
An Indexing Learning Tool in Relational Databases

Marko Vještica, Slavica Kordić, Vladimir Dimitrieski, Milan Čeliković, Ivan Luković

University of Novi Sad, Faculty of Technical Sciences

Department of Computing and Control Engineering

Trg Dositeja Obradovića 6, 21000, Novi Sad, Serbia

{marko.vjestica, slavica, dimitrieski, milancel, ivan}@uns.ac.rs

Abstract. There are multiple ways to optimize a query

execution time in database systems, but one of the most

usual ways is to use indexing techniques. In database

courses at University of Novi Sad, Faculty of Technical

Sciences, we teach students about these techniques and

we want to improve lab sessions by providing them

with as much knowledge in short amount of time. We

have created Indexing Learning Tool (ILT) to help our

students learn about indices and their usage in

database systems. With this tool students can make fast

changes in data structures and try different indexing

techniques on different use cases. ILT provides new

insights into the usage of indexing techniques, their

advantages and disadvantages.

Keywords. Learning tool, Database optimization,

Indexing techniques, Data warehouse, Relational

database

1 Introduction

A database optimization is important field of study,

because many organizations need to gather reports fast.

Execution time of queries need to be short and

transactions need to be fast, because they are crucial to

have successful environment in companies. If

companies have a Data Warehouse system, it is more

important to optimize a query execution time than the

transaction response time (Chaudhuri & Dayal, 1997).

To improve the query execution time, different

techniques can be used like a parallel query processing,

data partitions or query transformations, but most usual

are indexing techniques and materialized views. They

are both useful, especially in Data Warehouse systems,

because these systems are mainly read-only.

At University of Novi Sad, Faculty of Technical

Sciences, undergraduate students of Control and

Computing Engineering learn about basics of database

systems, database modeling and SQL. In “Data

Warehouse Systems” and “Database Management

Systems” courses on master studies, they also learn

about database optimization using indexing techniques

and materialized views. As a part of courses’ labs,

students try to improve database performance by using

these techniques. As the time is limited to experiment

with these techniques, our goal was to help students by

creating a tool that will enable fast changes on data

structures and experiments. A purpose of that tool is

not to teach students SQL, but to help them learn when

to use indices.

Not all indices are useful, some of them could even

prolong a query execution time in specific use cases.

There is an index selection problem which presents the

selection of appropriate indices in Data Warehouse

systems (Golfarelli & Rizzi, 2018). There are many

existing solutions and heuristics that we want to test

with students. Our goal is to improve studies in the

field of the index selection problem by using the

interactive tool which can support different use cases

and analysis.

In the work of (Sadiq et al., 2004), they stated that

the best way to learn SQL is to have well directed

practical classes and to let students learn from their

mistakes. The same could be stated about learning

indexing techniques usage. According to (Kenny &

Pahl, 2009), students should have control over their

learning experience, because it will encourage their

sense of responsibility and increase their motivation.

We want to motivate students to use the tool so they

can research and discover advantages and

disadvantages of indexing techniques and learn from

their mistakes.

Professional database tools are not meant for

educational purposes, mainly because of their

complexity (Grillenberger & Brinda, 2012). We only

use a part of their functionalities and adapt them for

learning. This tool is mainly designed for our students,

but it could also be used by anyone who wants to learn

more about index selection problem.

In this paper, we will present Indexing Learning

Tool (ILT) and use cases intended to be used by

students in labs. Apart from Introduction, this paper is

organized as follows. Section 2 describes related work

of different database learning tools and presents the

index selection problem. Section 3 presents the ILT

architecture with all its modules. Section 4 describes

databases that are necessary for our tool to store test

and result data. Section 5 presents use cases in which

we measured a query execution time provided by

Proceedings of the Central European Conference on Information and Intelligent Systems___59

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

indices and their memory usage. Section 6 contains

conclusions and future work guidelines.

2 Related Work

Many educational database tools are designed for users

to learn SQL. One of the motivations to create such

tools is their adaptation for educational purposes and

simplifying usage, like it is in (Grillenberger & Brinda,

2012). They developed a web-based learning

environment for SQL and adapt it for students of

secondary computing schools. Our motivation is

similar, but we wanted to create the tool for education

of indexing techniques in relational databases. In this

section, we will present related work and tools for

educational purpose in database fields that are already

implemented.

