
Implementing Agent Roles in Massivley Multi-Player
On-Line Role-Playing Games

Igor Tomičić, Bogdan Okreša Đurić, Markus Schatten
Artificial Intelligence Laboratory

Faculty of Organization and Informatics, University of Zagreb
Pavlinska 2, 42000 Varaždin, Croatia

{dokresa, igor.tomicic, markus.schatten}@foi.hr

Abstract. Organizational roles in multiagent sys-
tems (MASs) are an important concept in modelling
and implementation of complex interactive systems
like massively multi-player on-line role-playing
games (MMORPGs). The paper presents a novel
approach to implementing such roles as sets of agent
behaviours. An initial implementation in Smart
Python Agent Development Environment (SPADE)
is presented and applied to the implementation of
artificial players that are able to enact various roles in
The Mana World (TMW) an open source MMORPG.
The expressivity and applicability of the presented
approach is discussed and examples of usage are
provided.

Keywords. organizational roles, multi-agent systems,
massively multi-player on-line role-playing games, ar-
tificial player implementation, agent behaviour

1 Introduction
Agent roles are a novel implementation technique
in the development of artificial agents as well as
MASs and more recently large-scale multiagent sys-
tems (LSMASs). Herein we will introduce the us-
age of this implementation technique in MMORPGs
since they provide an important application domain for
LSMASs (Schatten, Tomičić, et al., 2017).

The most often used tool for modelling artificial
game characters like non-player character (NPC) in-
clude finite state machines (FSMs), where each state
relates to the state of the character and defines its
choice from available actions. For a more complex
behaviour, FSMs is inherently insufficient, and thus
more more flexible planning capabilities are required.
There are other techniques that are used for modelling
NPC and player behaviour like behavioural trees. Be-
havioural trees, as opposed to FSMs that model states,
model actual behaviours and include sequences, proba-
bility and priority selectors as well as decorators (Yan-
nakakis and Togelius, 2017). Another ad-hoc method
is using a utility function similarly to fuzzy logic in
which the decision about current action depends on a

vector of variables which is evaluated against a fuzzy
set function (Yannakakis and Togelius, 2017).

Stanford Research Institute Problem Solver
(STRIPS) and goal oriented action planning – based
for example on belief-desire-intention (BDI) – are used
for planning techniques in games such as F.E.A.R.
(Orkin, 2006), and lately in research of MMORPGs
such as (Schatten, Ðurić, et al., 2017).

When modelling more complex behaviours, all these
methods can become quite bulky and cumbersome,
since a complex character might encompass many dif-
ferent behaviours and even more states to act in a game
environments such as MMORPGs. Herein we would
like to outline agent roles as a possible solution for the
implementation of such complex sets of behaviours as
well as provide examples by using SPADE (Gregori et
al., 2006).

The rest of this paper is organized as follows: firstly
in section 2 we provide an overview of related research.
Then in section 3 we show how agent roles can be im-
plemented as sets of behaviours in SPADE and give an
example role implementation in 4. In the end in sec-
tion 5 we draw our conclusions and give guidelines for
future research.

2 Related Work
Agent roles are a concept introduced from organization
theory (see (Schatten, Ševa, et al., 2016) for an in-depth
review) that allow for the implementation of agents that
are able to enact a given role based on the role specifi-
cation. There have been a few propositions to use such
agent roles in games in related literature.

For example, in (Westra, F. Dignum, et al., 2008)
the authors propose to view games explicitly as orga-
nizations designed and developed for achieving certain
goals and requirements. Within the organization, in-
dividual agents use appropriate behaviours in order to
reach external goals. The agent organization defines
constraints and capabilities of organizational concepts:
roles, tasks, interaction protocols, and parties. Within
their paper, authors also propose a system for agents
that are adapting to the user during gameplay, but con-

Proceedings of the Central European Conference on Information and Intelligent Systems__17

__
29th CECIIS, September 19-21, 2018, Varaždin, Croatia

sidering that the game does not reach unwanted states,
e.g. breaking the game’s story line, which might hap-
pen should the game contain randomly adapting agents.
The proposed agents are adapting individually, but the
adaptation is guided using an agent organization. The
OperA (M. Dignum, 2004) framework which is used
within the paper, distinguishes organizational aspects
from the individual ones, enabling the specification of
organizational requirements and objectives, but at the
same time allowing individuals to act according to their
own demands and capabilities.

