Security Component

Treatment

Patient Management::Patient

+ Update(String): void

Patient Management::

PatientApplicatinService

«interface»

Patient

Management::

IPatientRepository

«interface»

Patient Management::

IEmployeeVerifcationService

Patient Management

Persistence::

PatientRepository

Patient Management

Security Component::

EmployeeVerificationService

Patient Management User Interface::

PatientView

«interface»

Patient Management::

IPatientApplicationService

Internal Web Service

Treatment

Persistence
Treatment Security

Component

«interface»

Patient

Management::

IPatientProtection

Patient Management

Security Component::

PatientProtection

Treatment::TreatmentService

+ TreatPatient(int, int, int): void

«interface»

Treatment::

IVerifyMedication

«interface»

Treatment::

ITreatmentRepository

Diagnostic

Persistence::

DiagnosisRepository

Diagnostic Security

Component::

VerifyMedication

Treatment User Interface

«interface»

Treatment::

IVerifyAuthorization

Treatment Security

Component::

VerifyAuthorization

Authorization Service

«use» «use»
«use»

«use»

«use»«use»

Figure 3. Schematic illustration of security aspects in hexagonal architectures using DDD

4 Agile Practices for Secure

Architecture of Health Software

From a business perspective, it is believed that

adopting agile practices contributes to the continuous

delivery of business value and reduces the risk of

developing health software of poor quality. In general,

software architectures should meet the requirements,

anticipate future user needs, and be able to

incorporate new technologies. Furthermore, software

architectures should be easy to understand and

implement by development teams. Designing

software architectures is a complex, creative, and

challenging process that requires highly collaborative

and self-organizing teams. Designing a secure,

change-tolerant architecture of health software is even

more challenging. This paper explores which agile

practices can be applied to support design of a secure

architecture of health software. The agile practices

were chosen based on our experience and literature

research in Section 2. We believe that these practices

could be used for any software development project,

not only health software.

4.1 Collaboration with Key Stakeholders

Health software projects can benefit from continuous

communication and collaboration with stakeholders.

The key stakeholders may include end users, patients,

domain experts, healthcare facilities and providers,

and manufacturers of medical devices.

Having the domain experts representing the

customers involved throughout the project increases

the likelihood that we build exactly what the

customers want. Close collaboration with the

276___Proceedings of the Central European Conference on Information and Intelligent Systems

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

stakeholders and domain experts is the key to success

of a software product when developing according to

DDD. This is because all software artefacts, including

source code and design documentation, shall

abstractly align with and solve the problem domain,

and even use the terms and words stemming from the

ubiquitous language. But how do we get there? How

do development teams achieve this goal?

DDD introduces for this so-called knowledge

crunching (Evans, 2003), where developers and

architects work out together with domain experts and

stakeholders what the software should solve. In other

words, during such sessions the development teams

explore the problem domain in-depth, trying to

understand how the domain works, and what really

matters to a domain expert. On the one hand, this

reveals crucial insights into the dynamic processes of

the domain, and on the other hand it establishes a

common language which both parties understand. The

outcome of such knowledge crunching sessions are

often user stories, which the developers finally

implement. When focusing on security in such

sessions, and the software architecture is hexagonal,

the developers and stakeholders can distil which parts

of an implementation or design naturally belong to the

domain, and which do not. This ultimately allows for

an isolation of certain security controls in dedicated

security components.

4.2 Security-related User Stories

Agile teams rely on a prioritized product backlog that

contains functional and non-functional user stories

and any other items that might be needed in the final

product.

According to Cohn (2010), a user story represents

a short, simple description of a feature from the user’s

perspective. User stories have three main parts: 1)

who is the user, 2) what is the story about, and 3)

what is the desired benefit of doing it. The first point

gives a hint to which bounded context the user story

may belong. For example, when talking to hospital

administrative staff dealing with patient admissions,

the user story most probably describes a process in the

administration context of a hospital. The second point

tells what is happening in the domain, and therefore

also what the software shall support. Finally, the third

point describes what is the value which we provide to

our customer. Observe that a user story essentially

describes the domain, however, also the environment

needs be considered when implementing a user story.

