
Model-Based Testing with TorXakis
The Mysteries of Dropbox Revisited

Jan Tretmans∗

ESI (TNO), Eindhoven (NL)
Radboud University, Nijmegen (NL)

Halmstad University (S)
jan.tretmans@tno.nl

Piërre van de Laar
ESI (TNO)
Eindhoven

The Netherlands
pierre.vandelaar@tno.nl

Abstract. Model-based testing is one of the promising
technologies to increase the efficiency and effectiveness
of software testing. This paper discusses model-based
testing in general, it presents the model-based testing
tool TORXAKIS, and it shows how TORXAKIS was ap-
plied to test a file synchronization system, Dropbox, re-
visiting an experiment presented in (Hughes, Pierce,
Arts, & Norell, 2016).

Keywords. software testing, model-based testing,
modelling, test tool.

1 Introduction
Software quality is a matter of increasing importance
and growing concern. Systematic testing plays an im-
portant role in the quest for improved quality and reli-
ability of software systems. Software testing, however,
is often an error-prone, expensive, and time-consuming
process. Estimates are that testing consumes 30-50%
of the total software development costs. The tendency
is that the effort spent on testing is still increasing due
to the continuing quest for better software quality, and
the ever growing size and complexity of systems. The
situation is aggravated by the fact that the complex-
ity of testing tends to grow faster than the complex-
ity of the systems being tested, in the worst case even
exponentially. Whereas development and construction
methods for software allow the building of ever larger
and more complex systems, there is a real danger that
testing methods cannot keep pace with these construc-
tion and development methods. This may seriously
hamper the development and testing of future gener-
ations of software systems.

Model-Based Testing (MBT) is one of the technolo-
gies to meet the challenges imposed on software test-
ing. With MBT a System Under Test (SUT) is tested
against an abstract model of its required behaviour.
The main virtue of model-based testing is that it al-
lows test automation that goes well beyond the mere
automatic execution of manually crafted test cases. It

∗This work has been supported by NWO-TTW project 13859:
SUMBAT – Supersizing Model-Based Testing.

allows for the algorithmic generation of large amounts
of test cases, including test oracles for the expected re-
sults, completely automatically from the model of re-
quired behaviour.

In this paper we first discuss model-based testing in
general. Secondly, we present our model-based test-
ing tool TORXAKIS, while touching upon some of
its underlying theories such as the ioco-testing the-
ory for labelled transition systems (Tretmans, 2008).
Thirdly, we show the application of TORXAKIS to
model-based testing of the file-synchronization service
Dropbox. The first two parts repeat large parts of
(Tretmans, 2017); the latter part builds on (Hughes
et al., 2016): "Mysteries of Dropbox – Property-
Based Testing of a Distributed Synchronization Ser-
vice", where model-based testing with the tool Quviq
QuickCheck (Claessen & Hughes, 2000; Arts, Hughes,
Johansson, & Wiger, 2006) is applied for testing Drop-
box. It is our initial response to the challenge posed
in that paper: "It would be interesting to try to reframe
[Quviq QuickCheck’s testing of Dropbox] in terms of
ioco concepts." It is not the aim of this paper to present
a completely formal treatment, nor to give a fully sci-
entific account of model-based testing, nor to give defi-
nitions or algorithms – we refer to the literature for this
– but we will show how a model of Dropbox can be
developed for TORXAKIS, and how this model is used
to test a distributed and non-deterministic system like
Dropbox.

2 Model-Based Testing (MBT)
MBT is a form of black-box testing where a System
Under Test (SUT) is tested against an abstract model of
its required behaviour. The model specifies, in a for-
mal way, what the system shall do, and it is the basis
for the algorithmic generation of test cases and for the
evaluation of test results. The model is prescriptive: it
prescribes which inputs the SUT shall accept and which
outputs the SUT shall produce in response to those in-
puts, as opposed to descriptive models as used in, e.g.,
simulation.

The main virtue of model-based testing is that it al-

Proceedings of the Central European Conference on Information and Intelligent Systems___247

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

lows test automation that goes well beyond the mere
automatic execution of manually crafted test cases. It
allows for the algorithmic generation of large amounts
of test cases, including their expected results, com-
pletely automatically and correctly from the model of
required behaviour.

From an industrial perspective, model-based testing
is a promising approach to detect more bugs faster and
cheaper. The current state of practice is that test au-
tomation mainly concentrates on the automatic execu-
tion of tests, but that the problem of test generation is
not addressed. Model-based testing aims at automati-
cally generating high-quality test suites from models,
thus complementing automatic test execution.

From an academic perspective, model-based testing
is a formal-methods approach to testing that comple-
ments formal verification and model checking. Formal
verification and model checking intend to show that a
system has specified properties by proving that a model
of that system satisfies these properties. Thus, any ver-
ification is only as good as the validity of the model
on which it is based. Model-based testing, on the other
hand, starts with a (verified) model, and then aims at
showing that the real, physical implementation of the
system behaves in compliance with this model. Due to
the inherent limitations of testing, testing can never be
complete: testing can only show the presence of errors,
not their absence (Dijkstra, 1969).

2.1 Benefits of Model-Based Testing

Model-based testing makes it possible to generate tests
automatically, enabling the next step in test automa-
tion. It makes it possible to generate more, longer, and
more diversified test cases with less effort, whereas, be-
ing based on sound algorithms, test cases are valid by
construction.

Creating models for MBT usually already leads to
better understanding of system behaviour and require-
ments and to early detection of specification and de-
sign errors. Moreover, constructing models for MBT
paves the way for other model-based methods, such as
model-based analysis, model checking, and simulation,
and it forms the natural connection to model-based sys-
tem development that is becoming an important driving
force in the software industry.

Test suite maintenance, i.e., adapting test cases when
the system evolves, is an important challenge of any
testing process. In MBT, maintenance of a multitude of
test cases is replaced by maintenance of one model. Fi-
nally, various notions of (model-)coverage can be auto-
matically computed, expressing the level of complete-
ness of testing, and allowing better selection of test
cases.

2.2 Types of Model-Based Testing
There are different kinds of testing, and thus of model-
based testing, depending on the kind of models being
used, the quality aspects being tested, the level of for-
mality involved, the degree of accessibility and observ-
ability of the system being tested, and the kind of sys-
tem being tested.

In this contribution we consider model-based testing
as formal, specification-based, active, black-box, func-
tionality testing of reactive systems. It is testing, be-
cause it involves checking some properties of the SUT
by systematically performing experiments on the real,
running SUT. The kind of properties being checked are
concerned with functionality, i.e., testing whether the
system correctly does what it should do in terms of cor-
rect responses to given stimuli. We do specification-
based, black-box testing, since the externally observ-
able behaviour of the system, seen as a black-box, is
compared with what has been specified. The testing is
active, in the sense that the tester controls and observes
the SUT in an active way by giving stimuli and triggers
to the SUT, and observing its responses, as opposed to
passive testing, or monitoring. Our SUTs are dynamic,
data-intensive, reactive systems. Reactive systems re-
act to external events (stimuli, triggers, inputs) with
output events (responses, actions, outputs). In dynamic
systems, outputs depend on inputs as well as on the sys-
tem state. Data-intensive means that instances of com-
plex data structures are communicated in inputs and
outputs, and that state transitions may involve complex
computations and constraints. Finally, we deal with
formal testing: there is a formal, well-defined theory
underpinning models, SUTs, and correctness of SUTs
with respect to models, which enables formal reason-
ing about soundness and exhaustiveness of generated
test suites.

2.3 Model-Based Testing Challenges
Software is anywhere, and ever more systems depend
on software: software controls, connects, and moni-
tors almost every aspect of systems, be it a car, an air-
plane, a pacemaker, or a refrigerator. Consequently,
overall system quality and reliability are more and
more determined by the quality of the embedded soft-
ware. Typically, such software consists of several mil-
lion lines of code, with complex behavioural control-
flow as well as intricate data structures, with distribu-
tion and a lot of parallelism, having complex and het-
erogeneous interfaces, and controlling diverse, multi-
disciplinary processes. In addition, systems continu-
ously evolve and are composed into larger systems and
systems-of-systems, whereas system components may
come from heterogeneous sources: there can be legacy,
third-party, out-sourced, off-the-shelf, open source, or
newly developed components.