In (Westra, Van Hasselt, et al., 2008) the authors
contemplate about adaptability within on-line adapting
games. They highlight the limitations of using cen-
tralized control in dynamic adjustability, and to meet
the rising complexity and the number of adaptable el-
ements, authors suggest the use of an multi-agent ap-
proach, specifically for "adapting serious games to the
skill level of the trainee". Considering the research
on "reconciling" the two main aspects in games – the
flexibility of adaptability, and the control of a game’s
story line, authors use the idea of agent organizations
as a means for mediation. The authors also use the
OperA model for agent organizations, which "enables
the specification of organizational requirements and
objectives, and at the same time allows participants to
have the freedom to act according to their own capabil-
ities and demands." Figure 1 shows a simple example
of an OperA interaction structure through scenes (de-
picted with squares), which can progress in parallel.

Agent organizations are also considered in (Huber
and Hadley, 1997), where authors describe the archi-
tecture and performance of autonomous agents that are
able to play Netrek, a complex, multi-player, multi-
team, real-time internet game. Authors recognize the
challenge in creating agents which are able to play the
game, not only autonomously as an individual, but also
by cooperating and coordinating with other members
of the same team, and coordinating against members
of the opposing team. There are several agent roles
that authors are suggesting, each tied to specific ac-
tions they are required to perform. The roles are named
"engage", "assault", "escort", "ogg", "protect", "get
armies", and vary from the relatively simple behaviours
(like attacking the closest opponents) to the more com-
plex ones (bombing a planet, dropping armies on an
opponents planet, etc.). In the conclusion, author ar-
gue that their agents were able to pursue complex goals
"within a very complex, dynamic environment", with
roles as the key enablers for task solving processes.

Merging agent technology with game technology
(game engines) is not a trivial task, as argued by (F.
Dignum et al., 2009); for this consolidation to work,
agents should run in their separate threads and only
loosely be coupled with the game engine. The syn-
chronization between the two proved to be an impor-
tant aspect within this context; the communication be-
tween agents, and between agents and the game world

should be enabled, but also a means of translation be-
tween the agent and the gaming world, as the agents
operate on a more abstract level. Authors argue that
these challenges can be faced by using "agent tech-
nology to its full extent". Also, authors argue that
"using a conceptual stance allows for connecting the
agent concepts to the game concepts such that agent
actions can be connected to actions that can be ex-
ecuted through the game engine and that agents can
reason intelligently on the information available from
the game engine." These connections could be imple-
mented through agent roles.

The method based on MAS architecture which
would be used for defining a game is described in
(Aranda et al., 2012), and the first phase authors are
remarking is the role definition phase. The roles are
herein specified with names and sets of attributes, with
attributes defining properties bound to game-playing
agents. Also, agents have some predefined set of roles
in order to provide basic features that any massively
multi-player on-line game (MMOG) should have by
default, and these basic features can be extended by the
game designers in the form of new features within the
game. Hierarchy is used to relate roles, and agent orga-
nizations are used to represent agent behaviour related
to forms of collaboration, such as player clans.

3 Implementing Agent Roles

We will use agent roles as sets of agent behaviours.
According to (Marian et al., 2004) agent behaviours
can be:

• role factory (a role added/deleted at runtime to be
enacted/stopped by the agent);
• itinerary (allows mobile agents to travel across var-

ious locations and perform tasks);
• periodic (looped behavior possibly with a given pe-

riod of time intervals between iterations);
• observer (an agents awaits an event in order to per-

form its actions);
• listener (a special type of observer in which an agent

awaits a special message of some other agent);
• client/server (resembles the client-server model);
• one-shot behavior or task (represents a simple task

or activity);
• finite state machine (resembles a finite state ma-

chine in which every node is an activity to be per-
formed);

• sequential behavior (a sequence of other behav-
iors);

• parallel (various behaviors are run in parallel).