Some tools support automated grading of SQL

tasks. (Kleiner, Tebbe & Heine, 2013) implemented a

software system that automatically determines a score

for every select statement, based on various

parameters. This software system increased students’

motivation to analyze their errors and learn more about

SQL. There is also the SQL Tester tool that is designed

for students to learn SQL through tests and provides

them with a score, which increased student

achievements (Kleerekoper & Schofield, 2018).

Authors’ motivation to create that tool was to reduce

time during lab sessions and motivate students to learn

more, which is also something that motivate us.

In the paper (Kenny & Pahl, 2009), created a web-

based e-learning environment for tutoring SQL, with

adaptive feedback and guidance based on the student

progress, which increased students’ performance in

exams. We plan to add a module that will help our

students in learning about the index usage by providing

hints and guidelines based on the existing heuristics.

For example, a user wants to test an execution of a

query with MAX aggregation function on an attribute

with values that are all unique. According to (O’Neil &

Quass, 1997), a B-tree index should provide the best

performance in that use case. ILT could advice students

to try creating B-tree index on the required attribute

and execute that query. This could help students to

learn faster, especially if they are not sure how to

optimize the query execution. Similar was done in

SQL Tutor, created by (Agha, Jarghon & Abu-Naser,

2018). This tool is created for students of SQL

programming and it provides customized hints for each

student. SQL Tutor also contains multimedia tutorials,

which was also included in SQLator (Sadiq et al.,

2004), a tool that allows a user to evaluate correctnes

of queries that she or he created. Currently, ILT doesn’t

include any tutorial about indexing techniques, because

students already know basics and the idea is that they

research new knowledge.

Not all tools support SQL learning only as there are

tools that provide learning in other database fields, like

a web-based tool created by (Kung & Tung, 2010) that

helped students in understanding ER and relational

data modeling. However, as far as we know, there is no

tool implemented for education of indexing techniques

usage. Our tool can be used by anyone who knows

basics about indexing techniques but wants to improve

their knowledge about index selection problem. We are

using the tool with our students in practical classes to

apply their knowledge from theoretical classes.

There are many heuristics that users could follow to

improve query performance and memory usage in

different use cases. In the work of (Jurgens & Lenz,

2001), it is stated that there are nine different

parameters that could influence a query execution time.

Parameters like the number of records in tables, the

number of attributes of tables or the number of

different values of attributes could be variable using

ILT. In section 5, we presented use cases in which we

were changing the number of records and measured

queries execution time so we can analyze an influence

of this variable parameter.

3 ILT Architecture

ILT is made to help students learn indexing techniques

in relational databases. The idea behind the tool is not

to teach students SQL syntax, but to teach them how to

use indices in different use cases. Students can use ILT

to create a database schema and to insert specific data

in the database for testing purpose. They can create and

execute different queries on test data, with or without

help of indices. The performance metrics of these

queries is then stored in a database together with

indices memory usage. These results can be visualized

and presented to the students, so they can learn about

advantages and disadvantages of using different

indices when executing queries. In Fig. 1 we present an

architecture of ILT. In this section, we will describe

every module of its architecture. Module names are

given in bold together with the databases, a user and

the tool, so it could be easier to follow on the figure.

3.1 ILT modules

By the notion of User in this paper we refer to a

student, because ILT is mainly created to fulfill needs

of students in our database courses. Our tool comprises

seven modules and a repository with two databases.

First, we will provide a brief description of all modules

and databases, and afterwards we will present them in

more details.