For model-based testing, these trends lead to sev-
eral challenges. First, the size of the systems implies

248___Proceedings of the Central European Conference on Information and Intelligent Systems

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

that making complete models is often infeasible so that
MBT must deal with partial and under-specified mod-
els and abstractions, and that partial knowledge and
uncertainty cannot be avoided. Secondly, the combi-
nation of complicated state-behaviour and intricate in-
put and output-data structures, and their dependencies,
must be supported in modelling. Thirdly, distribution
and parallelism imply that MBT must deal with con-
currency in models, which introduces additional uncer-
tainty and non-determinism. In the fourth place, since
complex systems are built from sub-systems and com-
ponents, and systems themselves are more and more
combined into systems-of-systems, MBT must sup-
port compositionality, i.e., building complex models by
combining simpler models. Lastly, since complexity
leads to an astronomical number of potential test cases,
test selection, i.e., how to select those tests from all
potential test cases that can catch most, and most im-
portant failures, within constraints of testing time and
budget, is a key issue in model-based testing.

In short, to be applicable to testing of modern
software systems, MBT shall support partial models,
under-specification, abstraction, uncertainty, state and
data, concurrency, non-determinism, compositionality,
and test selection. Though several academic and com-
mercial MBT tools exist, there are not that many tools
that support all of these aspects.

3 Model-Based Testing Theory
A theory for model-based testing must, naturally, first
of all define the models that are considered. The mod-
elling formalism determines the kind of properties that
can be specified, and, consequently, the kind of prop-
erties for which test cases can be generated. Secondly,
it must be precisely defined what it means for an SUT
to conform to a model. Conformance can be expressed
using an implementation relation, also called confor-
mance relation (Brinksma, Alderden, Langerak, Lage-
maat, & Tretmans, 1990). Although an SUT is a black
box, we can assume it could be modelled by some
model instance in a domain of implementation models.
This assumption is commonly referred to as the testa-
bility hypothesis, or test assumption (Gaudel, 1995).
The testability hypothesis allows reasoning about SUTs
as if they were formal models, and it makes it possible
to define the implementation relation as a formal re-
lation between the domain of specification models and
the domain of implementation models. Soundness, i.e.,
do all correct SUTs pass, and exhaustiveness, i.e., do all
incorrect SUTs fail, of test suites is defined with respect
to an implementation relation.

In the domain of testing reactive systems there are
two prevailing ‘schools’ of formal model-based test-
ing. The oldest one uses Mealy-machines, also called
finite-state machines (FSM); see (Chow, 1978; Lee &
Yannakakis, 1996; Petrenko, 2001). In this paper we
concentrate on the other one that uses labelled transi-

tion systems (LTS) for modelling. A labelled transition
system is a structure consisting of states with transi-
tions, labelled with actions, between them. The states
model the system states; the labelled transitions model
the actions that a system can perform. Actions can be
inputs, outputs, or internal steps of the system.

Conformance for LTS models is precisely defined
with the ioco-conformance relation (input-output-
conformance) (Tretmans, 1996, 2008). The confor-
mance relation ioco expresses that an SUT conforms
to its specification LTS if the SUT never produces an
output that cannot be produced by the specification in
the same situation, i.e., after the same sequence of ac-
tions. A particular, virtual output is quiescence, actu-
ally expressing the absence of real outputs. Quiescence
corresponds to observing that there is no output of the
SUT, which is observed in practice as a time-out during
which no output from the SUT is observed.

The ioco-conformance relation supports partial
models, under-specification, abstraction, and non-
determinism. An SUT is assumed to be modelled as
an input-enabled LTS (testability hypothesis), that is,
any input to the implementation is accepted in every
state, whereas specifications are not necessarily input-
enabled. Inputs that are not accepted in a specifica-
tion state are considered to be underspecified: no be-
haviour is specified for such inputs, implying that any
behaviour is allowed in the SUT. Models that only
specify behaviour for a small, selected set of inputs
are partial models. Abstraction is supported by mod-
elling actions or activities of systems as internal steps,
without giving any details. Non-deterministic mod-
els may result form such internal steps, from having
transitions from the same state labelled with the same
action, or having states with multiple outputs (output
non-determinism). Non-determinism leads to having
a set of possible outputs after a sequence of actions,
of which an implementation only needs to implement
a (non-empty) subset, thus supporting implementation
freedom.

The ioco-testing theory for LTS provides a test gen-
eration algorithm that was proved to be sound and ex-
haustive, i.e., the (possibly infinitely many) test cases
generated from an LTS model detect all and only ioco-
incorrect implementations. The ioco-testing theory
constitutes, on the one hand, a well-defined theory
of model-based testing, whereas, on the other hand,
it forms the basis for various practical MBT tools,
such as TORX (Belinfante et al., 1999), the AGEDIS
TOOL SET (Hartman & Nagin, 2004), TGV (Jard
& Jéron, 2005), Uppaal-Tron (Hessel et al., 2008),
JTORX (Belinfante, 2010), Axini Test Manager (ATM)
(Axini, 2019), TESTOR (Marsso, Mateescu, & Serwe,
2018), and TORXAKIS (Sect. 4).

Proceedings of the Central European Conference on Information and Intelligent Systems___249

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

4 TORXAKIS Overview
TORXAKIS is an experimental tool for on-line model-
based testing. This section gives a light-weight in-
troduction to and overview of TORXAKIS. Sect. 5
illustrates TORXAKIS with the Dropbox example.
TORXAKIS is freely available under a BSD3 license
(TorXakis, 2019).

4.1 Test Generation
TORXAKIS implements the ioco-testing theory for
labelled transition systems (Tretmans, 1996, 2008).
More precisely, it implements test generation for sym-
bolic transition systems. The ioco-testing theory
mainly deals with the dynamic aspects of system be-
haviour, i.e., with state-based control flow. The static
aspects, such as data structures, their operations, and
their constraints, which are part of almost any real
system, are not covered. Symbolic Transition Sys-
tems (STS) add (infinite) data and data-dependent con-
trol flow, such as guarded transitions, to LTS, founded
on first order logic (Frantzen, Tretmans, & Willemse,
2006). Symbolic ioco (sioco) lifts ioco to the sym-
bolic level. The semantics of STS and sioco is given
directly in terms of LTS; STS and sioco do not add
expressiveness but they provide a way of represent-
ing and manipulating large and infinite transition sys-
tems symbolically. Test generation in TORXAKIS uses
STS following the algorithm of (Frantzen, Tretmans, &
Willemse, 2005).

TORXAKIS is an on-the-fly (on-line) MBT tool
which means that it combines test generation and test
execution: generated test steps are immediately exe-
cuted on the SUT and responses from the SUT are im-
mediately checked and used when calculating the next
step in test generation.

Currently, only random test selection is supported,
i.e., TORXAKIS chooses a random action among the
possible inputs to the SUT in the current state. This in-
volves choosing among the transitions of the STS and
choosing a value from the (infinite, constrained) data
items attached to the transition. The latter involves con-
straint solving.

4.2 Modelling
Labelled transition systems or symbolic transition sys-
tems form a well-defined semantic basis for modelling
and model-based testing, but they are not directly suit-
able for writing down models explicitly. Typically, re-
alistic systems have more states than there are atoms
on earth (which is approximately 1050) so an explicit
representation of states is impossible. What is needed
is a language to represent large labelled transition sys-
tems. Process algebras have semantics in terms of la-
beled transition systems, they support different ways of
composition such as choice, parallelism, sequencing,
etc., and they were heavily investigated in the eighties

(Milner, 1989; Hoare, 1985; ISO, 1989). They are a
good candidate to serve as a notation for LTS models.