In addition to these types of behaviour, we would
like to add an additional one, which from our prac-
tice, has shown to be very useful for various practi-
cal implementations where an agent is using a resource
concurrently: exclusive behaviour – allows an agent
to run the behaviour exclusively, by stopping all other

18__Proceedings of the Central European Conference on Information and Intelligent Systems

__
29th CECIIS, September 19-21, 2018, Varaždin, Croatia

Figure 1: A simple example of an OperA interaction structure (Westra, Van Hasselt, et al., 2008)

exclusive behaviours. Such a behaviour, usually imple-
mented with locking or semaphores, allows the agent to
use some kind of resource (like a database, a file, a net-
work socket etc.) that isn’t thread-safe, by putting all
other concurrent behaviours, that might use the same
resource, at hold.

As per definition, we can define an agent’s role as
a set of behaviours R = {b1, b2, . . . , bn} which are
added to the agents behaviours at run-time at the exact
moment the agents acquires the role and starts enact-
ing the defined behaviours. In the same manner, these
behaviours are removed in the moment the agent stops
enacting the role.

Translated into Python and more precisely SPADE
the implementation of an agents role is straightforward
as shown in listing 1.

Listing 1: An agent role class in Python/SPADE
c l a s s Role :

’ ’ ’ An (o r g a n i z a t i o n a l) r o l e i s
b a s i c a l l y a s e t o f b e h a v i o u r s .

The b e h a v i o u r s s h o u l d be a l i s t o f
e l e m e n t s ha v i n g t h e form : (

b e h a v i o u r i n s t a n c e , t e m p l a t e
i n s t a n c e) .

The second i t e m o n l y a p p l i e s t o
E v e n t B e h a v i o u r s (t e m p l a t e) ,
e l s e i t i s None ’ ’ ’

def _ _ i n i t _ _ (s e l f , b e h a v i o u r s = [])
:

s e l f . b e h a v i o u r s = b e h a v i o u r s

Thus, an instance of a role is independent of actual
agents. It is just a container to hold various behaviour
instances possibly with templates used for event be-
haviours (which are the implementation of observer be-
haviours for messages in SPADE).

In addition to a role class, we define two behaviours
which implement the role factory behaviour which al-
lows agents to acquire or stop enacting a role. The
first behaviour allows an agent to acquire a role and
is shown in listing 2.

Listing 2: An agent behavior class for adding a role
implemented in Python/SPADE
c l a s s AddRole (spade . Behav iou r .

OneShotBehaviour) :

" " " Behav iour t o add a Role t o t h e
Agent . The Agent w i l l a c q u i r e
b e h a v i o u r s o f t h e g i v e n Role . " " "

def _ _ i n i t _ _ (s e l f , r o l e , ∗ a rgs , ∗∗
kwargs) :

spade . Behav iou r . OneShotBehaviour .
_ _ i n i t _ _ (s e l f , ∗ a rgs , ∗∗ kwargs

)
s e l f . r o l e = r o l e

def _ p r o c e s s (s e l f) :
i f not h a s a t t r (s e l f . myAgent , "

r o l e s ") :
s e l f . myAgent . r o l e s = []

s e l f . myAgent . r o l e s . append (s e l f .
r o l e)

f o r b e h a v i o u r , t e m p l a t e in s e l f .
r o l e . b e h a v i o u r s :

s e l f . myAgent . addBehav iou r (
b e h a v i o u r , t e m p l a t e)

Basically, the behaviour appends the role to the list
of roles the agent already has (or initializes the list of
roles to an empty list first if the agent has no roles),
and then adds all behaviours from the role to the agent
to start using them.

The second behaviour removes a role from the agent,
and is shown in listing 3.

Listing 3: An agent behavior class for deleting a role
implemented in Python/SPADE
c l a s s D e l e t e R o l e (spade . Behav iou r .

