

Main problems of programming novices and the right

course of action

Mario Konecki

Faculty of Organization and Informatics

University of Zagreb

Pavlinska 2, 42000 Varaždin, Croatia

mario.konecki@foi.hr

Marko Petrlić

Faculty of Organization and Informatics

University of Zagreb

Pavlinska 2, 42000 Varaždin, Croatia

marpetrli@foi.hr

Abstract. Programming is required in all business

systems and that makes programming courses vitally

important. Regardless of this fact, programming

courses experience rather high failure rates. There is

a need to find the reasons for this kind of state and to

determine the methods that can be used in order to

improve mentioned situation. This paper gives an

overview of conducted research regarding described

state and provides a conclusion about the difficulty of

programming courses and problems that can be

detected. The paper also analyses existing efforts in

improving education process and gives conclusion

about possible courses of action.

Keywords. Programming, novices, problems,

education, learning

1 Introduction

Modern business would not be imaginable without

computers and computer programs. Constant growth

and business changes ask for quicker and more rapid

development of computer programs which have

become a vital part of almost all social systems. The

importance of programming professionals in this kind

of environment cannot be overstated and this puts a

lot of responsibility on today’s educational systems.

Nevertheless, teachers and faculties are struggling

with many problems in teaching programming

novices how to program and this consequently results

in rather high failure and dropout rates. From the very

beginning of programming profession there have been

efforts to find the approach that would benefit

programming novices and that would improve the

quality of acquired knowledge and skills. Even

though all these efforts have been made it is obvious

that the problems of programming education are still

present and that they are reoccurring in every new

generation of programming novices.

General opinion that is widespread and accepted is

that programming is hard to learn [2; 5; 9; 11; 14; 24;

25]. Every teacher can confirm that a large number of

programming novices have problems learning even

the most simple programming concepts. The question

that needs to be answered is whether the

programming is really so difficult and whether the

main problem lies with programming novices or with

existing teaching methods. Current state and

methodology as well as programming novices’

attitudes and habits need to be analyzed in order to

determine the main sources of problems as well as

potential steps for improvement.

This paper gives and overview of research made

in this field as well as analysis of existing efforts that

have been made in order to improve programming

courses. This paper tries to give answers to questions

about difficulty of programming courses, about

problems that are mostly reoccurring and about

measures and changes that can be undertaken in order

to make programming courses closer to and easier for

programming novices. Conclusion about the most

prominent problems and the right course of action

regarding improvement of programming courses as

well as pointers for further research are also presented

and discussed.

2 Programming courses’ failure and

dropout rates

The first question that needs to be answered is

whether programming courses really have low

success rate and how much programming novices

have really learned after passing these courses. The

point of view that is commonly accepted is that failure

rates in introductory programming courses and

dropout rates are rather high [19; 33]. Bennedsen and

Caspersen [4] report average passing rate of 33% but

they also report mixed results depending upon the size

of class and other factors. They also note that there is

a definite negative trend regarding the number of

students that are interested in pursuing computer

science studies.

 Research has shown that students who are at the

end of their studies frequently aren’t able to produce a

usable programming code and that less than 1% of

programming novices continue to deal with

programming after finishing their programming

course [2]. It is also reported that very frequently

students don’t know how to construct usable

programs even at the end of their introductory

programming courses [16]. This fact is usually

explained by students’ lack of ability to perform

program-solving tasks [16]. Lister et al. [16] also

dealt with alternative explanation which claims that

many students have little understanding of basic

programming principles and that they lack the ability

to systematically perform routine programming tasks.

Lister et al. [16] conducted a research on students

from seven countries which was performed in two

phases that tested different aspects: the students’

ability to predict the output of small pieces of code

and their ability to complete small amounts of missing

code from short programming examples. The

conclusion was that students lack skills that are

needed for problem-solving activities since they were

weak in both, especially second phase.