TORXAKIS uses its own language to express mod-
els, which is strongly inspired by the process-algebraic
language LOTOS (Bolognesi & Brinksma, 1987; ISO,
1989), and which incorporates ideas from EXTENDED
LOTOS (Brinksma, 1988) and mCRL2 (Groote &
Mousavi, 2014). The semantics is based on STS, which
in turn has a semantics in LTS. The process-algebraic
part is complemented with a data specification lan-
guage based on algebraic data types (ADT) and func-
tions like in functional languages. In addition to user-
defined ADTs, predefined data types such as booleans,
unbounded integers, strings, and regular expressions
are provided.

Having its roots in process algebra, the language is
compositional. It has several operators to combine pro-
cesses: sequencing, choice, parallel composition with
and without communication, interrupt, disable, and ab-
straction (hiding). Communication between processes
can be multi-way, and actions can be built using multi-
ple labels.

4.3 Implementation

TORXAKIS is based on the model-based testing
tools TORX (Belinfante et al., 1999) and JTORX
(Belinfante, 2010). The main additions are data specifi-
cation and manipulation with algebraic data types, and
its own, well-defined modelling language. Like TORX
and JTORX, TORXAKIS generates tests by first unfold-
ing the process expressions from the model into a be-
haviour tree, on which primitives are defined for gen-
erating test cases. Unlike TORX and JTORX, TORX-
AKIS does not unfold data into all possible concrete
data values, but it keeps data symbolically.

In order to manipulate symbolic data and solve con-
straints for test-data generation, TORXAKIS uses SMT
solvers (Satisfaction Modulo Theories) (De Moura &
Bjørner, 2011). Currently, Z3 (De Moura & Bjørner,
2008) and CVC4 (Barrett et al., 2011) are used via
the SMT-LIBv2.5 standard interface (C., Fontaine, &
Tinelli, 2015). Term rewriting is used to evaluate data
expressions and functions.

The well-defined process-algebraic basis with ioco
semantics makes it possible to perform optimizations
and reductions based on equational reasoning with test-
ing equivalence, which implies ioco-semantics.

The core of TORXAKIS is implemented in the func-
tional language Haskell (Haskell, 2019), while parts
of TORXAKIS itself have been tested with the Haskell
MBT tool QuickCheck (Claessen & Hughes, 2000).

4.4 Innovation

Compared to other model-based testing tools, TORX-
AKIS deals with most of the challenges posed in
Sect. 2: it supports test generation from non-

250___Proceedings of the Central European Conference on Information and Intelligent Systems

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

deterministic models, it deals with abstraction, par-
tial models and under-specification, it supports con-
currency, parallelism, composition of complex mod-
els from simpler models, and the combination of con-
structive modelling in transition systems with property-
oriented specification via data constraints.

4.5 System Under Test (SUT)

In order to use TORXAKIS we need a model specify-
ing the allowed behaviour of the SUT. The TORXAKIS
view of an SUT is a black-box that communicates with
its environment via messages on its interfaces, i.e., on
its input and output channels. An input is a message
sent by the tester to the SUT on an input channel; an
output is the observation by the tester of a message
from the SUT on an output channel. A behaviour of the
SUT is a possible sequence of input and output actions.
The goal of testing is to compare the actual behaviour
that the SUT exhibits with the behaviour specified in the
model.

4.6 Model

The model is written in the TORXAKIS modelling lan-
guage. A (collection of) model file(s) contains all the
definitions necessary for expressing the model: chan-
nel, data-type, function, constant, and process defini-
tions, which are all combined in a model definition.
In addition, the model file contains some testing spe-
cific aspects: connections and en/decodings. A connec-
tion definition defines how TORXAKIS is connected to
the SUT by specifying the binding of abstract model
channels to concrete sockets. En/decodings specify the
mapping of abstract messages (ADTs) to strings and
vice versa.

4.7 Adapter

Channels in TORXAKIS are implemented as plain old
sockets where messages are line-based strings. How-
ever, a lot of real-life SUTs don’t communicate via
sockets. In those cases, the SUT must be connected
via an adapter, wrapper, or test harness that interfaces
the SUT to TORXAKIS, and that transforms the native
communication of the SUT to the socket communica-
tion that TORXAKIS expects. Usually, such an adapter
must be manually developed. Sometimes it is simple,
e.g., transforming standard IO into socket communica-
tion using standard (Unix) tools like netcat or socat,
as the Dropbox example will show. Sometimes, build-
ing an adapter can be quite cumbersome, e.g., when
the SUT provides a GUI. In this case tools like SELE-
NIUM (Selenium, 2019) or SIKULI (Sikuli, 2019) may
be used to adapt a GUI or a web interface to socket
communication. An adapter is not specific for MBT
but is required for any form of automated test execu-
tion. If traditional test automation is in place then this

infrastructure can quite often be reused in an adapter
for MBT.

When a SUT communicates over sockets, there is
still a caveat: sockets have asynchronous communica-
tion whereas models and test generation assume syn-
chronous communication. This may lead to race con-
ditions if a model offers the choice between an input
and an output. If this occurs the asynchronous com-
munication of the sockets must be explicitly modelled,
e.g., as queues in the model.

4.8 Testing
Once we have an SUT, a model, and an adapter, we can
use TORXAKIS to run tests. The tool performs on-the-
fly testing of the SUT by automatically generating test
steps from the model and immediately executing these
test steps on the SUT, while observing and checking
the responses from the SUT. A test case may consist of
thousands of such test steps, which makes it also suit-
able for reliability testing, and it will eventually lead to
a verdict for the test case.

5 Testing Dropbox
We apply model-based testing with TORXAKIS to
test Dropbox. Our work closely follows the work in
(Hughes et al., 2016), where Dropbox was tested with
the model-based testing tool Quviq QuickCheck. We
first briefly introduce Dropbox, we then discuss some
aspects of the testing approach, we present a model in
the TORXAKIS modelling language, we run some tests,
and end with discussion.

5.1 Dropbox
Dropbox is a file-synchronization service (Dropbox,
2019), like Google-Drive and Microsoft-OneDrive.
A file-synchronization service maintains consistency
among multiple copies of files or a directory structure
over different devices. A user can create, delete, read,
or write a file on one device and Dropbox synchronizes
this file with the other devices. One copy of the files
on a device is called a node. A conflict arises when
different nodes write to the same file: the content of
the file cannot be uniquely determined anymore. Drop-
box deals with conflicts by having the content that was
written by one node in the original file, and adding an
additional file, with a new name, with the conflicting
content. Also this additional file will eventually be syn-
chronized.

Synchronization is performed by uploading and
downloading files to a Dropbox server, i.e., a Dropbox
system with n nodes conceptually consists of n + 1
components. How synchronization is performed, i.e.,
when and which (partial) files are up- and downloaded
by the Dropbox clients and how this is administered is
part of the Dropbox implementation, i.e., the Dropbox

Proceedings of the Central European Conference on Information and Intelligent Systems___251

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

protocol. Since we concentrate on testing the delivered
synchronization service, we abstract from the precise
protocol implementation.

A file synchronizer like Dropbox is a distributed,
concurrent, and nondeterministic system. It has state
(the synchronization status of files) and data (file con-
tents), its modelling requires abstraction, leading to
nondeterminism, because the precise protocol is not
documented and the complete internal state is not ob-
servable, and partial modelling is needed because of its
size. Altogether, file synchronizers are interesting and
challenging systems to be tested, traditionally as well
as model-based.

5.2 Testing Approach

We test the Dropbox synchronization service, that is,
the SUT is the Dropbox behaviour as observed by users
of the synchronization service, as a black-box. We
closely follow (Hughes et al., 2016), where a for-
mal model for a synchronization service was devel-
oped and used for model-based testing of Dropbox
with the tool Quviq QuickCheck (Arts et al., 2006).
This means that we use the same test setup, make
the same assumptions, and transform their model for
Quviq QuickCheck to the TORXAKIS modelling lan-
guage. It also means that we will not repeat the de-
tailed discussion of Dropbox intricacies and model re-
finements leading to their final model, despite that their
model rules out implementations that calculate clean
and handle a reverting write action without any com-
munication with the server.

Like in (Hughes et al., 2016), we restrict testing to
one file and three nodes, and we use actions (SUT in-
puts) READN , WRITEN , and STABILIZE, which read
the file at node N , (over-)write the file at node N , and
read all files including conflict files when the system is
stable, i.e., fully synchronized, respectively. Initially,
and after deletion, the file is represented by the special
content value "$" (⊥ in (Hughes et al., 2016)).