OneShotBehaviour) :
" " " D e l e t e a r o l e o f t h e Agent . The

Agent w i l l l o s e a l l b e h a v i o u r s
o f t h e g i v e n Role . " " "

def _ _ i n i t _ _ (s e l f , r o l e , ∗ a rgs , ∗∗
kwargs) :

spade . Behav iou r . OneShotBehaviour .
_ _ i n i t _ _ (s e l f , ∗ a rgs , ∗∗ kwargs

)
s e l f . r o l e = r o l e

def _ p r o c e s s (s e l f) :
i f not s e l f . r o l e in s e l f . myAgent .

r o l e s :
r a i s e Val u e E r r o r , " The a g e n t i s n ’

t p l a y i n g t h e r o l e t o be

Proceedings of the Central European Conference on Information and Intelligent Systems__19

__
29th CECIIS, September 19-21, 2018, Varaždin, Croatia

d e l e t e d ! "
f o r b e h a v i o u r , _ t in s e l f . r o l e .

b e h a v i o u r s :
s e l f . myAgent . removeBehaviour (

b e h a v i o u r)
s e l f . myAgent . r o l e s . remove (s e l f .

r o l e)

The behaviour basically checks if the agent has the
role to be removed, and if yes, removes all behaviours
of the role, and then removes the actual role.

4 Example
In order to provide additional clarification we pro-
vide an example of how such an implementation
of agent roles could be used and has been used
in the Large-Scale Multi-Agent Modelling of Mas-
sively Multi-Player On-Line Role-Playing Games
(ModelMMORPG) project. In listing 4 a Leader role
is implemented.1

Listing 4: An example Leader role implemented in
Python/SPADE
c l a s s Leader (Role) :

c l a s s L e a d e r B e h a v i o u r (spade .
Behav iou r . OneShotBehaviour) :

def _ p r o c e s s (s e l f) :
(. . .)

c l a s s P a r t y S t a t s (spade . Behav iou r .
OneShotBehaviour) :

def _ p r o c e s s (s e l f) :
(. . .)

c l a s s I n v i t e P l a y e r s (spade .
Behav iou r . P e r i o d i c B e h a v i o u r) :

def _onTick (s e l f) :
(. . .)

def _ _ i n i t _ _ (s e l f) :
l b = s e l f . L e a d e r B e h a v i o u r ()
i p b = s e l f . I n v i t e P l a y e r s (30)
psb = s e l f . P a r t y S t a t s ()
s e l f . b e h a v i o u r s = [(psb , None) ,

(lb , None) , (ipb , None)]

The implemented role has been used for the imple-
mentation of artificial intelligence (AI) players inside
the open source MMORPG TMW to create players
which are able to create parties of players, invite new
players and provide party statistics to party members.

The behaviours of the role have been implemented
as nested classes inside the role class to be grouped
together in one logical sequence of code, but could

1For the sake of readability we have removed the details
of each behaviour implementation, but the interested reader can
refer to https://github.com/tomicic/ModelMMORPG/blob/master/
TMWhlinterface.py for the whole implementation.

have been used separately, for example if the same be-
haviour is part of multiple roles. During the initializa-
tion of the role, instances of the behaviours are created
and added to the list of behaviours.

To add the role to some agent (for example a TMW-
player agent) one could use the code in listing 5.

Listing 5: Adding a role to an agent in Python/SPADE
r o l e = Leader ()
a = ManaWorldPlayer (SERVER, PORT,

USERNAME, PASSWORD, CHARACTER, ’%
s@127 . 0 . 0 . 1 ’ % USERNAME,
SERVER_PASSWORD)

a . addBehav iou r (AddRole (r o l e))
a . s t a r t ()

With these simple few lines of code, we were able
to implement a very complex agent that acquires a role
and starts enacting the defined behaviours.

5 Conclusion
Through the course of this paper we have shown a
way of implementing agent roles in the context of the
MMORPG domain, using the implementation possi-
bilities provided by SPADE multi-agent development
platform.