Test Database contains tables and indices that are

needed for testing. These data structures will be used

in many queries, which execution time will be

measured. Result Database stores execution time of

queries and memory usage of data structures that are in

Test Database. Data Structure Controller is used by

the user to create tables and indices in Test Database

and Record Controller populates these tables and

indices with records. The user can insert data by adding

60___Proceedings of the Central European Conference on Information and Intelligent Systems

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

records one by one or using Record Generator to

randomly insert many records in the database. Data

Structure Information Gatherer gathers information

about tables and indices and saves them into Result

Database. The user can create a query with Query

Controller, which will be sent to Test Database. Its

execution time is measured, and execution plan

gathered by Query Execution Plan Controller and

Viewer. They are presented to the user and sent to

Result Database. Result Visualizer can create

different charts using results stored in Result Database

to help the user analyse them in detail. In the

continuous of this subsection, a full description of these

modules will be presented and in the Section 4, we will

present the databases schemas.

The Data Structure Controller module contains

two controllers: Table and Constraint Controller and

Index Controller. They are used to update tables and

their constraints and indices. The user initializes a

change of database schema using these controllers.

With Table and Constraint Controller, the user can

choose to create a new table and define attributes and

constraints of the table, or to change or drop existing

tables. To create a new index, the user can specify

index type and what she or he wants to be indexed, or

the user can change or drop existing indices using

Index Controller. Right now, our tool supports B-tree,

bitmap and function-based indices. After the user

choses data structure changes, they will be sent to Test

Database as SQL Create, Alter or Drop statements.

After database schema changes are sent, the property

changes like table name, index name, index type, what

is indexed, attribute and constraint properties will be

sent to Data Structure Information Gatherer. The

gatherer will later send these property changes to

Result Database.

The Record Controller module is used by the user

to insert new data or change existing ones in Test

Database. There could already exist data that the user

inserted before or that are data that exists as examples

in ILT, so the user could immediately test some

queries. The user needs to decide if she or he wants to

Figure 1. The ILT architecture

Proceedings of the Central European Conference on Information and Intelligent Systems___61

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

define specific data changes, after the SQL Insert,

Update or Delete statements will be sent to Test

Database, or the user wants to use Record Generator

to randomly generate records to the same database. The

changes like the number of records in the tables or the

number of unique values of attributes will be sent to

Data Structure Information Gatherer, after data

changes are sent to Test Database.

The Record Generator module uses a code

generator to generate SQL scripts to insert data into

Test Database. The user can choose how many records

will be generated, what will be the range of generated

values and how many unique values will be generated

within any attribute. The user needs to have a control

over the value generation, because different types of

indices could be appropriate to use in different

scenarios, which depends of the values of the indexed

column. The record generator supports generating

values of number and varchar data types.

The Data Structure Information Gatherer

module gathers properties about tables, attributes,

constraints, indices and records from Data Structure

Controller and Record Controller, after the user

made some changes in Test Database. It also needs to

send SQL Select statement to Test Database to gather

information about data structures memory usage. If the

user changes data structures or data within them, the

memory usage will be changed, and this module needs

to gather new information about that. Before every

gathering of memory usage information, the database

statistics need to be refreshed to get the newest

information. After all information are gathered, the

SQL Insert, Update or Delete statements are sent to

Result Database.

The Query Controller module is used by the user

to create a query which will be executed, and which

performance will be measured. The user can specify

which tables, attributes, functions and conditions will

be in the select statement and can choose a specific

index to be used. That specification depends on the

tables and indices that are already created in Test

Database. If the user chooses a specific index to be

used, the HINT clause will be added to the query, to

force the index usage. Otherwise, a Query optimizer

could decide not to use that index, because it could not

be a part of the most efficient execution tree. After the

specification of the query is created, the SQL Select

statement is formed and it is ready to be sent to Test

Database. To get data from a hard drive, database

block buffer cache must be cleared before each query

execution. If this wasn’t done, sometimes data would

be obtained from the hard drive and sometimes it

would be obtained from the cache, which would make

our test results invalid. After the Select statement is

sent to Test Database, an indicator is sent to Query

Execution Plan Controller and Viewer to wait for the

query execution plan and the query execution time

from that database. The user can also create a query and

send it to that module to get the execution plan only

and not to execute it.

The Query Execution Plan Controller and

Viewer module can present a query execution plan and

query execution time to the user. After the user sent the

query to Test Database, this module will receive an

indicator from the Query Controller module, and it

will wait for the query execution plan and the query

execution time to be received from Test Database.