Our test setup consists of three Linux-virtual ma-
chines with Dropbox clients implementing the three
nodes, numbered 0, 1, and 2. The file manipulation on
the nodes is performed by plain Linux shell commands.
These commands are sent by TORXAKIS, which runs
on the host computer, via sockets (see Sect. 4). The
adapters connecting TORXAKIS to the SUT, see Sect. 4,
consist of a one-line shell script connecting the sockets
to the shell interpreter via the standard Linux utility
socat.

For STABILIZE we assume that the system has sta-
bilized, i.e., all file synchronizations have taken place
including distribution to all nodes of all conflict files.
Like in (Hughes et al., 2016), we implement this by
simply waiting for at least 30 seconds.

CHANDEF MyChans ::=
In0 , In1 , In2 :: Cmd ;
Out0 , Out1 , Out2 :: Rsp

ENDDEF

TYPEDEF Cmd ::=
Read

| Write { value :: Value }
| Stabilize

ENDDEF

TYPEDEF Rsp ::=
Ack

| NAck { error :: String }
| File { value :: Value }

ENDDEF

TYPEDEF Value ::=
Value { value :: String }

ENDDEF

FUNCDEF isValidValue (val :: Value) :: Bool
::=
strinre(value(val), REGEX(’[A-Z]{1 ,3}’))

ENDDEF

Figure 1: Dropbox model - channels and their types.

5.3 Modelling

Our Dropbox model is a straightforward translation of
(Hughes et al., 2016, Section IV: Formalizing the spec-
ification) into the modelling language of TORXAKIS.
Parts of the model are shown in Figs. 1, 3, 4, 5, 6, 7,
and 8.

A TORXAKIS model is a collection of different
kinds of definitions; see Sect. 4. The first one,
CHANDEF, defines the channels with their typed mes-
sages; see Fig. 1. TORXAKIS assumes that an SUT
communicates by receiving and sending typed mes-
sages. A message received by the SUT is an input, and
thus an action initiated by the tester. A message sent by
the SUT is an SUT output, and is observed and checked
by the tester. For Dropbox there are three input chan-
nels: In0, In1, and In2, where commands of type Cmd
are sent to the SUT, for each node, respectively. There
are also three output channels Out0, Out1, and Out2,
where responses of type Rsp are received from the SUT.
The commands (SUT inputs) with their corresponding
responses (SUT outputs) are:
Read reads the file on the local node, which leads to

a response consisting of the current file content
value;

Write(value) writes the new value value to the file
while the response gives the old value;

Stabilize reads all file values, i.e., the original file
and all conflict files, after stabilization, i.e., after
all file synchronizations have taken place.

In addition to these visible actions, there are hidden
actions. If a user modifies a file, Dropbox will upload it
to the Dropbox server, and then later download this file
to the other nodes. But a Dropbox user, and thus also
the (black-box) tester cannot observe these actions, and
consequently, they do not occur in the CHANDEF defini-
tion. Yet, these actions do occur and they do change
the state of the Dropbox system. We use six channels

252___Proceedings of the Central European Conference on Information and Intelligent Systems

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

node 0 node 1 node 2

server
Up0 Down0 Up1 Down1 Up2 Down2

In0 Out0 In1 Out1 Out2In2

Figure 2: Dropbox structure.

Down0, Down1, Down2, Up0, Up1, and Up2 to model
these actions, and later it will be shown how we can ex-
plicitly hide these channels. The conceptual structure
of Dropbox with nodes, server, and channels is given
in Fig. 2. The outer box is our SUT.

The next step is to define the processes that model
state behaviour. The main process is PROCDEF
dropbox which models the behaviour of Dropbox,
combining the commands (SUT inputs), responses
(SUT outputs), and the checks on them in one state ma-
chine; see Figs. 3, 4, and 5. The state machine is de-
fined as a recursive process dropbox with channel pa-
rameters In0, . . ., Up2, and with state variables exactly
as in (Hughes et al., 2016):
◦ a global stable value serverVal represents the

file value currently held on the server;
◦ a global set conflicts holds the conflicting file

values, represented as a ValueList;
◦ for each node N , there is a local file value
localValN , where all local file values together
are represented as a list of values with three ele-
ments, the first element representing localVal0,
etc.;
◦ for each node N , there is a freshness value
freshN , indicating whether node N has down-
loaded the latest value of serverVal; all fresh-
ness values together are represented as a list of
Booleans with three elements, the second element
representing fresh1, etc.;
◦ for each node N , there is a cleanliness value
cleanN , indicating whether the latest local mod-
ification has been uploaded; together they are rep-
resented as a list of Booleans with three elements,
the third element representing clean2, etc.

The recursive process dropbox defines for each
node transitions for reading, writing, uploading,
and downloading the file, and one transition for
Stabilize. The different transitions are separated
by ’##’, the TORXAKIS choice operator. The transi-
tions for reading and writing consist of two steps: first
a command (SUT input) followed by an SUT output.
"Followed by" is expressed by the TORXAKIS action-
prefix operator ’>->’. After the response, dropbox is
recursively called with updated state variables.

Consider file-reading for node 0 (Fig. 3).
The first action is input Read on channel
In0. Then the SUT will produce output
File(lookup(localVal,Node(0))), i.e., the

PROCDEF dropBox [In0 , In1 , In2 :: Cmd
; Out0 , Out1 , Out2 :: Rsp
; Down0 , Down1 , Down2
; Up0 , Up1 , Up2
]
(serverVal :: Value
; conflicts :: ValueList
; localVal :: ValueList
; fresh :: BoolList
; clean :: BoolList
) ::=

In0 !Read
>-> Out0 !File(lookup(localVal ,Node (0)))
>-> dropBox [In0 ,In1 ,In2 ,Out0 ,Out1 ,Out2

, Down0 ,Down1 ,Down2 ,Up0 ,Up1 ,Up2
]
(serverVal
, conflicts
, localVal
, fresh
, clean
)

##
In0 ?cmd [[IF isWrite(cmd)

THEN isValidValue(
value(cmd))

ELSE False
FI]]

>-> Out0 !File(lookup(localVal ,Node (0)))
>-> dropBox [In0 ,In1 ,In2 ,Out0 ,Out1 ,Out2

, Down0 ,Down1 ,Down2 ,Up0 ,Up1 ,Up2
]
(serverVal
, conflicts
, update(localVal

,Node (0)
,value(cmd))

, fresh
, update(clean ,Node (0),False)
)

##
.....

Figure 3: Dropbox model - main process dropbox
with transitions Read and Write.

File made by looking up the localVal value of
Node(0). This is an expression in the data spec-
ification language of TORXAKIS, which is based
on algebraic data types (ADT) and functions like
in functional languages. This data language is very
powerful, but also very rudimentary. Data types
such as ValueList have to be defined explicitly as
recursive types (Fig. 6), consisting of either an empty
list NoValues, or a non-empty list Values with as
fields a head value hd and a tail tl, which is again
a ValueList. Functions like lookup have to be
defined explicitly, too, in a functional (recursive) style.
Fig. 6 gives as examples the functions lookup and
update; other functions are included in the full model
(TorXakis Examples, 2019). After the output there
is the recursive call of process dropbox, where state
parameters are not modified in case of file-reading.