McCracken et al. [17] also report on alarming

results which have shown that students aren’t able to

program at the end of their introductory programming

courses. They conducted research on 216 students and

given the developed evaluation criteria the students

had in average only 22.89 out of 110 points. As a part

of their research they developed an assessment

framework which includes the following learning

objectives that the first year students of computer

science are expected to learn which are also defined

as needed steps for performing problem-solving

activities:

1. Abstract the problem from its description

2. Generate sub-problems

3. Transform sub-problems into sub-solutions

4. Re-compose the sub-solutions into a working

program

5. Evaluate and iterate

The developed assessment framework is aimed at

analysis of success rate of introductory programming

courses. Assessment methods used to evaluate success

and failure rates of programming courses are also

mentioned by other authors. Alaoutinen and

Smolander [1] conducted a survey based on Bloom’s

Revised Taxonomy with 87 students participating in

the research in order to find whether the self-

assessment tool can help students in recognizing the

level of their programming knowledge and skills. The

participating students consisted of both freshmen and

advanced students. The survey gave 44 valid answers.

The results have shown that in general students are

quite good and precise in denoting of their

programming knowledge and skills but it has also

shown that many freshmen gave either overestimated

or underestimated assessment of their knowledge and

skills in programming. This fact can probably be

explained by lack of experience in freshmen

population regarding programming. Ford and Venema

[8] conducted the research on 111 students using the

Dehandi test [6]. They state that the number of correct

answers of Dehandi test is relevant and can be used

for assessing the performance of students on finished

programming course and for detecting problems.

In order to be able to program, programming

novices must comprehend three types of

programming knowledge: syntactic, conceptual and

strategic [2]. Syntactic knowledge refers to

understanding of means of expression in some

particular programming language and can be

compared to knowing words and grammatical rules of

any spoken language. Conceptual knowledge refers to

constructs and principles of programming that require

programming novices to develop proper mental

models. Strategic knowledge refers to skills of

understanding and structuring the problem and

solving the problem by constructing a usable

algorithmic solution. Programming novices often

have problems in understanding the way of thinking

that is needed to instruct computer to perform some

desired task.

Don Norman stated that the gap between novices’

way of thinking and a way that is required by

computer in order for it to be able to process some

instruction is as wide as Grand Canyon [20]. He also

stated that in order to remove this gap either the user

has to be moved closer to the system or system must

be moved closer to the user [20]. Educational process

is trying to bring user closer to the system by teaching

students about the system, but efforts to bring

programming closer to the user have also been made

and are presented later in this paper, although none of

these developed approaches, methods and tools have

become widely accepted in formal education.

3 Reasons of problems in

programming courses

The second question that needs to be answered is the

question about the reasons of low success rates in

introductory programming. Pea and Kurland [21] state

that all programming novices possess some intuitive

idea about programming and its concepts, however

Ben-Ari [3] claims that students do not possess an

effective model of how computer works. He also

states that this model becomes more accurate as

students are introduced to more and more computer

technology but it still cannot be concluded wheatear

this is a good starting point or a source of problems.

This question is also supported by already established

gap in the way students intuitively think and

algorithmic and problem-solving way of thinking

which is needed to instruct computers [20].

Hawi [12] conducted a research on 45

undergraduate students that have finished their

programming courses in order to obtain their

perception about casual attributions of success and

failure regarding programming courses. He used

narrative interview to get more accurate results. He

obtained 10 casual attributions: learning strategy, lack

of study, lack of practice, subject difficulty, lack of

effort, appropriate teaching method, exam anxiety,

cheating, lack of time, and unfair treatment. Learning

strategy was on the top of the list since 40% of the

participants mentioned it as one of causal attributions.

Another research was conducted by Kinnunen and

Malmi [15] who wanted to find out the programming

courses dropout reasons. Their research was

conducted on 105 students that were given the

questionnaire and 18 of these students were

additionally interviewed to get more accurate results.

The results indicate multiple reasons of dropout with

the lack of time and the lack of motivation as the most

frequent reasons. Both of these reasons were also

affected by various factors: perceived difficulty of the

course, general difficulties with time managing and

planning studies, or the decision to prefer something

else, etc. Their research shows large amount of factors

that need to be addressed in order to reduce dropout

rates and they state that simple actions of teachers in

order to improve the course success rate may be

ineffective.