This module will present that plan and time to the user

and it will send them to Result Database in a way of

the SQL Insert statement. If a query is received from

Query Controller, the Query Execution Plan

Controller and Viewer module will send a SQL

Explain Plan statement to Test Database and it will

wait for the query execution plan to be received to

present it to the user.

The Result Visualizer module contains two

visualizers: Query Execution Time Visualizer and

Memory Visualizer. These two visualizers use data

stored in Result Database to present a query execution

time or a memory usage of data structures on a chart.

The user can choose how the chart will look like and

what should be presented on the x and y axes.

If the user chooses to use Query Execution Time

Visualizer, she or he will need to specify a few

parameters. The user needs to specify which queries

execution time will be presented, and will it be an

average time from more than one execution. Queries

execution time will always be presented on the y-axis

and the user needs to specify a measurement unit.

Different queries could be presented on the x-axis or

the same query executed in the different circumstances

could be presented. The same query could be executed

on different tables, and the number of records or

attributes of these tables could be presented on the x-

axis. The number of unique values of the selected

attributes could also be presented on the x-axis,

alongside the cases when some indices are used, or no

index is used.

If the user chooses to use Memory Visualizer, she

or he will need to specify data structures from which

memory usage will be gathered. The memory usage of

data structures will always be presented on the y-axis

and the user needs to specify a measurement unit.

Different tables or indices could be presented on the x-

axis. The number of records or attributes in the tables

or the number of unique values of some attributes could

also be presented on the x-axis.

The Result Visualizer module is not yet

completed, and for now we can only export data from

Result Database into an excel file to visualize the test

results. Some use cases and examples of test results

will be presented in the Section 5.

4 Test and Result Databases schema

The repository of ILT is composed of two databases:

Test Database, storing data for testing purpose, and

Result Database, storing testing results for analyses.

62___Proceedings of the Central European Conference on Information and Intelligent Systems

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

In this section, we will describe schemas of these

databases.

4.1 Test Database

Test Database is used to store the data needed to test

and measure execution time of queries and memory

usage of data structures. There are predefined data

structures that already contain test data. They serve as

the example for users to test different queries

immediately. The user can create his own use cases by

adding new tables and indices and insert new data into

them. After that, she or he can create and execute

different queries on new data structures and analyze

query performance. The Test Database schema

depends on data structures that the user has created.

4.2 Result Database

Result Database is used for storing query execution

time and query execution plans. It also stores properties

of data structures, e.g. the name of a table or an index,

their memory usage, table attributes and constrains etc.

It is the core element needed for the Result Visualizer

module, which uses its data to present results to the

user. In Fig. 2 we present the Result Database schema.

We will describe every part of its schema in the rest of

this section.

The Table entity describes tables created in Test

Database. Every table has a unique name, a number of

records, a memory usage and can have more than one

attribute. The same table could be selected in multiple

queries and used in different execution plans. Many

indices could use the same table to index its attributes.

The Attribute entity presents any attribute of the

tables in Test Database. Every attribute has a unique

name, an indicator if it is mandatory, a number of

different values, a type and it can have more than one

constraint. The same attribute could be selected in

many queries and used in many indices.

The Constraint entity presents constraints that

could be created on one or more attributes in Test

Database. Every constraint has a unique name, a type

and if that type is a Check constraint, it has an

additional condition.

The Index entity describes indices created in Test

Database. Every index has a unique name, a type and

a memory usage. It can reference one or more tables

and it can index more than one attribute. In cases when

a function-based index is created, the string of what is

indexed will be stored in the indexed attribute. The

same index can be required in many queries and it

could be used in many execution plans.

Attribute Type, Constraint Type and Index Type

are entities representing commonly used types in

database systems. For example, Attribute Type can be

Char, Varchar, Number etc. Constraint Type can be

Primary Key, Unique, Check etc. Index Type can be

Bitmap, B-tree, Function-Based Bitmap etc.

The Query entity presents any query that is

executed in Test Database at least once, and it only

Figure 2. The Result Database schema

Proceedings of the Central European Conference on Information and Intelligent Systems___63

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

has its statement. Every query can select data from

many tables and attributes, and it can require the usage

of many indices. One query can be executed multiple

times and every time the execution plan is stored.