Writing a file for node 0 is analogous, but with two
differences (Fig. 3). First, the action of writing is not a
unique action, but it is parameterized with the new file
value. This is expressed by ?cmd, stating that on chan-
nel In0 any value, represented by variable cmd, can be
communicated, which satisfies the constraint between
’[[’ and ’]]’. This constraint expresses that cmd
must be a Write command, referring to the construc-
tor Write in type Cmd. Moreover, the value of the

Proceedings of the Central European Conference on Information and Intelligent Systems___253

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

.....
##

[[not(lookup(fresh ,Node (0)))
/\ lookup(clean ,Node (0))]]

=>> Down0
>-> dropBox [In0 ,In1 ,In2 ,Out0 ,Out1 ,Out2

, Down0 ,Down1 ,Down2 ,Up0 ,Up1 ,Up2
]
(serverVal
, conflicts
, update(localVal

,Node (0)
,serverVal)

, update(fresh ,Node (0),True)
, clean
)

##
[[not(lookup(clean ,Node (0)))]]
=>> Up0
>-> dropBox [In0 ,In1 ,In2 ,Out0 ,Out1 ,Out2

, Down0 ,Down1 ,Down2 ,Up0 ,Up1 ,Up2
]
(IF lookup(fresh ,Node (0))

/\ (lookup(localVal ,Node (0))
<> serverVal)

THEN lookup(localVal ,Node (0))
ELSE serverVal
FI

, IF not(lookup(fresh ,Node (0)))
/\ (lookup(localVal ,Node (0))

<> serverVal)
/\ (lookup(localVal ,Node (0))

<> Value("$"))
THEN Values(lookup(localVal

,Node (0))
,conflicts)

ELSE conflicts
FI

, localVal
, IF lookup(fresh ,Node (0))

/\ (lookup(localVal ,Node (0))
<> serverVal)

THEN othersUpdate(fresh
,Node (0)
,False)

ELSE fresh
FI

, update(clean ,Node (0),True)
)

##
.....

Figure 4: Dropbox model - transitions Down and Up in
the main process dropbox.

write-command must be a valid value, which means
(see Fig. 1) that it shall be a string contained in the reg-
ular expression REGEX(’[A-Z]{1,3}’), i.e., a string
of one to three capital letters.

The second difference concerns the updates to the
state parameters in the recursive call of dropbox. We
see that localVal for node(0) is updated with the
new file value that was used as input in the commu-
nication on channel In0. Moreover, node(0) is not
clean anymore.

The transitions for uploading and downloading will
be hidden, so they do not have communication with the
SUT. They just deal with constraints and updates on
the state. Downloading to node 0 (Fig. 4) can occur
if node 0 is not fresh yet clean, as is modelled in
the guard (precondition) between ’[[’ and ’]] =>>’,
before execution of action Down0. The effect of the
action is an update of the localVal of Node(0) with
serverVal, and re-established freshness.

Uploading can occur if a node is not clean. The

.....
##

[[allTrue(fresh) /\ allTrue(clean)]]
=>>

(In0 !Stabilize
>-> fileAndConflicts [Out0]

(Values(serverVal ,conflicts))
>>> dropBox [In0 ,In1 ,In2 ,Out0 ,Out1 ,Out2

, Down0 ,Down1 ,Down2 ,Up0 ,Up1 ,Up2
]
(serverVal
, conflicts
, localVal
, fresh
, clean
)

)
ENDDEF -- dropbox

PROCDEF fileAndConflicts [Out :: Rsp]
(values :: ValueList)
EXIT ::=

Out ?rsp [[IF isFile(rsp)
THEN isValueInList(

values ,value(rsp))
ELSE False
FI]]

>-> fileAndConflicts [Out]
(removeListValue(values ,value(rsp)))

##
[[isNoValues(values)]]
=>> Out !Ack
>-> EXIT

ENDDEF -- fileAndConflicts

Figure 5: Dropbox model - transition Stabilize and
and process fileAndConflicts.

state update is rather intricate, which has to do with
conflicts that can occur when uploading, and with spe-
cial cases if the upload is actually a delete (repre-
sented by file value "$") and if the upload is equal to
serverVal. The state update has been directly copied
from (Hughes et al., 2016) where it is very well ex-
plained, so for more details we refer there.

We have discussed reading, writing, uploading, and
downloading for node 0. Similar transitions are defined
for nodes 1 and 2. Of course, in the final model, param-
eterized transitions are defined for node N , which can
then be instantiated. Since this parameterization is not
completely trivial because of passing of state variable
values, we do not discuss it here.

The last action is Stabilize, which can occur if all
nodes are fresh and clean; see Fig. 5. Since all nodes
are assumed to have synchronized it does not matter
which node we use; we choose node 0. Stabilize
produces all file content values that are currently avail-
able including the conflict files. These content val-
ues are produced one by one, in arbitrary order, as re-
sponses on channel Out0 with an acknowledge Ack af-
ter the last one. Process fileAndConflicts models
that all these content values indeed occur once in the
list of serverVal and conflicts. It removes from
Values (which is of type ValueList) each content
value value(rsp) that has been observed on Out0,
until the list is empty, i.e., isNoValues(values)
holds. Then the acknowledge Ack is sent, and the pro-
cess EXITs, which is the trigger for the recursive call
of dropbox after fileAndConflicts.

254___Proceedings of the Central European Conference on Information and Intelligent Systems

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

TYPEDEF Node ::=
Node { node :: Int }

ENDDEF

TYPEDEF ValueList ::=
NoValues

| Values { hd :: Value; tl :: ValueList }
ENDDEF

FUNCDEF lookup (vals :: ValueList
; n :: Node) :: Value ::=

IF isNoValues(vals)
THEN Value("$")
ELSE IF node(n) == 0

THEN hd(vals)
ELSE lookup(tl(vals),Node(node(n) -1))
FI

FI
ENDDEF

FUNCDEF update (vals :: ValueList
; n :: Node
; v :: Value) :: ValueList ::=

IF isNoValues(vals)
THEN NoValues
ELSE IF node(n) == 0

THEN Values(v,tl(vals))
ELSE Values(hd(vals)

,update(tl(vals),
Node(node(n) -1),v))

FI
FI

ENDDEF

Figure 6: Dropbox model - data types and functions.

The next step is to define the complete model in the
MODELDEF; see Fig. 7. The MODELDEF specifies which
channels are inputs, which are outputs, and what the
BEHAVIOUR of the model is using the previously de-
fined processes. In our case it is a call of the dropbox
process with appropriate instantiation of the state vari-
ables serverVal, conflicts, localVal, fresh, and
clean. Moreover, this is the place where the channels
Down0, . . ., Up2 are hidden with the construct HIDE [
channels] IN . . . NI. Actions that occur on hidden
channels are internal actions (in process-algebra usu-
ally denoted by τ). They are not visible to the system
environment, but they do lead to state changes of which
the consequences can be visible, e.g., when a transition
that is enabled before the occurrence of τ is no longer
enabled in the state after the τ -occurrence. Visible ac-
tions, that is inputs and outputs, are visible to the sys-
tem environment. They lead to state changes both in
the system and in its environment.

The last definition CNECTDEF specifies how the tester
connects to the external world via sockets; see Fig. 8.
In the Dropbox case, TORXAKIS connects as socket
client, CLIENTSOCK, to the SUT, that shall act as the
socket server. The CNECTDEF binds the abstract model
channel In0, which is an input of the model and of
the SUT, thus an output of TORXAKIS, to the socket
on host txs0-pc, one of the virtual machines running
Dropbox, and port number 7890. Moreover, the en-
coding of abstract messages of type Cmd on channel
In0 to strings on the socket is elaborated with function
encodeCmd: a command is encoded as a string of one
or more Linux commands, which can then be sent to
and executed by the appropriate virtual machine. Anal-

MODELDEF DropboxModel ::=
CHAN IN In0 , In1 , In2
CHAN OUT Out0 , Out1 , Out2
BEHAVIOUR

HIDE [Down0 ,Down1 ,Down2 ,Up0 ,Up1 ,Up2] IN
dropBox [In0 ,In1 ,In2 ,Out0 ,Out1 ,Out2

, Down0 ,Down1 ,Down2 ,Up0 ,Up1 ,Up2
]
(Value("$")
, NoValues
, Values(Value("$"),

Values(Value("$"),
Values(Value("$"),NoValues)))

, Bools(True ,Bools(True ,
Bools(True ,NoBools)))

, Bools(True ,Bools(True ,
Bools(True ,NoBools)))

)
NI

ENDDEF

Figure 7: Dropbox model - definition of the model that
specifies the behaviour over the observable channels.

ogously, outputs from the SUT, i.e., inputs to TORX-
AKIS, are read from socket 〈txs0-pc, 7890〉 and de-
coded to responses of type Rsp on channel Out0 using
function decodeRsp. Analogous bindings of abstract
channels to real-world socksets are specified for In1,
Out1, In2, and Out2.