More specifically, when implementing a user story in

hexagonal architecture, development teams also must

implement the environmental components

(persistence, user interface, security, etc.) which the

bounded context relies on. In addition, it is important

to ask questions concerning the security and privacy

of the data or workflows being handled by the user

story. This leads directly to security-related user

stories, which are some sort “attached” to user stories

of the domain itself. Similarly, SAFECode

(SAFECode: Practical Security Stories and Security

Tasks for Agile Development Environments, 2012)

developed a list of 36 security-focused stories that can

be implemented by agile practitioners “as is” and

incorporated into the development process.

4.3 Iterative and Incremental Approach

Waterfall and other early software development life

cycle models apply several development phases in a

sequential manner, which do not immediately allow to

develop a product incrementally. In contrast, agile

methodologies explicitly apply an incremental and

iterative approach, which is very often driven by user

stories, especially in the context of DDD.

Specifically, at the start of a development iteration,

the development team of a bounded context selects

(security-related) user stories one-by-one. When

choosing a user story, the team and the architect

design and implement the user story, which may also

require redesign and refactoring of existing software

artefacts. However, this additional effort ensures that

the bounded context implementation reflects the

current domain structure and its dynamics properly, as

every user story carries essentially domain

knowledge. Furthermore, each user story extends the

knowledge a developer or architect has about the

domain, which very often leads to new insights into

how the domain is structured and works. Note that

such insights may also trigger refactoring effort to

reflect the new knowledge, sometimes referred to as

“refactoring towards deeper insight” (Evans, 2003).

More importantly, this does not only lead to an

incremental development of the software (specifically

bounded each context). It also enables for an

incremental and isolated development of security

controls. We clarify these circumstances as follows:

by removing security considerations from a bounded

context implementation (which at the very end shall

only implement business logic), and by implementing

such non-functional details (for software which does

not primarily belong to a security domain) in

environmental components of a bounded context, we

have isolated (almost all) security controls of a

software product into dedicated security control

components, see also Section 3. Since each bounded

context is owned by one team and implemented story-

by-story, and each story may require (some) security

controls, the teams develop security controls

incrementally. In summary, this results in many

advantages from a stakeholder’s and architect’s point

of view: 1) stakeholders can intervein if the software

product evolves into an undesirable or unwanted way,

2) if changes in the business domain occur, such

changes easily translate into new user stories, which

require less development effort since design and

implementation is done incrementally anyway and

existing artefacts abstractly align with the problem

domain, 3) security controls can easily be changed

Proceedings of the Central European Conference on Information and Intelligent Systems___277

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

without affecting the system as a whole, but they can

also be tested (since they reside within dedicated

components) in a straightforward and simple way, and

4) the software design and security, from an

architect’s point of view, grows iteratively and

changes as new user stories emerge, which leads to a

design which is very robust to changes stemming

from the business domain.

The concept of Mob Programming has been

introduced at Hunter Industries in 2011. This

relatively new agile practice has gained increased

attention from developers. While pair programming

focuses on two people, Mob Programming considers

the whole team. Regular Mob Programming sessions

on a weekly (at the beginning of a project) or monthly

basis help the team increase their code quality since

every team member understands the structure, i.e. the

design, of the code base. Additionally, these sessions

have a positive impact on implementation of security

controls because everyone in team knows where and

how the controls are implemented.

4.4 Minimum Viable Architecture

Every software project that delivers only parts of what

is needed, slowly, and with poor quality and security

is costing companies and customers money. Building

a minimum viable architecture allows to adapt to

changes through a fast feedback look. Besides that, it

reduces scope creep and prevents gold plating. Poort

(2014) points out that agility can be achieved by

keeping the architecture lightweight, addressing only

those concerns that are especially risky or costly.

Considering that the architecture should also support

subsequent product releases, developing anything in

addition to the capabilities needed increases the costs

and complexity of the final software product.