The Execution Plan entity presents every

execution plan that is created during the execution of

any query. It has a text that describes the execution

plan, a hash value, a query that represents it and an

execution time of that query. Every execution plan can

require access to many tables and to many indices.

 All these entities, attributes and relations in the

schema could be used in many different analyses. For

example, we want to present a query execution time

using an index in use cases when there are different

number of records in tables. To present these use cases,

we would need information about that query, a number

of records in the tables, a query execution time and

execution plans when that index is used. In the next

section, we will present use cases when we wanted to

measure and analyze a query execution time and a

memory usage of indices, depending on the number of

records in tables.

5 Use Cases

Students are using our tool to make simple use cases of

analyzing a query execution time and a memory usage

of indices. Together with our students, we wanted to

compare performance provided by bitmap and B-tree

indices. Bitmap indices should provide better

performance if there are only few different values of

the indexed attribute and if bitwise operations or

COUNT, SUM or AVG aggregation functions are

included in queries. Also, bitmap indices should use

less space than B-tree indices if there are only few

different values of the indexed attribute. We wanted to

practically present these statements to our students by

creating experiments that are included in this paper.

The use cases presented in this section are not meant to

discover a new knowledge. Their purpose is to increase

students’ knowledge about indexing techniques by

demonstrating experiments that are a common

knowledge.

Using the tool, students created five tables with

twelve attributes. All of them have one attribute

reserved for a primary key, one attribute for a testing

purpose and ten auxiliary attributes that are needed to

increase the table size. All these attributes are of the

Number type. No constraints were created because that

could hinder our test results. For example, creating a

primary key constraint could implicitly create a B-tree

index on primary key attributes in some DBMSs. Using

the Record Generator, students setup parameters that

all data would be of the Number type and that the test

attribute would have 100 different values. They

generated one, two, four, eight and sixteen million

records in those five tables. In the end, they created the

bitmap and B-tree indices on the test attribute for every

table. Two queries were created to test the performance

using these indices and their memory usage was

measured.

In this paper, the Oracle DBMS was chosen for the

ILT repository, because we are using it in database

courses, and it is one of the most usable DBMSs. Users

can choose different DBMSs for the repository, which

allows them to compare performance results between

the DBMSs of different vendors.

Before every execution of a query, if an index usage

was required a HINT clause was added. Also, in order

to get data from a hard drive the database block buffer

cache was cleared.

5.1 Query execution time example

According to (O’Neil & Quass, 1997), using bitmaps

with queries that have AND, OR or NOT operations or

COUNT, SUM or AVG aggregation functions will be

useful, because these operations and functions are fast

with bitmaps. To check this statement practically,

students created a query with a COUNT aggregation

function in the SELECT statement and with two OR

operations in the WHERE clause:

SELECT COUNT(*) FROM table_x WHERE

testcolumn = 40 OR testcolumn = 60

OR testcolumn = 80;

We expected that the bitmap index should provide

better performance than the B-tree index because of the

COUNT aggregation function, OR operations and only

100 different values of the indexed attribute. The query

was executed ten times on each table and an average

query execution time was required. In Table 1., we

present an average execution time of the query, that

depends on the number of records in the tables, using

bitmap and B-tree indices or not using any index.

Table 1. An average execution time of the first query

in dependence of the number of records

 Number of records in tables

[million]

 1 2 4 8 16

Bitmap

index [ms]
22 31 49 57 116

B-tree

index [ms]
52 84 97 117 241

No index

[ms]
605 1,345 2,399 5,016 9,680

Both bitmap and B-tree indices provided better

performance in compare to the test case without using

indices. Increasing the number of records, a ratio

between an average query execution time of a full table

scan and an index access also increases. For example,

using 1,000,000 records, the average query execution

time using the bitmap index was 27.5 times better than

the average query execution time without using indices

and for 16,000,000 records it was around 83.4 times

64___Proceedings of the Central European Conference on Information and Intelligent Systems

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

better respectively. That means indices may have even

bigger influence when the number of records increases.

It is because the COUNT function requires an index

access only.