Gomes and Mendes [9] state that students have

problems in programming and creating algorithms

because they don’t know how to solve problems in

proper way. This promotes the idea that these

problem-solving skills are the place to start with

potential solution. Although introductory

programming course should train students in solving

problems by usage of some chosen programming

language, students have many problems in using these

skills to the point of having problems with even the

most basic concepts.

Gomes and Mendes [9] state that these problems

could have many different reasons:

• Programming demands a high abstraction

level.

• Programming needs a good level of both

knowledge and practical problem solving

techniques.

• Programming requires a very practical and

intensive study, which is quite different from

what is required in many other courses (more

based in theoretical knowledge, implying

extensive reading and some memorization).

• Usually teaching cannot be individualized,

due to common classes’ size.

• Programming is mostly dynamic, but usually

thought using static materials.

• Teachers’ methodologies many times don’t

take into consideration the student’s learning

styles. Different students have different

learning styles and can have several

preferences in the way they learn.

• Programming languages have a very

complex syntax with characteristics defined

for professional use and not with pedagogical

motivations.

Nikula et al. [19] conducted a five-year research in

which they tried to answer the question about reasons

of low pass rates in introductory programming

courses. They recorded pass rates each year along

with the data about the deliverables and attending

rate. Each year they conducted four surveys: initial,

midterm, final, and dropout. Initial survey dealt with

demographic data and initial skills, midterm survey

dealt with progress that has been made, final survey

dealt with success of students and their perception of

finished course, and dropout survey was given to

those students who did not finish the course. During

the whole period of research changes were made each

year in order to improve the course. Nikula et al. [19]

concluded that the low pass rate is affected mostly by

three factors: programming as a discipline, course

arrangements, and student behavior.

Since it was already mentioned that most authors

agree that to learn how to program is hard and

challenging task [2; 5; 9; 11; 14; 24; 25] it can be said

that programming itself is a complex area to

understand and master. Programming courses require

a lot of concepts and technical details from their

students and the pure arrangement of these courses

makes them difficult for students, especially the ones

who are encountering the programming for the first

time. Student behavior is influenced by intrinsic and

extrinsic motivation. Students that are intrinsically

motivated and find rewarding to learn programming

finish programming courses regardless of other

factors. Students that are however extrinsically

motivated and that are learning programming for

example just because it is mandatory to do so, find

themselves frustrated and impeded by various

complexities that are part of programming courses.

Nikula et al. [19] also state that various de-motivators,

that lead to students being unsatisfied due to

accumulated complexities that come with the

programming course, are also important reason of

high dropout rate.

Tenenberg and Fincher [30] conducted a study

that included over 300 participants form 21

institutions in 4 countries. All participants were

divided in two groups depending whether they are at

the beginning or end of their studies. The study was

aimed at exploring how well the students understand

the software design process. They were given a

decomposition task to find out about their analytical

skills as well as about their ability to use design

concepts to create proper solution structure. Students

were also given a design criteria prioritization task

where students were asked to choose criteria that they

consider most and least important for some particular

design scenario. Results have shown that some design

behaviors are and some are not dependent on

educational level. Recognizing ambiguity and use of

standard design scenarios are related to educational

level whereas design criteria evaluation is not.

Information gathering and representation of

interactions between elements appeared to be context-

dependent and thus most amenable to instructional

changes.

Wiedenbeck [31] reports on conducted research in

which novice programmers were given short

procedural and object-oriented examples with

objective to determine their comprehension of given

programs. The main question was whether

programming novices’ mental representation is more

focused on domain-level or program-level knowledge

and whether there is a difference in mental

representation regarding procedural and object-

oriented programs. The results have shown that

programming novices’ function-related

comprehension is more prominent in object-oriented

programs and that data flow and program-related

comprehension was less prominent whereas program-

related comprehension was more prominent in

procedural programs indicating that there are certain

aspects of object-oriented programming that are

clearly harder to understand because of more complex

concepts which lead to weaker program-oriented

comprehension.