Roles that are defined as a part of this research rep-
resent normative concepts that denote sets of behaviors
that can be played or performed by agents when enact-
ing a specific role. Role enactment makes it possible
for in-game characters to change their available actions
dynamically, based on the role they enact. Having be-
haviour and actions defined in such a way makes the
system’s agents capable of adapting to various states of
the system.

In this way very complex sets of behaviours can be
implemented in a clear way with a higher level of ab-
straction then using common FSMs or behavioural tree
methods. By using only a few lines of Python/SPADE
code, we were able to define agent roles as sets of be-
haviours that can then be enacted by particular agents.

Our future research is aimed towards implementing
more complex organizational features into MMORPGs
by using agent technologies especially in regard of
structural features.

Acknowledgments
This work has been fully supported by the Croatian
Science Foundation under the project number 8537.

20__Proceedings of the Central European Conference on Information and Intelligent Systems

__
29th CECIIS, September 19-21, 2018, Varaždin, Croatia

https://github.com/tomicic/ModelMMORPG/blob/master/TMWhlinterface.py
https://github.com/tomicic/ModelMMORPG/blob/master/TMWhlinterface.py

References
Aranda, G., Trescak, T., Esteva, M., Rodriguez, I.,

& Carrascosa, C. (2012). Massively multi-
player online games developed with agents. In
Transactions on edutainment vii (pp. 129–138).
Springer.

Dignum, F., Westra, J., van Doesburg, W. A., & Har-
bers, M. (2009). Games and agents: Designing
intelligent gameplay. International Journal of
Computer Games Technology, 2009.

Dignum, M. (2004). A model for organizational inter-
action: Based on agents, founded in logic. SIKS.

Gregori, M. E., Cámara, J. P., & Bada, G. A. (2006).
A jabber-based multi-agent system platform. In
Proceedings of the fifth international joint con-
ference on autonomous agents and multiagent
systems (pp. 1282–1284). ACM.

Huber, M. J. & Hadley, T. (1997). Multiple roles, mul-
tiple teams, dynamic environment: Autonomous
netrek agents. In Proceedings of the first in-
ternational conference on autonomous agents
(pp. 332–339). ACM.

Marian, T., Dumitriu, B., Dinsoreanu, M., & Salomie,
I. (2004). A framework of reusable structures
for mobile agent development. In Proceedings
of ieee international conference on intelligent
engineering systems (ines2004) (pp. 279–284).
IEEE.

Orkin, J. (2006). Three states and a plan: The ai of fear.
In Game developers conference (Vol. 2006, p. 4).

Schatten, M., Ðurić, B. O., Tomičić, I., & Ivković,
N. (2017). Agents as bots–an initial attempt to-
wards model-driven mmorpg gameplay. In Inter-
national conference on practical applications of
agents and multi-agent systems (pp. 246–258).
Springer.

Schatten, M., Ševa, J., & Tomičić, I. (2016). A roadmap
for scalable agent organizations in the internet
of everything. Journal of Systems and Software,
115, 31–41.

Schatten, M., Tomičić, I., & Ðurić, B. O. (2017). A re-
view on application domains of large-scale mul-
tiagent systems. In Central european conference
on information and intelligent systems.

Westra, J., Dignum, F., & Dignum, V. (2008). Mod-
eling agent adaptation in games. In Bnaic 2008
belgian-dutch conference on artificial intelli-
gence (p. 381).

Westra, J., Van Hasselt, H., Dignum, V., & Dignum,
F. (2008). On-line adapting games using agent
organizations. In Computational intelligence
and games, 2008. cig’08. ieee symposium on
(pp. 243–250). IEEE.

Yannakakis, G. N. & Togelius, J. (2017). Artificial in-
telligence and games. Springer.

Proceedings of the Central European Conference on Information and Intelligent Systems__21

__
29th CECIIS, September 19-21, 2018, Varaždin, Croatia

	CG
	CECIIS-2018-Proceedings
	Computer Games
	Igor Tomičić, Bogdan Okreša Đurić and Markus Schatten: Implementing Agent Roles in Massivley Multi-Player On-Line Role-Playing Games