It is thought that the minimum viable architecture

ensures that only architectural work is done that is

necessary and adds value rather than creating a

complete architecture up front where even a small

change may trigger a complete redeployment. Lean

architecture is characterized by a focus on change,

lightweight documentation, people, collective

planning and cooperation, and end user mental model

(Coplien & Bjørnvig, 2010). While classic software

architecture includes much implementation (e.g.,

platforms, libraries) or only the documentation,

Coplien & Bjørnvig (2010) highlight that lean

architecture defers implementation and delivers

lightweight APIs and descriptions of relationships.

When developing health software, lean architecture

must consider factors affecting patient health and

safety such as security and privacy.

4.5 Architecture Planning

A software architect is expected to wear many hats.

Leffingwell (2011) compared the architect’s

responsibilities in a pre-agile and agile context and

found out that architect’s responsibility shifted to a

more collaborative role supporting agile teams.

DDD requires a very close relationship between

domain experts on the hand, and developers and

architects on the other hand. When we follow the idea

of having one development team per bounded context,

or one team being responsible for several bounded

context, this leads to a broad range of responsibilities

of an architect (we just highlight some of them). The

architect is responsible for: 1) designing together with

development teams bounded contexts, 2) defining the

ports of a bounded context to the environment, 3)

determining the boundaries of a bounded context, 4)

interfacing with key stakeholders in the domain, and

5) making sure that different bounded contexts

integrate well and work together to ultimately

comprise the overall system. Especially the last

responsibility is of high relevance, as it considers the

architecture of the whole system, not solely the design

of components or the software solution. It is important

to bear in mind that security and privacy of health

software must be always considered in the context of

the larger system where the software is intended to be

used.

For architecture planning purposes we suggest

introducing one short iteration/sprint at the begin of

the project. Afterwards architecture discussions can

be continued in regular design meetings and/or as a

part of the sprint planning meetings in Scrum.

4.6 Architecture Review

Health software that is secure by design assumes that

security is addressed throughout the entire product life

cycle including the initiation, design, development,

production, distribution, installation, clinical use,

maintenance, decommissioning, and disposal. To

decrease the risk that something has been overlooked,

we suggest reviewing architecture of health software

on a regular basis. Such reviews could be scheduled

separately or integrated into regular sprint planning

meetings in Scrum. Architecture reviews should

ensure that the following security topics have been

discussed and properly addressed: security and

privacy requirements, security-related user stories and

their implementation, security controls, ability of the

architecture to support software and critical security

updates/patches, integration and secure execution of

potentially malicious third-party libraries into health

software, encryption of sensitive data, no use of a

broken cryptographic algorithm, secure data transfer

channels, controlled use of cloud services, etc.

4.7 Architecture Retrospective

Architecture retrospective is derived from the sprint

retrospective meeting in Scrum. The purpose of the

retrospective meeting is to reflect and improve the

architecture of health software. We recommend

having architecture retrospective meeting once a

278___Proceedings of the Central European Conference on Information and Intelligent Systems

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

month. During this meeting the team should answer

the following three questions: 1) what worked well?

(provide examples of great collaboration over the

month), 2) what did not work well? (focus on what

the team can change), and 3) what can be improved?

(focus on maximum three items for the next month).

5 Conclusion and Outlook

Advancements in technology have led to a new

generation of networked and interconnected medical

devices. Such devices open up a new threat landscape

and may be vulnerable to cyber-attacks. A reasonable

approach to tackle this issue could be security by

design where security is built into the development

process from the start. This is necessary to reduce the

risks that may adversely impact device functionality

or delay the delivery of patient care, and lead to

patient harm. As more and more companies develop

health software with shorter delivery cycles using

agile approaches, our research was focused on

hexagonal architecture, DDD, and agile practices

which could be used to develop products that are

secure by design.

We have shown in this paper one possible way to

develop health software which is secure by design.

We used hexagonal architectures and DDD, which

leads to an isolation of business logic (into bounded

contexts) and environmental concerns in software

applications. This paper has demonstrated, for the first

time, that clear separation between business logic and

environment can be directly exploited to isolate the

implementation of security controls for specific

bounded contexts into dedicated security components.

This in turn together with a set of agile practices

enables for a very tight control of the planning,

design, and implementation of security controls.