Another research related to one previously

described was conducted by Wiedenbeck et al. [32]

that was aimed at determining the difference in

mental representation and comprehension of

programming novices regarding object-oriented and

procedural programming. The research was conducted

on 86 programming novices. Novices were given

short and long programs to analyze and answer 12

comprehension question that were divided into 4

groups of 3 question each regarding different aspects:

elementary operations, control flow, data flow, and

function. For short programs there was no significant

difference between object-oriented and procedural

group regarding the number of correct answers,

however object-oriented group has shown larger

tendency towards questions about program function.

This effect was lacking in analysis of large programs

where procedural group was generally superior on all

questions with overall score being 15% higher.

Some authors report that different selection of

programming notation can support particular

programming concepts [10; 31; 32] which could

partially explain research results described by

Wiedenbeck et al. [32]. Jenkins [14] comments on

importance and existence of students’ aptitude for

programming. He claims that commonly mentioned

problem solving skills and mathematical ability have

no tests that would be conclusive and could measure

programming aptitude in sufficiently satisfactory and

convenient way and he also states that if this is so, the

reasons of difficulty to learn how to program must be

searched through more cognitive view of overall

learning process. He states two cognitive factors as

potential answers about difficulty to learn

programming: learning style and motivation. Wrong

state of either of factors mentioned would result in

student not being able or willing to learn properly and

thus not understanding programming in satisfactory

way.

Pea [22] claims that certain bugs exist that are

commonly found in understanding of programming

and that are present in entire programming novices

population. He claims that these bugs are reoccurring

and that they are more related to the proper way of

instructing computers than to design of some

particular programming language. There are three

classes of mentioned reoccurring bugs:

• Parallelism bug

• Intentionality bug

• Egocentrism bug

Parallelism bug refers to false understanding by

which computers are able to deal with multiple

programming lines simultaneously. This bug for

example refers to situation in which the computer

would be able to look back in program and execute

some condition after the condition would be fulfilled

later in program execution. Intentionality bug refers to

students’ presumptions about the function of program

and about its output judging by only a small part of

program code. Students are frequently reminded on

some functionality by some portion of code and they

conclude that it does something without looking at all

programming instructions and without proper analysis

of program flow. Egocentrism bug refers to attitude

towards computers which results in lack of

programming instructions because students think that

computer will somehow be able to fill the gaps itself

and perform the job they want. Important and vital

instructions are frequently omitted and programming

code isn’t precise enough to do the job as expected.

When considering problems relevant to

programming courses it is important to think about

the reasons why students are enrolling these courses.

One research reports that only 22% of students in the

first year of study studied programming because of

interest in this area, 40% because of career reasons

and 35% just because it was mandatory to do so. 5%

of students didn’t participate in the research [5].

Bergin and Reilly [5] conducted study on 110

students of introductory programming course and they

report that positive attitude toward programming is

influenced by both intrinsic and extrinsic motivation

with intrinsic motivation being more important and

more effective in increasing programming

performance. Some authors also report on various

means aimed at increasing the motivation level, such

as the use of web or game programming examples in

order to make programming more interesting in

comparison to standard programs that are commonly

presented to students [5].

4 Efforts made to improve

programming courses

The third question that needs to be answered is what

efforts have been made and what can be done to

improve the success rates of introductory

programming courses. Nikula et al. [19] in their five-

year research concluded that eliminating de-

motivators that students encounter because of high

complexity of programming course is the first step in

answering the question about how can the pass rate be

improved. Second step would be to increase the

intrinsic motivation by including additional

programming tools and making programming projects

more interesting and useful from students’ point of

view. Finally, the third step would be to deal with

extrinsic motivation which they addressed in a way

that assignments from previous years were no longer

accepted, students were required to finish at least 40%

of their assignments on weekly basis and students

were also required to submit initial versions of their

projects three weeks before submitting the final

versions. These measures have greatly increased the

predictability of students behavior. Nikula et al. [19]

finally conclude that in order to improve passing rate

of programming course the following steps need to be

taken:

1. Eliminate de-motivators

2. Increase intrinsic motivators in the course by

making it more interesting and useful

3. Introduce extrinsic motivators to increase the

predictability of students behavior

Jenkins [14] states several things that should

change in order to improve the situation regarding the

difficulty to learn programming:

• Programming should never be taught before

the second year of any course

• The language used should be chosen for

pedagogic suitability and not because it is

popular in industry

• Programming should be taught by those who

can teach programming and not those who

can program

• Programming courses should be designed to

be flexible to allow different students to

learn in different ways

• There should be no summative (continuous)

assessment to ease pressure on students

• Departments should acknowledge that

programming is difficult and supply

adequate support to students

When considering programming problems, the

teaching methods must be taken into consideration

and evaluated. Fincher et al. [7] report that deep

approach to learning has positive impact on success of

students in programming courses opposite to surface

learning that is reported to have negative effect.

However, Jenkins [14] states that since programming

is a skill, not only knowledge, deep and surface

learning are both needed simultaneously in order for

students to perform well since deep learning gives

expertise in particular segment of programming but

surface learning is important to see the overall picture

and to grasp all concepts and parts of programming

skill.

Hu [13] reports results of conducted research

among students of programming course which show

that 90% of students prefer to learn theory and

practice simultaneously when learning programming.

He also promotes visualization as an efficient mean to

improve students programming performance. Tan et

al. [29] conducted a study on 182 undergraduate

students who finished introductory programming

course. The results of research have shown that

students prefer learning by examples and practice

over classic lectures that decrease their interest.

Consequently, authors propose game-based learning

framework as a better way of teaching in introductory

programming.

Hanks et al. [11] compared performance of solo

and paired students during two different semesters.

They report that students who worked in pairs turned

in more programs that compiled correctly. They state

that students who worked in pairs wrote more

functional programs although no claims can be stated

regarding the quality of programs’ design but paired

students were found to be more confident and

satisfied in their work. Nagappan et al. [18] also

conducted an experiment to determine the effects of

pair programming in introductory programming

course. Results have shown that paired students were

more self-sufficient, more active and that they

achieved better results compared to solo students.

They also conclude that paired programming can

reduce students’ frustrations regarding programming.

Gomes and Mendes [9] think that students’ main

problem is lack of problem-solving skills that would

enable them to create valid algorithms so they created

a system named SICAS (Interactive System for

Construction of Algorithms and its Simulation) which

promotes training in construction and testing of

algorithms. This system is based on constructivist

approach towards teaching problem-solving skills by

doing and trying and in that way students are able to

create their own knowledge. Their point of view is

supported by Don Norman’s definition of gap

between students’ intuition and problem-solving skills

that are needed to instruct computers [20].

Yadin [33] reports on determined factors of

success in introductory programming courses that

helped to reduce failing number of students by over

77%. He states three such factors:

1. Usage of Python to reduce complexity of

syntax thus allowing the students to focus on

problem-solving skills and creation of

algorithms

2. Usage of visualization tool to help clarify

abstract and complex concepts

3. Individual assignments for every student that

are aimed at development of stronger

learning habits

Sorva et al. [28] conducted a research to evaluate

the usefulness of program visualization tools in

introductory programming. They state that there are

indications that these kind of tools are beneficial,

however they also state that research to date is not

conclusive enough for drawing conclusions that

consider students’ engagement. Smith and Webb [27]

developed their own visualization tool to try to clarify

abstract concepts to programming novices. Their

research has shown that students indeed do benefit

from such tools and that they were able to grasp new

concepts quicker and better compared to students that

were taught in traditional way.

Smith et al. [26] report on creating the new

approach towards teaching novices programming that

addresses the fact that there hasn’t been any approach

that would be widely accepted since 1960s when

intensive research in this area stared. They created a

tool called Stagecast Creator which is based on two

technologies: programming by demonstration (PBD)

and visual before-after rules. The results of using

Stagecast Creator have shown that it is well suited for

novices, even children who are able to create

programs by demonstrating to computer what to do in

graphical way rather than to program in textual code.

