
Comparison of JSON and XML Data Formats

Alen Šimec, Magdalena Magličić

Department of IT technologies

Polytechnic of Zagreb

Konavoska 2, 10000 Zagreb, Croatia

{alen, mmaglicic}@tvz.hr

Abstract. Choosing an appropriate data format for

your data makes a difference in programming and

performance speed of your application. In this paper,

we'll compare two of the most popular data formats for

web applications, JSON and XML, in terms of features,

use, and performance testing results.

Keywords. JSON, XML, data formats, comparison

1 Introduction

When it emerged as a W3C standard more than a

decade ago, XML was viewed as a revolutionary

markup language for data transport and storage. It was

designed as a software and hardware-independent tool,

which was convenient for the developer community at

that time, in the midst of the “Internet boom”. XML

became a widely accepted language and gained

acceptance into all programming fields, but it mostly

affected the way the Internet we know today works. [7]

Over the years, web sites have shifted from being

static to very dynamic and interactive. Interactivity

increased data transfer and developers looked for a

way to modify a small section of a web site without

retransmitting all of the data. Ajax (Asynchronous

JavaScript and XML) is a group of technologies that

together account for asynchronous communication

with the server without having to refresh the page. In

the original specification Ajax was designed to work

with the following technologies: HTML/XHTML and

CSS for presentation, DOM to dynamically display

and interact with data, XML for data exchange (and

XSLT to manipulate the XML), XMLHttpRequest

object for asynchronous communication and

JavaScript as the cohesive technology.

For Ajax, the name itself suggests that it was built

for XML, but there was the possibility of using other

encoding. XML had it’s limitations and did not prove

to be the ideal transportation tool so new data formats

emerged, such as JSON (JavaScript Object Notation).

Although JSON is based on the JavaScript language,

it’s language independent,as it uses a simple key-value

pair notation. Today, JSON is widely used as an

alternative to XML in the field of web development.

2 Feature comparison

2.1 Code and data model [10]

<product>

 <id>15</id>

 <name>Widgets</name>

 <description>These widgets are the

finest widgets ever made by

anyone.</description>

 <options type="color">

<item>Purple </item>

<item>Green </item>

<item>Orange </item>

 </options>

</product>

"product" : {

 "id" : 15,

 "name" : "Widgets",

 "description" : "These widgets are

the finest widgets ever made by

anyone.",

 "options" : [

{

"type" : "color",

"items" : [

"Purple",

"Green",

"Orange"

]

}

]

}

Figure 1. Code examples (XML vs. JSON)

An XML document forms a branched structure that

starts with the root element. Every XML document

must be "well-formed", i.e. be in accordance with strict

rules, without which it is not valid. Some of the XML

technologies used for manipulating and formatting

XML documents are XML Namespaces, XML

Schema, XSLT, and XPath. All of them

are standardized and accepted by the W3C association.

The greatest strength of this model is the strict

Central European Conference on Information and Intelligent Systems__Page 272 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

mailto:mmaglicic%7d@tvz.hr

structure definition, which is why it can be

implemented for data validation.

On the other hand, the XML document is, for many

object-oriented languages, difficult to parse and

convert into a structure or object with which they can

work. Still, there are many technologies for processing

XML: Document Object Model, XPath and XSLT.

The use of closing tags (<id>15</id>versus

JSON's"id":15) make XML too comprehensive and

partially redundant, which ultimately means a longer

document reading time.

JSON draws its data model from JavaScript: the data

is presented as a key-value pair, with curly braces

representing objects and angular braces fields. The

syntax is simpler than XML's and OOP languages can

easily translate the JSON string into an object. It is

natively supported by JavaScript. Both languages use

the Unicode standard.