Furthermore, it allows to test, review, analyse or even

audit such dedicated security components in a

rigorous, independent manner. Finally, Mob

Programming sessions on a regular basis for each

team implementing a bounded context and its

environment synchronize all team members, and

make them aware of the choices, implementations,

and designs of security controls.

It would be interesting to apply SAFECode’s

security-focused stories on health software projects

and to determine which stories support security

architecture. Another possible area of future research

would be to investigate further how well health

software following our approach combines with

embedded systems and if it is straightforward to

extend the ideas of this work also to such constrained,

small scale systems. Furthermore, it would be

interesting to enhance the ideas also to cloud-based

technologies and deployments. Finally, it remains an

open question, whether there exist other agile

techniques which enable for a tight control of the

design and implementation of dedicated security

components.

Disclaimer

The views and opinions expressed in this paper are

those of the individual authors and do not represent

the approach, policy, or endorsement of the

organization that is currently affiliated with the

authors.

References

Alibasa, M. J., Santos, M. R., Glozier, N., Harvey, S.

B., & Calvo, R. A. (2017). Designing a Secure

Architecture for m-Health Applications. In

Proceedings of the 2017 IEEE Life Sciences

Conference (LSC) (pp. 91–94). Sydney, Australia.

Asokan, N., Nyman, T., Rattanavipanon, N., Sadeghi,

A.-R., & Tsudik, G. (2018). ASSURED:

Architecture for Secure Software Update of

Realistic Embedded Devices. IEEE Transactions

on Computer-Aided Design of Integrated Circuits

and Systems, 37(11), 2290–2300.

Babar, M. A. (2009). An Exploratory Study of

Architectural Practices and Challenges in Using

Agile Software Development Approaches. In

Proceedings of the 2009 Joint Working IEEE/IFIP

Conference on Software Architecture & European

Conference on Software Architecture (pp. 81–90).

Cambridge, UK.

Chivers, H., Paige, R. F., & Ge, X. (2005). Agile

Security Using an Incremental Security

Architecture. In Proceedings of the 6th

international conference on Extreme Programming

and Agile Processes in Software Engineering (XP

2005) (pp. 57–65). Sheffield, UK.

Cohn, M. (2010). Succeeding with Agile: Software

Development Using Scrum. An Arbor: Addison-

Wesley.

CollabNet VersionOne: The 12th Annual State of

AgileTM Report. (2018). Retrieved from

https://explore.versionone.com/state-of-

agile/versionone-12th-annual-state-of-agile-report

Coplien, J. O., & Bjørnvig, G. (2010). Lean

Architecture: for Agile Software Development.

Chichester: John Wiley & Sons.

Derdoura, M., Altib, A., Gasmia, M., & Roosec, P.

(2015). Security architecture metamodel for

Model Driven security. Journal of Innovation in

Digital Ecosystems, 2(1–2), 55–70.

Proceedings of the Central European Conference on Information and Intelligent Systems___279

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

Evans, E. (2003). Domain-Driven Design: Tackling

Complexity in the Heart of Software. Boston:

Addison-Wesley Professional.

FDA. (2014). Content of Premarket Submissions for

Management of Cybersecurity in Medical

Devices.

Fernandez, E. B., Fonoage, M., VanHilst, M., &

Marta, M. (2008). The Secure Three-Tier

Architecture Pattern. In Proceedings of the 2008

International Conference on Complex, Intelligent

and Software Intensive Systems (pp. 555–560).

Barcelona, Spain. doi:10.1109/CISIS.2008.51

Fontdevila, D., & Salías, M. (2013). Software

Architecture in the Agile Life Cycle. ACSIJ

Advances in Computer Science: an International

Journal, 2(1), 48–52.

Freeform Dynamics: Integrating Security Into the

DNA of Your Software Lifecycle. (2018).

Hadar, I., & Sherman, S. (2012). Agile vs. Plan-

Driven Perceptions of Software Architecture. In

Proceedings of the 5th International Workshop on

Co-operative and Human Aspects of Software

Engineering (pp. 50–55). Zurich, Switzerland.

Harkins, M. W. (2016). Managing Risk and

Information Security: Protect to Enable (Second

Edi.). Berkeley: ApressOpen.