The bitmap index provided in average 2.24 times

better performance than the B-tree index, which proved

our assumption. We can also see that the number of

records in the table influence the query execution time

using indices, but not as much when the full table scan

is done.

Without the OR operations, the bitmap index

should still provide better performance than the B-tree

index, but the ration should be lower than 2.24. To

check this statement, students created a query with the

SUM aggregation function, with no bitwise operations

and 100 different values of the indexed attribute:

SELECT SUM(testcolumn) FROM table_x

WHERE testcolumn = 40;

The same tables were used like in the last test case.

The query was also executed ten times on each table

and an average query execution time was required. In

Table 2., we present an average execution time of the

query, that depends on the number of records in the

table, using bitmap and B-tree indices or not using any

index.

Table 2. An average execution time of the second

query in dependence of the number of records

 Number of records in tables

[million]

 1 2 4 8 16

Bitmap

index [ms]
26 26 34 36 44

B-tree

index [ms]
25 28 38 41 73

No index

[ms]
621 1,316 2,401 5,830 10,072

Without using any index, the query execution time

was similar to the last test case. We can see that the

query execution time using any of these indices is

shorter than it was in the last test case. The reason is

because in this test case there is no bitwise operations.

The bitmap index provided in average 1.19 times better

performance than the B-tree index, which proved our

assumption that the OR operations have a higher

impact to the B-tree indices that to the bitmap indices.

Changing table and data properties like the number

of table records, the data type of the indexed column

and the number of different values of the indexed

column could change the query execution time in the

number of ways. Also, the query aggregation function,

bitwise operations and joins could change the query

execution time. We expect that our students make

different use cases by combining these table and data

properties, queries and indices and test them with the

ILT tool, in order to learn more about the impact of

these properties.

5.2 Memory usage example

Students measured the memory usage of those Bitmap

and B-tree indices created on the five tables and

compared them. In Fig. 3., the memory usage of the

indices created on tables with different number of

records are presented.

Figure 3. A memory usage of the indices in

dependence of the number of records

For each index, we can see nearly linear memory

usage growth while the number of records in the tables

increases. According to (O’Neil & Quass, 1997), the

bitmaps use less space than other indices. Comparing

bitmap and B-tree indices in students’ test cases,

previous statement is confirmed. The bitmap index

uses in average 6.67 times less memory than the B-tree

index. Creating a bitmap index on the attribute, that

doesn’t have many different values, will not require too

much memory space, comparing to a B-tree index,

regardless of the number of records in a table. If there

are many different values of the indexed attribute, the

results could be different. It is something that we

expect of our students to try and learn about through

our tool.

The idea is that all these analyses motivate our

students do more tests. They can create different use

cases changing the index type, the number of records

or the number of columns in tables, the number of

indexed columns, data type of columns, the number of

different values of indexed column, the aggregation

function and bitwise operations, and the number of

records that are included with the WHERE clause.

Every change brings new knowledge about the usage

of indices and students can learn about advantages and

disadvantages of indices in different use cases.

6 Conclusions

In this paper, we presented the ILT architecture and its

every module. The tool is created for students to learn

about indexing techniques more successfully. Students

need to make fast changes on data structures to create

2.4 4.6 9.1 18.0
35.9

15.3
30.5

61.0

122.0

244.1

0

50

100

150

200

250

300

1 2 4 8 16

M
em

o
ry

[M
B

]
Number of records in the table [million]

Bitmap(testcolumn) B-tree(testcolumn)

Proceedings of the Central European Conference on Information and Intelligent Systems___65

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

many use cases so they can test performance provided

by indices in different circumstances. They can learn in

which cases indices are useful and when they are not,

and which index type provides better performance in

comparison to other types for specific queries and data

structures. Providing the possibility of fast changes in

interactive environment and performance

visualization, we wanted to motivate students to

research about indices and easily learn about them with

our tool.