Stagecast Creator is based on visual before-after rules

where the user has to define only start and end state in

order to describe desired visual simulation that is the

domain to which this tool is limited.

Baldwin and Kuljis [2] report on using visual

metamorphs and analogies in order to try to bring

programming concepts closer to the user. They report

on a series of visual languages and systems that are

aimed at teaching programming without complicated

code and abstract concepts or difficult programming

syntax by using visual metamorphs and analogies.

However, they state that there is not enough evidence

to fully conclude that visual languages are easier and

more beneficial than non-visual ones although they

believe that visual nature of this languages as well as

their reduced complexity must somehow be better that

non-visual languages.

5 Conclusion

Programming professionals are of vital importance for

all aspects of business and educational systems have a

large responsibility to produce this kind of experts.

However, the problems in programming education are

persisting and reoccurring in every generation of

programming novices. The fact that programming

courses have high failure and dropout rates has

become a general opinion [19; 33]. Bennedsen and

Caspersen [4] report on low passing rate of 33% and

the fact that less and less students are willing to study

computer science. This negative trend is also reported

by Baldwin and Kuljis [2]. It has been determined that

many students don't know how to write computer

programs at the end of their studies [2] but also that

they aren't able to produce valid programs even at the

end of their introductory programming courses [16].

The same results have been reported by McCracken et

al. [17] who conducted a research in which the

average score of students was only 22.89 out of 110

points.

Don Norman states that there is a huge gap

between the way programming novices are used to

think and problem-solving way of thinking required to

program [20] and this view is also supported by other

authors [16]. It can be concluded that programming

courses indeed have rather high failure and dropout

rates and that many students have difficulties in

passing these courses. The question that however still

remains unclear is whether the source of these

problems is mostly programming novices or

educational methods related.

Pea and Kurland [21] state that all programming

novices have some sort of idea about programming

concepts, but Ben-Ari [3] claims that these models are

mostly ineffective and a potential source of problems.

This corresponds to gap mentioned by Don Norman

[20] and draws a focus on teaching and training

novices in algorithmic thinking and problem-solving

skills. Hawi [12] reported on 10 determined casual

attributions of failure in introductory programming

with learning strategy as the most prominent

attribution. Kinnunen and Malmi [15] promote the

view that multiple actions must be undertaken in

order to address dropout reasons which are multiple

with the lack of time and lack of motivation as the

most frequent. Nikula et al. [19] state intrinsic

motivation as important factor in passing

programming courses that makes students perform

better.

Reported results of one conducted research [5]

shows that only 22% of first-year students decided to

study programming because of personal interest. This

supports the research that has been made regarding

importance of intrinsic motivation [19] that could be

lacking if students are not enrolling programming

courses or studies because of their interest but

because of some external factors.

All stated facts show that the reasons of low

passing rates in introductory programming are still not

completely clear since different researches report

different factors of success or failure. However, it is

clear that it is a complex question and that multiple

factors are involved. More research on these factors

need to be conducted in order to determine the key

factors that are producing rather low passing rates in

introductory programming courses.

Different authors also report different measures

aimed at improving the situation in programming

courses. Nikula et al. [19] propose eliminating de-

motivators and frustration factors and increasing

students’ intrinsic motivation by more interesting and

useful examples. Jenkins [14] states that programming

shouldn’t be taught in the first year of study and that

the teachers’ pedagogical and teaching skills are of

great importance for success as well as selection of

proper and suitable programming language. Yadin

[33] reports on failing reduced by over 77% by using

Python that reduces syntax complexity, by usage of

visualization tool and by giving students individual

assignments. Sorva et al. [28] and Smith and Webb

[27] have reported on positive results of using

visualization tools for teaching abstract programming

concepts. Baldwin and Kuljis [2] also report on using

visual metamorphs and analogies as beneficial means

for making abstract concepts more clear.