5.4 Model-Based Testing

Now that we have an SUT and a model, we can start
generating tests and executing them. First, we start the
SUT, that is, the virtual machines, start the Dropbox
client on these machines, and start the adapter scripts.
Then we can start TORXAKIS and run a test; see Fig. 9.
User inputs to TORXAKIS are marked TXS << ; re-
sponses from TORXAKIS are marked TXS >> .

We start the tester with tester DropboxModel
DropboxSut, expressing that we wish to test
with MODELDEF DropboxModel and CNECTDEF
DropboxSut. Then we test for 100 test steps with
test 100, and indeed, after 100 test steps it stops
with verdict PASS.

TORXAKIS generates inputs to the SUT, such as on
line 7: In0, [Write(Value("SHK"))]) , indi-
cating that on channel In0 an input action Write with
file value "SHK" has occurred. The input file value
is generated by TORXAKIS from the isValidValue
constraint, using the SMT solver. This action is fol-
lowed, on line 8, by an output from the SUT on channel
Out0, which is the old file value of Node 0, which is
"$", representing the empty file. TORXAKIS checks
that this is indeed the correct response.

Only visible input and output actions are shown in
this trace. Hidden actions are not shown, but they do
occur internally, as can be seen, for example, from
line 24: the old file value on Node 2 was "X", but
this value was only written to node 0 (line 11), so
node 0 and node 2 must have synchronized the value
"X" via internal Up and Down actions. Also just be-
fore Stabilize, lines 67–74, synchronization has ob-

Proceedings of the Central European Conference on Information and Intelligent Systems___255

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

CNECTDEF DropboxSut ::=
CLIENTSOCK
CHAN OUT In0 HOST "txs0 -pc" PORT 7890
ENCODE In0 ?cmd -> !encodeCmd(cmd)
CHAN IN Out0 HOST "txs0 -pc" PORT 7890
DECODE Out0 !decodeRsp(s) <- ?s
CHAN OUT In1 HOST "txs1 -pc" PORT 7891
ENCODE In1 ?cmd -> !encodeCmd(cmd)
CHAN IN Out1 HOST "txs1 -pc" PORT 7891
DECODE Out1 !decodeRsp(s) <- ?s
CHAN OUT In2 HOST "txs2 -pc" PORT 7892
ENCODE In2 ?cmd -> !encodeCmd(cmd)
CHAN IN Out2 HOST "txs2 -pc" PORT 7892
DECODE Out2 !decodeRsp(s) <- ?s

ENDDEF

FUNCDEF encodeCmd (cmd :: Cmd) :: String ::=
IF isRead(cmd)
THEN "cat testfile"
ELSE IF isWrite(cmd)
THEN "cat testfile ; " ++ "echo \"" ++

value(value(cmd)) ++ "\" > testfile"
ELSE IF isStabilize(cmd)
THEN "sleep 30 ; cat * ; echo "
ELSE "" FI FI FI

ENDDEF

FUNCDEF decodeRsp (s :: String) :: Rsp ::=
IF s == ""
THEN Ack
ELSE IF s == "$"
THEN File(Value("$"))
ELSE IF strinre(s,REGEX(’[A-Z]{1,3}’))
THEN File(Value(s))
ELSE NAck(s) FI FI FI

ENDDEF

Figure 8: Dropbox model - connection to the external
world.

viously taken place, which can only happen using hid-
den Up and Down actions. Due to the distributed nature
of Dropbox and its nondeterminism it is not so easy
to check the response of the Stabilize command on
line 75. It is left to the reader to check that the out-
puts on lines 76–80 are indeed all conflict-file contents
together with the server file, and that TORXAKIS cor-
rectly assigned the verdict PASS.

Many more test cases can be generated and executed
on-the-fly. TORXAKIS generates random test cases, so
each time another test case is generated, and appropri-
ate responses are checked on-the-fly. It should be noted
that TORXAKIS is not very fast. Constraint solving,
nondeterminism, and dealing with internal (hidden) ac-
tions (exploring all possible ’explanations’ in terms of
(Hughes et al., 2016)) can make that computation of
the next action takes a minute.

5.5 Discussion and Comparison
We showed that model-based testing of a file synchro-
nizer that is distributed, concurrent, and nondetermin-
istic, that combines state and data, and that has in-
ternal state transitions that cannot be observed by the
tester, is possible with TORXAKIS, just as with Quviq
QuickCheck. The model used for TORXAKIS is a di-
rect translation of the QuickCheck model.

As opposed to the work with Quviq QuickCheck, we
did not yet try to reproduce the detected ’surprises’,
i.e., probably erroneous behaviours of Dropbox. More