We have implemented a prototype of the tool and it

still needs improvements. With the Result Visualizer

module, we can export data from Result Database and

visualize it another way, as we presented in the use

cases examples of this paper. In order to completely use

our tool only, we must improve that module so it could

present charts within the tool. After it is done, we will

be able to evaluate ILT with students and probably

change and improve other modules. We will try to track

students work with the tool and compare that way of

learning with a usual way of learning indexing

techniques via command prompts or professional tools

provided by the DBMS vendors. Our database courses

are at the 2nd, 3rd and 4th year of undergraduate studies

as well as at the level of master studies. Our students

are divided into multiple groups so we can construct an

experiment in which we provide certain groups with

ILT and other groups with professional tools provided

by the DBMS vendors, and compare students’ results

at the indexing techniques exam. Until now, the tool

has been used just with one generation of students and

for relevant analysis we will need at least one more

generation of students. The first generation of students

had mostly positive experience using our tool and their

results at the indexing techniques exam were better

than the results of the previous generation of students.

We will also make a survey with our students about

ILT to evaluate their experience using the tool.

We are also planning to add a new module –

Materialized View Controller, which will allow

students to create materialized views and test

performance provided by them. Our students could

also compare and analyze a memory usage and an

execution time of queries provided by indexing

techniques and materialized views in various use cases.

As this tool is designed for anyone who wants to

learn more about the usage of indexing techniques, we

hope that these new features will motivate them to do

more research using ILT.

Acknowledgments

The research in this paper is supported by the Ministry

of Education, Science and Technological Development

of the Republic of Serbia, grant No. III-44010.

References

Agha, M. I. E., Jarghon, A. M., & Abu-Naser, S. S.

(2018). SQL Tutor for Novice Students.

International Journal of Academic Information

Systems Research (IJAISR), vol. 2, no. 2, pp. 1-7.

Chaudhuri, S., & Dayal, U. (1997). An overview of

data warehousing and OLAP technology. In ACM

SIGMOD Record, vol. 26, no. 1, (pp. 65–74).

Golfarelli, M., & Rizzi, S. (2018). From Star Schemas

to Big Data: 20+ Years of Data Warehouse

Research. In A Comprehensive Guide Through the

Italian Database Research Over the Last 25

Years, vol. 31, (pp. 93–107), S. Flesca, S. Greco,

E. Masciari, and D. Saccà, Eds. Cham: Springer

International Publishing.

Grillenberger, A., & Brinda, T. (2012). eledSQL: A

New Web-based Learning Environment for

Teaching Databases and SQL at Secondary School

Level. In Proceedings of the 7th Workshop in

Primary and Secondary Computing Education

(WiPSCE ’12) (pp. 101-104). Hamburg, Germany.

Jurgens, M., & Lenz, H.-J. (2001). Tree Based Indices

vs. Bitmap Indices: A Performance Study.

International Journal of Cooperative Information

Systems, vol. 10, No. 03, pp. 355-376.

Kenny, C., & Pahl, C. (2009). Intelligent and adaptive

tutoring for active learning and training

environments. Interactive Learning Environments,

vol. 17, no. 2, pp. 181–195.

Kleerekoper, A., & Schofield, A. (2018). SQL tester:

an online SQL assessment tool and its impact. In

Proceedings of the 23rd Annual ACM Conference

on Innovation and Technology in Computer

Science Education (ITiCSE 2018) (pp. 87-92).

Larnaca, Cyprus

Kleiner, C., Tebbe, C., & Heine, F. (2013).

Automated grading and tutoring of SQL

statements to improve student learning. In

Proceedings of the 13th Koli Calling International

Conference on Computing Education Research -

Koli Calling ’13 (pp. 161-168). Koli, Finland.

Kung, H.-J., & Tung, H-L. (2010). A web-based tool

for teaching data modeling. Journal of Computing

Sciences in Colleges, 26, 231-237.

O’Neil, P., & Quass, D. (1997). Improved query

performance with variant indices. In ACM

SIGMOD international conference on

management of data (SIGMOD) (pp. 38-49).

Tucson, USA.

Sadiq, S., Orlowska, M., Sadiq, W., & Lin, J. (2004).

SQLator: an online SQL learning workbench.

ACM SIGCSE Bulletin. 36, 223-227.

66___Proceedings of the Central European Conference on Information and Intelligent Systems

30th CECIIS, October 2-4, 2019, Varaždin, Croatia