Hu [13] reports that 90% of students in his

research preferred practice along with theory and Tan

et al. [29] reports on students’ preference to learn by

example over theoretical lectures that lower their

interest in course. This point of view is also supported

by Jenkins [14] who states that programming is a

skill, not only knowledge and that deep and surface

learning should be included simultaneously in order

for students to grasp overall picture as well as fine

implementation details. Another approach towards

improving programming courses' results is reported

by Hanks et al. [11] and Nagappan et al. [18] who

report on benefits of paired over solo programming.

When looking at the research about reasons of

high failure rates, there are many aspects and means

that are proposed in different researches. It can be

concluded that the methods for improving results of

programming courses are multiple, with each of them

being more or less successful in some particular

context. None of them is however widely spread and

accepted in formal education or on a larger scale.

Therefore, more research is needed in order to classify

reasons and efforts for improvement and to determine

the most efficient methods for reducing failing and

dropout rates in introductory programming courses.

References

[1] Alaoutinen, S; Smolander, K. Student self-

assessment in a programming course using

bloom's revised taxonomy. In Proceedings of the

fifteenth annual conference on Innovation and

technology in computer science education, pages

155-159), ACM, New York, NY, USA, 2010.

[2] Baldwin, L. P; Kuljis, J. Learning programming

using program visualization techniques. In

Proceedings of the 34th Annual Hawaii

International Conference on System Sciences,

pages 1051-1058, IEEE, Washington, DC, USA,

2001.

[3] Ben-Ari, M. Constructivism in computer science

education. ACM SIGCSE Bulletin, 30(1):257-261,

1998.

[4] Bennedsen, J; Caspersen, M. E. Failure rates in

introductory programming. ACM SIGCSE

Bulletin, 39(2):32-36, 2007.

[5] Bergin, S; Reilly, R. The influence of motivation

and comfort-level on learning to program. In

Proceedings of the 17th Annual Workshop on the

Psychology of Programming Interest Group,

pages 293-304, University of Sussex, Brighton,

UK, 2005.

[6] Dehnadi, S. Testing programming aptitude. In

Proceedings of the 18th Annual Workshop of the

Psychology of Programming Interest Group,

pages 22-37, Brighton, UK, 2006.

[7] Fincher, S; Robins, A; Baker, B; Box, I; Cutts, Q;

de Raadt, M; Haden, P; Hamer, J; Hamilton, M;

Lister, R; Petre, M; Sutton, K; Tolhurst, D; Tutty,

J. Predictors of success in a first programming

course. In Proceedings of the 8th Australasian

Conference on Computing Education, pages

52:189-196, ACS, Darlinghurst, Australia, 2006.

[8] Ford, M; Venema, S. Assessing the success of an

introductory programming course. Journal of

Information Technology Education: Research,

9(1):133-145, 2010.

[9] Gomes, A; Mendes, A. J. An environment to

improve programming education. In Proceedings

of the 2007 international conference on

Computer systems and technologies, pages 88:1-

6, ACM, New York, USA, 2007.

[10] Good, J; et al. Novices and Program

Comprehension: Does Language Make a

Difference? In Proceedings of 19th Annual

Conference of the Cognitive Science Society,

pages 936–937, Stanford University, 1997.

[11] Hanks, B; McDowell, C; Draper, D; Krnjajic, M.

Program quality with pair programming in CS1.

In Proceedings of the 9th annual SIGCSE

conference on Innovation and technology in

computer science education, pages 176-180,

Leeds, United Kingdom, 2004.

[12] Hawi, N. Causal attributions of success and

failure made by undergraduate students in an

introductory-level computer programming

course. Computers & Education, 54(4):1127-

1136, 2010.

[13] Hu, M. Teaching novices programming with core

language and dynamic visualization. In

Proceedings of the 17th NACCQ, pages 94-103,

Christchurch, New Zealand, 2004.

[14] Jenkins, T. On the difficulty of learning to

program. In Proceedings of the 3rd Annual

Conference of the LTSN Centre for Information

and Computer Sciences, pages 53-58,

Loughborough, UK, 2002.

[15] Kinnunen, P; Malmi, L. Why students drop out

CS1 course? In Proceedings of the 2006

International Workshop on Computing Education

Research, pages 97-108, ACM, 2006.