$ torxakis Dropbox.txs
TXS >> TorXakis :: Model -Based Testing
TXS >> txsserver starting: "PC -31093. tsn.tno.nl" : 60275
TXS >> Solver "z3" initialized : Z3 [4.6.0]
TXS >> TxsCore initialized
TXS >> input files parsed:
TXS >> ["Dropbox.txs"]
TXS << tester DropboxModel DropboxSut
TXS >> tester started
TXS << test 100
TXS >>1: IN: Act { { (In1 , [Read]) } }
TXS >>2: OUT: Act { { (Out1 , [File(Value("$"))]) } }
TXS >>3: IN: Act { { (In2 , [Read]) } }
TXS >>4: OUT: Act { { (Out2 , [File(Value("$"))]) } }
TXS >>5: IN: Act { { (In1 , [Write(Value("P"))]) } }
TXS >>6: OUT: Act { { (Out1 , [File(Value("$"))]) } }
TXS >>7: IN: Act { { (In0 , [Write(Value("SHK"))]) } }
TXS >>8: OUT: Act { { (Out0 , [File(Value("$"))]) } }
TXS >>9: IN: Act { { (In1 , [Read]) } }
TXS >>10: OUT: Act { { (Out1 , [File(Value("P"))]) } }
TXS >>11: IN: Act { { (In0 , [Write(Value("X"))]) } }
TXS >>12: OUT: Act { { (Out0 , [File(Value("SHK"))]) } }
TXS >>13: IN: Act { { (In2 , [Write(Value("A"))]) } }
TXS >>14: OUT: Act { { (Out2 , [File(Value("$"))]) } }
TXS >>15: IN: Act { { (In2 , [Write(Value("SP"))]) } }
TXS >>16: OUT: Act { { (Out2 , [File(Value("A"))]) } }
TXS >>17: IN: Act { { (In1 , [Write(Value("BH"))]) } }
TXS >>18: OUT: Act { { (Out1 , [File(Value("P"))]) } }
TXS >>19: IN: Act { { (In2 , [Read]) } }
TXS >>20: OUT: Act { { (Out2 , [File(Value("SP"))]) } }
TXS >>21: IN: Act { { (In0 , [Read]) } }
TXS >>22: OUT: Act { { (Out0 , [File(Value("X"))]) } }
TXS >>23: IN: Act { { (In2 , [Write(Value("PXH"))]) } }
TXS >>24: OUT: Act { { (Out2 , [File(Value("X"))]) } }
TXS >>25: IN: Act { { (In2 , [Read]) } }
TXS >>26: OUT: Act { { (Out2 , [File(Value("PXH"))]) } }
TXS >>27: IN: Act { { (In0 , [Write(Value("AX"))]) } }
TXS >>28: OUT: Act { { (Out0 , [File(Value("PXH"))]) } }
TXS >>29: IN: Act { { (In2 , [Read]) } }
TXS >>30: OUT: Act { { (Out2 , [File(Value("AX"))]) } }
TXS >>31: IN: Act { { (In1 , [Read]) } }
TXS >>32: OUT: Act { { (Out1 , [File(Value("AX"))]) } }
TXS >>33: IN: Act { { (In0 , [Read]) } }
TXS >>34: OUT: Act { { (Out0 , [File(Value("AX"))]) } }
TXS >>35: IN: Act { { (In2 , [Write(Value("TPH"))]) } }
TXS >>36: OUT: Act { { (Out2 , [File(Value("AX"))]) } }
TXS >>37: IN: Act { { (In0 , [Write(Value("X"))]) } }
TXS >>38: OUT: Act { { (Out0 , [File(Value("AX"))]) } }
TXS >>39: IN: Act { { (In2 , [Write(Value("CPH"))]) } }
TXS >>40: OUT: Act { { (Out2 , [File(Value("TPH"))]) } }
TXS >>41: IN: Act { { (In1 , [Write(Value("HX"))]) } }
TXS >>42: OUT: Act { { (Out1 , [File(Value("CPH"))]) } }
TXS >>43: IN: Act { { (In1 , [Read]) } }
TXS >>44: OUT: Act { { (Out1 , [File(Value("HX"))]) } }
TXS >>45: IN: Act { { (In1 , [Read]) } }
TXS >>46: OUT: Act { { (Out1 , [File(Value("HX"))]) } }
TXS >>47: IN: Act { { (In2 , [Write(Value("Q"))]) } }
TXS >>48: OUT: Act { { (Out2 , [File(Value("HX"))]) } }
TXS >>49: IN: Act { { (In0 , [Read]) } }
TXS >>50: OUT: Act { { (Out0 , [File(Value("Q"))]) } }
TXS >>51: IN: Act { { (In0 , [Read]) } }
TXS >>52: OUT: Act { { (Out0 , [File(Value("Q"))]) } }
TXS >>53: IN: Act { { (In2 , [Read]) } }
TXS >>54: OUT: Act { { (Out2 , [File(Value("Q"))]) } }
TXS >>55: IN: Act { { (In0 , [Write(Value("K"))]) } }
TXS >>56: OUT: Act { { (Out0 , [File(Value("Q"))]) } }
TXS >>57: IN: Act { { (In2 , [Read]) } }
TXS >>58: OUT: Act { { (Out2 , [File(Value("K"))]) } }
TXS >>59: IN: Act { { (In0 , [Read]) } }
TXS >>60: OUT: Act { { (Out0 , [File(Value("K"))]) } }
TXS >>61: IN: Act { { (In2 , [Write(Value("ABL"))]) } }
TXS >>62: OUT: Act { { (Out2 , [File(Value("K"))]) } }
TXS >>63: IN: Act { { (In2 , [Read]) } }
TXS >>64: OUT: Act { { (Out2 , [File(Value("ABL"))]) } }
TXS >>65: IN: Act { { (In2 , [Write(Value("P"))]) } }
TXS >>66: OUT: Act { { (Out2 , [File(Value("ABL"))]) } }
TXS >>67: IN: Act { { (In0 , [Read]) } }
TXS >>68: OUT: Act { { (Out0 , [File(Value("P"))]) } }
TXS >>69: IN: Act { { (In2 , [Read]) } }
TXS >>70: OUT: Act { { (Out2 , [File(Value("P"))]) } }
TXS >>71: IN: Act { { (In1 , [Read]) } }
TXS >>72: OUT: Act { { (Out1 , [File(Value("P"))]) } }
TXS >>73: IN: Act { { (In0 , [Read]) } }
TXS >>74: OUT: Act { { (Out0 , [File(Value("P"))]) } }
TXS >>75: IN: Act { { (In0 , [Stabilize]) } }
TXS >>76: OUT: Act { { (Out0 , [File(Value("P"))]) } }
TXS >>77: OUT: Act { { (Out0 , [File(Value("X"))]) } }
TXS >>78: OUT: Act { { (Out0 , [File(Value("BH"))]) } }
TXS >>79: OUT: Act { { (Out0 , [File(Value("SP"))]) } }
TXS >>80: OUT: Act { { (Out0 , [Ack]) } }
TXS >>81: IN: Act { { (In1 , [Write(Value("AB"))]) } }
TXS >>82: OUT: Act { { (Out1 , [File(Value("P"))]) } }
TXS >>83: IN: Act { { (In1 , [Write(Value("X"))]) } }
TXS >>84: OUT: Act { { (Out1 , [File(Value("AB"))]) } }
TXS >>85: IN: Act { { (In0 , [Read]) } }
TXS >>86: OUT: Act { { (Out0 , [File(Value("P"))]) } }
TXS >>87: IN: Act { { (In2 , [Write(Value("PNB"))]) } }
TXS >>88: OUT: Act { { (Out2 , [File(Value("P"))]) } }
TXS >>89: IN: Act { { (In1 , [Write(Value("D"))]) } }
TXS >>90: OUT: Act { { (Out1 , [File(Value("X"))]) } }
TXS >>91: IN: Act { { (In1 , [Write(Value("L"))]) } }
TXS >>92: OUT: Act { { (Out1 , [File(Value("D"))]) } }
TXS >>93: IN: Act { { (In2 , [Read]) } }
TXS >>94: OUT: Act { { (Out2 , [File(Value("PNB"))]) } }
TXS >>95: IN: Act { { (In1 , [Write(Value("KK"))]) } }
TXS >>96: OUT: Act { { (Out1 , [File(Value("PNB"))]) } }
TXS >>97: IN: Act { { (In2 , [Write(Value("P"))]) } }
TXS >>98: OUT: Act { { (Out2 , [File(Value("PNB"))]) } }
TXS >>99: IN: Act { { (In0 , [Read]) } }
TXS >> ...100: OUT: Act { { (Out0 , [File(Value("KK"))]) } }
TXS >> PASS
TXS <<

Figure 9: TORXAKIS test run of Dropbox.

256___Proceedings of the Central European Conference on Information and Intelligent Systems

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

testing and analysis is needed, probably with steering
the test generation into specific corners of behaviour.
Moreover, some of these ’surprises’ require explicit
deletion of files, which we currently do not do. For
steering, TORXAKIS has a feature called test purposes,
and future work will include using test purposes to re-
produce particular behaviours. But it might be that
these Dropbox ’surprises’ have been repaired in the
mean time, as was announced in (Hughes et al., 2016).

A difference between the Quviq QuickCheck ap-
proach and TORXAKIS is the treatment of hidden ac-
tions. Whereas Quviq QuickCheck needs explicit rea-
soning about possible ’explanations’ on top of the state
machine model using a specifically developed tech-
nique, the process-algebraic language of TORXAKIS
has HIDE as an abstraction operator built into the lan-
guage, which allows to turn any action into an internal
action. Together with the ioco-conformance relation,
which takes such internal actions into consideration,
it makes the construction of ’explanations’ completely
automatic and an integral part of test generation and
observation analysis.

TORXAKIS has its own modelling language based
on process algebra and algebraic data types and with
symbolic transition system semantics. This allows to
precisely define what a conforming SUT is using the
ioco-conformance relation, in a formal testing frame-
work which enables to define soundness and exhaus-
tiveness of generated test cases. Quviq QuickCheck is
embedded in the Erlang programming language, that
is, specifications are just Erlang programs that call li-
braries supplied by QuickCheck and the generated tests
invoke the SUT directly via Erlang function calls. A
formal notion of ’conformance’ of a SUT is missing.

A powerful feature of Quviq QuickCheck for analy-
sis and diagnosis is shrinking. It automatically reduces
the length of a test after failure detection, which eases
analysis. Currently, TORXAKIS has no such feature.

Several extensions of the presented work are possi-
ble. One of them is applying the same model to test
other file synchronizers. Another is adding additional
Dropbox behaviour to the model, such as working with
multiple, named files and folders. This would com-
plicate the model, but not necessarily fundamentally
change the model: instead of keeping a single file value
we would have to keep a (nested) map of file names to
file values, and read and write would be parameterized
with file or folder names.

Another, more fundamental question concerns the
quality of the generated test cases. How good are the
test suites in detecting bugs, what is their coverage, and
to what extent can we be confident that an SUT that
passes the tests is indeed correct? Can we compare dif-
ferent (model-based) test generation strategies, e.g., the
one of Quviq QuickCheck with the one of TORXAKIS,
and assign a measure of quality or coverage to the gen-
erated test suites, and thus, indirectly, a measure to the
quality of the tested SUT?