JSON, because of its simple structure, is not

suitable for data validation (as opposed to XML). It

cannot store all data types. However there is an

Internet draft called JSON Schema, which may play a

role in JSON data validation. [7]

2.2 Accessing and extracting data

2.2.1 XML and XPath

XML is a text-based way to represent documents, but

once an XML document has been read into memory,

it’s usually represented as a tree. To make developers’

lives easier, several standard ways exist to represent

and access that tree. [1]

The best-known data model for storing and

processing XML trees is called the W3C document

object model, or the DOM for short. JQuery and other

similar libraries are built on top of the DOM and

described in terms of the DOM. XPath 2 and 3,

XQuery, and XSLT 2 all use the XQuery and XPath

Data Model, or XDM, which is a slightly different data

model than DOM. The XDM is more powerful than the

DOM, includes support for objects with types

described by W3C XML Schema, and also supports

items such as floating-point numbers and sequences

intermingled with the XML data.

Figure 2. Connection between XPath and other XML

technologies

A frequently emphasized advantage of XML is the

availability of plenty tools to analyse, transform and

selectively extract data out of XML documents. XPath

(the XML Path Language) is one of these powerful

tools. XPath is used to point into XML documents and

select parts of them for later use. It was designed to be

embedded and used by other languages — in particular

by XSLT, XLink, and XPointer, and later by XQuery

— and this means that XPath isn’t a complete

programming language, but can be used in host of

languages (Python, PHP, Perl, C, C++, JavaScript

etc.).

The most common way to use XPath is to pass an

XPath expression and one or more XML documents to

an XPath engine: the XPath engine evaluates the

expression and gives back the result. This can be via a

programming language API, using a standalone

command-line program, or indirectly, as when XPath

is included in another language such as XQuery or

XSLT. [1] In XPath, there are seven kinds of nodes:

element, attribute, text, namespace, processing-

instruction, comment, and document nodes. XML

documents are treated as trees of nodes. The topmost

element of the tree is called the root element. XPath

uses path expressions to select nodes or node-sets in an

XML document. The node is selected by following a

path or steps. [9]

In Javascript, the main interface to using XPath is

the evaluate function of the document object. This

method evaluates XPath expressions against an XML

based document (including HTML documents), and

returns an XPathResult object, which can be a single

node or a set of nodes (see Figure 3.).

var xpathResult = document.evaluate(

xpathExpression, contextNode,

namespaceResolver, resultType, result);

Figure 3. XPath and document.evaluate

An example of accessing the first item element

from Figure 1. using XPath in Javascript is shown in

Figure 4. The function will return an object

XPathResult, on which we can perform JavaScript

operations.

var xpathResult =

xml.evaluate('product/options/item[5]',

'product.xml', null,

XPathResult.ANY_TYPE, null);

Figure 4. XPath and document.evaluate, where xml is

the loaded XML document

2.2.2. JSON

JSON syntax is a subset of JavaScript syntax and

originally it did not have a set of useful tools and

technologies to selectively extract data, like XML

Central European Conference on Information and Intelligent Systems__Page 273 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

http://en.wikipedia.org/wiki/XPath
https://developer.mozilla.org/en-US/docs/Web/API/document.evaluate
https://developer.mozilla.org/en-US/Web/API/document
https://developer.mozilla.org/en-US/docs/XPath
https://developer.mozilla.org/en-US/docs/Glossary/XML
https://developer.mozilla.org/en-US/docs/XPathResult

does. It only had the simplest option: of parsing the

JSON file into an object and accessing those object

properites the way you usually would in the selected

language. Due to the fact that JSON is a natural

representation of data for the C family of programming

languages, the chances are high that the particular

language has native syntax elements to access a JSON

structure.

However, a need for the kind of technologies for

JSON that would parallel the XML ones has been

recognized and today we have some options for

traversing/filtering JSON data, e.g.: JSPath, json:select

() (inspired more by CSS selectors), JSONPath

(inspired more by XPath). With these technologies

data may be interactively found and extracted out of

JSON structures on the client without special scripting.