Houser, W. (2014). Static Analysis is not enough: The

Role of Architecture and Design in Software

Assurance. CrossTalk, The Journal of Defense

Software Engineering, 27(6), 27–32.

IEC 82304-1: Health software – Part 1: General

requirements for product safety. (2016).

Isham, M. (2008). Agile Architecture IS Possible –

You First Have to Believe!. In Proceedings of the

Agile 2008 Conference (pp. 484–489). Toronto,

Canada. doi:10.1109/Agile.2008.16

Leffingwell, D. (2011). Agile Software Requirements:

Lean Requirements Practices for Teams,

Programs, and the Enterprise. Westford: Addison-

Wesley.

Manifesto for Agile Software Development. (2001).

Retrieved from http://agilemanifesto.org/

McGraw, G. (2006). Software Security: Building

Security In. Crawfordsville: Addison-Wesley.

Mekni, M., Buddhavarapu, G., Chinthapatla, S., &

Gangula, M. (2018). Software Architectural

Design in Agile Environments. Journal of

Computer and Communications, 6, 171–189.

Millett, S., & Tune, N. (2015). Patterns, Principles,

and Practices of Domain-Driven Design.

Indianapolis: John Wiley & Sons.

Moriconi, M., Qian, X., Riemenschneider, R. A., &

Gong, L. (1997). Secure Software Architectures.

In Proceedings of the 1997 IEEE Symposium on

Security and Privacy (pp. 84–93). Oakland, USA.

Nord, R. L., Ozkaya, I., & Sangwan, R. S., (2012).

Making Architecture Visible to Improve Flow

Management in Lean Software Development.

IEEE Software. 29(5), 33–39.

Pauli, J. J., & Xu, D. (2005). Misuse Case-Based

Design and Analysis of Secure Software

Architecture. In Proceedings of the International

Conference on Information Technology: Coding

and Computing (ITCC’05) - Volume II (pp. 398–

403). Las Vegas, USA.

Pedraza-Garcia, G., Astudillo, H. & Correal, D.

(2014). A Methodological Approach to Apply

Security Tactics in Software Architecture Design.

In Proceedings of the 2014 IEEE Colombian

Conference on Communications and Computing

(COLCOM) (pp. 1–8). Bogota, Colombia.

Poort, E. R. (2014). Driving Agile Architecting with

Cost and Risk. IEEE Software, 31(5), 20–23.

SAFECode: Practical Security Stories and Security

Tasks for Agile Development Environments.

(2012). Retrieved from

https://safecode.org/publication/SAFECode_Agile

_Dev_Security0712.pdf

Santos, J. C. S., Tarrit, K., & Mirakhorli, M. (2017).

A Catalog of Security Architecture Weaknesses.

In Proceedings of the 2017 IEEE International

Conference on Software Architecture Workshops

(ICSAW) (pp. 220–223). Gothenburg, Sweden.

Sharma, A., Kumar, M., & Agarwal, S. (2015). A

Complete Survey on Software Architectural Styles

and Patterns. Procedia Computer Science, 70, 16–

28.

Sturtevant, D. (2018). Modular Architectures Make

You Agile in the Long Run. IEEE Software,

35(1), 104–108.

Tang, X., & Shen, B. (2009). Extending Model

Driven Architecture with Software Security

Assessment. In Proceedings of the 2009 Third

IEEE International Conference on Secure

Software Integration and Reliability Improvement

(pp. 436–441). Shanghai, China.

Vai, M., Nahill, B., Kramer, J., Geis, M., Utin, D.,

Whelihan, D., & Khazan, R. (2015). Secure

Architecture for Embedded Systems. In

Proceedings of the 2015 IEEE High Performance

Extreme Computing Conference (HPEC) (pp. 1–

5). Waltham, USA.

Waterman, M. (2018). Agility, Risk, and Uncertainty,

Part 1: Designing an Agile Architecture. IEEE

Software, 35(2), 99–101.

Woods, E. (2015). Aligning Architecture Work with

Agile Teams. IEEE Software, 32(5), 24–26.

280___Proceedings of the Central European Conference on Information and Intelligent Systems

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