6 Concluding Remarks

We discussed model-based testing, its principles, ben-
efits, and some theory. We showed how the model-
based testing tool TORXAKIS can be used to test a
file synchronization service. TORXAKIS implements
ioco-test generation for symbolic transition systems,
and it supports state-based control flow together with
complex data structures, on-the-fly testing, partial and
under-specification, non-determinism, abstraction, ran-
dom test selection, concurrency, and model composi-
tionality. TORXAKIS is an experimental MBT tool,
used in applied research, education, and case studies
in the (embedded systems) industry. TORXAKIS cur-
rently misses good usability, scalability does not al-
ways match the requirements of complex systems, and
test selection is still only random, but more sophisti-
cated selection strategies are being investigated (Bos,
Janssen, & Moerman, 2019; Bos & Tretmans, 2019).

New software testing methodologies are needed if
testing shall keep up with software development and
meet the challenges imposed on it, otherwise we may
not be able to test future generations of software sys-
tems. Model-based testing may be one of them.

References

Arts, T., Hughes, J., Johansson, J., & Wiger, U.
(2006). Testing Telecoms Software with Quviq
Quickcheck. In ACM SIGPLAN Workshop on
Erlang (pp. 2–10). ACM.

Axini. (2019). http://www.axini.com.

Barrett, C., Conway, C., Deters, M., Hadarean, L.,
Jovanović, D., King, T., . . . Tinelli, C. (2011).
CVC4. In CAV (pp. 171–177). LNCS 6806.
Springer.

Belinfante, A. (2010). JTorX: A Tool for On-Line
Model-Driven Test Derivation and Execution . In
J. Esparza et al. (Eds.), TACAS (pp. 266–270).
LNCS 6015. Springer.

Belinfante, A., Feenstra, J., Vries, R. d., Tretmans, J.,
Goga, N., Feijs, L., . . . Heerink, L. (1999). For-
mal Test Automation: A Simple Experiment. In
G. Csopaki et al. (Eds.), Testing of Communicat-
ing Systems (pp. 179–196). Kluwer.

Bolognesi, T., & Brinksma, E. (1987). Introduction to
the ISO Specification Language LOTOS. Com-
puter Networks and ISDN Systems, 14, 25–59.

Bos, P. v. d., Janssen, R., & Moerman, J. (2019). n-
Complete Test Suites for IOCO. Software Qual-
ity Journal, 27(2), 563–588.

Bos, P. v. d., & Tretmans, J. (2019). Coverage-
Based Testing with Symbolic Transition Sys-

Proceedings of the Central European Conference on Information and Intelligent Systems___257

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

tems. In D. Beyer et al. (Eds.), TAP. LNCS
11823. Springer.

Brinksma, E. (1988). On the Design of Extended LO-
TOS (Unpublished doctoral dissertation). Uni-
versity of Twente, Enschede (NL).

Brinksma, E., Alderden, R., Langerak, R., Lagemaat,
J. v. d., & Tretmans, J. (1990). A Formal Ap-
proach to Conformance Testing. In J. de Meer et
al. (Eds.), Protocol Test Systems (pp. 349–363).
North-Holland.

C., B., Fontaine, P., & Tinelli, C. (2015). The SMT-
LIB Standard: Version 2.5 (Tech. Rep.). Dept. of
Comp. Sc., Uni. of Iowa. www.SMT-LIB.org.

Chow, T. (1978). Testing Software Design Modeled
by Finite-State Machines. IEEE Trans. on Soft.
Eng., 4(3), 178–187.

Claessen, K., & Hughes, J. (2000). QuickCheck: A
Lightweight Tool for Random Testing of Haskell
Programs. In ACM SIGPLAN Functional Pro-
gramming (pp. 268–279). ACM.

De Moura, L., & Bjørner, N. (2008). Z3: An efficient
SMT solver. In C. Ramakrishnan et al. (Eds.),
TACAS (pp. 337–340). LNCS 4963. Springer.

De Moura, L., & Bjørner, N. (2011). Satisfiabil-
ity Modulo Theories: Introduction and Applica-
tions. Comm. ACM, 54(9), 69–77.

Dijkstra, E. (1969). Notes On Structured Pro-
gramming – EWD249 (Report No. 70-WSK-03).
Eindhoven (NL): T.H. Eindhoven.

Dropbox. (2019). https://www.dropbox.com.

Frantzen, L., Tretmans, J., & Willemse, T. (2005).
Test Generation Based on Symbolic Specifica-
tions. In J. Grabowski et al. (Eds.), FATES (pp.
1–15). LNCS 3395. Springer.

Frantzen, L., Tretmans, J., & Willemse, T. (2006). A
Symbolic Framework for Model-Based Testing.
In K. Havelund et al. (Eds.), FATES/RV (pp. 40–
54). LNCS 4262. Springer.

Gaudel, M.-C. (1995). Testing can be Formal, too. In
P. Mosses et al. (Eds.), TAPSOFT (pp. 82–96).
LNCS 915. Springer.

Groote, J., & Mousavi, M. (2014). Modeling and
Analysis of Communicating Systems. MIT Press.

Hartman, A., & Nagin, K. (2004). The AGEDIS Tools
for Model Based Testing. In ISSTA (pp. 129–
132). ACM.

Haskell. (2019). https://www.haskell.org.

Hessel, A., Larsen, K., Mikucionis, M., Nielsen, B.,
Pettersson, P., & Skou, A. (2008). Testing Real-
Time Systems Using UPPAAL. In R. Hierons et

al. (Eds.), Formal Methods and Testing (pp. 77–
117). LNCS 4949. Springer.

Hoare, C. (1985). Communicating Sequential Pro-
cesses. Prentice-Hall.

Hughes, J., Pierce, B., Arts, T., & Norell, U. (2016).
Mysteries of DropBox: Property-Based Testing
of a Distributed Synchronization Service. In
IEEE ICST (pp. 135–145). IEEE.

ISO. (1989). Inf. Proc. Syst., OSI, LOTOS – A For-
mal Description Technique Based on the Tempo-
ral Ordering of Observational Behaviour. Int.
Standard IS-8807.

Jard, C., & Jéron, T. (2005). TGV: Theory, Princi-
ples and Algorithms: A Tool for the Automatic
Synthesis of Conformance Test Cases for Non-
Deterministic Reactive Systems. Software Tools
for Tech. Trans., 7(4), 297–315.

Lee, D., & Yannakakis, M. (1996). Principles and
Methods for Testing Finite State Machines – A
Survey. Procs. of IEEE, 84(8), 1090–1123.

Marsso, L., Mateescu, R., & Serwe, W. (2018).
TESTOR: A Modular Tool for On-the-Fly Con-
formance Test Case Generation. In D. Beyer et
al. (Eds.), TACAS (pp. 211–228). LNCS 10806.
Springer.

Milner, R. (1989). Communication and Concurrency.
Prentice-Hall.

Petrenko, A. (2001). Fault Model-Driven Test Deriva-
tion from Finite State Models: Annotated Bibli-
ography. In F. Cassez et al. (Eds.), MOVEP (pp.
196–205). LNCS 2067. Springer.

Selenium. (2019). http://www.seleniumhq.org.

Sikuli. (2019). http://www.sikuli.org.

TorXakis. (2019). https://github.com/
TorXakis/TorXakis.

TorXakis Examples. (2019). https://github.com/
TorXakis/TorXakis/tree/develop/
examps.

Tretmans, J. (1996). Test Generation with Inputs,
Outputs and Repetitive Quiescence. Software—
Concepts and Tools, 17(3), 103–120.

Tretmans, J. (2008). Model Based Testing with La-
belled Transition Systems. In R. Hierons et al.
(Eds.), Formal Methods and Testing (pp. 1–38).
LNCS 4949. Springer.

Tretmans, J. (2017). On the Existence of Practi-
cal Testers. In J.-P. Katoen et al. (Eds.), Mod-
elEd, TestEd, TrustEd – Essays Dedicated to Ed
Brinksma on the Occasion of His 60th Birthday
(pp. 87–106). LNCS 10500. Springer.

258___Proceedings of the Central European Conference on Information and Intelligent Systems

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