[16] Lister, R; Adams, E. S; Fitzgerald, S; Fone, W;

Hamer, J; Lindholm, M; McCartney, R;

Moström, J. E; Sanders, K; Seppälä, O; Simon,

B; Thomas, L. A multi-national study of reading

and tracing skills in novice programmers. ACM

SIGCSE Bulletin, 36(4):119–150, 2004.

[17] McCracken, M; Almstrum, V; Diaz, D; Guzdial,

M; Hagan, D; Kolikant, Y. B.-D; Laxer, C;

Thomas, L; Utting, I; Wilusz, T. A multi-

national, multi-institutional study of assessment

of programming skills of first-year CS students.

ACM SIGCSE Bulletin, 33(4):125–140, 2001.

[18] Nagappan, N; Williams, L; Ferzli, M; Wiebe, E;

Yang, K; Miller, C; Balik, S. Improving the CS1

experience with pair programming. ACM

SIGCSE Bulletin, 35(1):359-362, 2003.

[19] Nikula, U; Gotel, O; Kasurinen, J. A motivation

guided holistic rehabilitation of the first

programming course. ACM Transactions on

Computing Education (TOCE), 11(4), 24, 2011.

[20] Norman, D. A; Draper, S. W. User-Centered

System Design: New Perspectives on Human-

Computer Interaction, Erlbaum, Hillsdale, NJ,

1986.

[21] Pea, R. D; Kurland, D. M. On the Cognitive

Prerequisites of Learning Computer

Programming. Technical Report No. 18, Bank

Street College of Education, New York, NY.

1984.

[22] Pea, R. D. Language-independent conceptual

"bugs" in novice programming. Journal of

Educational Computing Research, 2(1):25-36,

1986.

[23] Pears, A; Seidman, S; Malmi, L; Mannila, L;

Adams, E; Bennedsen, J; Devlin, M; Paterson, J.

A survey of literature on the teaching of

introductory programming. ACM SIGCSE

Bulletin, 39(4):204-223, 2007.

[24] Peng, Wu. Practice and experience in the

application of problem-based learning in

computer programming course. In Proceedings of

the International Conference on Educational and

Information Technology (ICEIT), pages 1:170-

172, IEEE, 2010.

[25] Robins, A; Rountree, J; Rountree, N. Learning

and Teaching Programming: A Review and

Discussion. Journal of Computer Science

Education, 13(2):137-172, 2003.

[26] Smith, D. C; Cypher, A; Tesler, L. Programming

by example: novice programming comes of age.

Communications of the ACM, 43(3):75-81, 2000.

[27] Smith, P. A; Webb, G. I. The efficacy of a low-

level program visualization tool for teaching

programming concepts to novice C programmers.

Journal of Educational Computing Research,

22(2), 187-216, 2000.

[28] Sorva, J; Karavirta, V; Malmi, L. A review of

generic program visualization systems for

introductory programming education. ACM

Transactions on Computing Education (TOCE),

13(4), 15, 2013.

[29] Tan, P. H; Ting, C. Y; Ling, S. W. Learning

difficulties in programming courses:

undergraduates' perspective and perception. In

Proceedings of the IEEE International

Conference on Computer Technology and

Development, pages 1:42-46, IEEE, Kota

Kinabalu, Malaysia, 2009.

[30] Tenenberg, J; Fincher, S; et al. Students

designing software: a multi-national, multi-

institutional study. Informatics in Education,

4(1):143–162, 2005.

[31] Wiedenbeck, S. Novice comprehension of small

programs written in the procedural style.

International Journal Human-Computer Studies,

51(1):71–87, 1999.

[32] Wiedenbeck, S; Ramalingam, V; Sarasamma, S;

Corritore, C. L. A comparison of the

comprehension of object-oriented and procedural

programs by novice programmers. Interacting

With Computers, 11(3):255-282, 1999.

[33] Yadin, A. Reducing the dropout rate in an

introductory programming course. ACM Inroads,

2(4):71-76, 2011.