JSON data requested by the client can be reduced to

the relevant parts on the server, such minimizing the

bandwidth usage of the server response. [2]

In Figure 5. the JavaScript function JSON.parse

(text) is used to convert a JSON string into a JavaScript

object. A JSON parser will recognize only JSON text

and will not compile scripts. In browsers that provide

native JSON support, JSON parsers are also faster. [8]

var obj = JSON.parse(string);

Figure 5. JSON parsing in JavaScript

Parsing a JSON file is a bit more complicated with

pure JavaScript, but if there’s an option of using a

JavaScript library, such as JQuery, we can use built-in

functions to achieve that.

jQuery.getJSON(products.json);

Figure 6. JQuery getJSON function

2.3 Extensibility

The XML document, because of the possibility of

expanding XML attributes and CDATA sections, can

store all possible data types. It includes the ability to

transfer the structure and formatting of the document.

This makes it much more flexible, but also harder to

read. So much flexibility is good for transferring

documents, which can contain images, graphs, text,

etc., but not suitable for simple data transmissions,

because it’s redundant and unnecessarily complex.

Storing data in JSON is limited to common data

types (numbers - integer or floating point, string,

boolean, array, object, null), which for OOP languages

means simple parsing. [4] JSON is the best tool for

transferring simple data because data is stored in

strings and records while in XML data is stored in a

treelike structure, not the most ideal structure for

programming languages to understand.

3 Performance testing [6]

In this performance test we will explore the average

speeds by which JSON and XML decode simple

example data on the server side. Language of choice is

PHP. We’ll use the function microtime (), that returns

the current Unix timestamp with microseconds, to

calculate the time needed for the functions to process

the given data.

<?php

$json = "[55, 'text goes here', 0.1]";

$xml = "<array><int>55</int><string>text

goes

here</string><float>0.1</float></array>"

;

$before = microtime(true);

for ($i=0 ; $i<100000; $i++) {

 simplexml_load_string($xml);

}

$after = microtime(true);

echo '
XML: '.($after-$before)/$i .

" s/load-string\n";

$before = microtime(true);

for ($i=0 ; $i<100000; $i++) {

 json_decode($json);

}

$after = microtime(true);

echo '
JSON: '.($after-$before)/$i .

" s/decode\n";

?>

Figure 2. Performance test PHP code

Table 1. Performance testing results (in s/function)

 First run Second run Third run

XML 2.942 E-5 3.174 E-5 3.533 E-5

JSON 7.856 E-6 7.765 E-6 7.612 E-6

Average

XML: 0.0000321626 s/load-string

JSON: 0.00000774419 s/decode

 (1)

Difference

XML - JSON = 0.00002441841 s/function

 (2)

This performance test uses PHP language to

decode a simple array coded in the XML and JSON

formats. Functions used to accomplish that are:

simplexml_load_string() for XML and

json_decode() for JSON.

In (1) and (2) we see that JSON outperforms XML

in PHP decoding a simple array by running the

function more than 4 times faster.

4 Conclusion

XML and JSON as data storage and transmission

formats have their strengths and drawbacks, which

determine their usefulness for certain purposes. To

transfer documents with a lot of different data types

Central European Conference on Information and Intelligent Systems__Page 274 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

https://github.com/dfilatov/jspath
https://github.com/dfilatov/jspath
http://jsonselect.org/
http://goessner.net/articles/JsonPath/
http://json.org/
http://api.jquery.com/jquery.getjson/#jQuery-getJSON-url-data-success

and elements, XML is the ideal choice. JSON is better

suited for dynamic web applications and simple data

transmissions. [5] JSON performance speed is greater

than XML's because of its simple structure and ease of

access to data.

JSON will not fully replace XML in the area of the

Web. XML, because of its rich features, has its place

in the transfer and validation of documents. JSON is

better suited to data-interchange [4] and should be used

instead of XML in data transmissions between a server

and web application, e.g. in Ajax calls.

References

[1.] Fawcett, Joe; Ayers, Danny; Quin, Liam R. E.

Beginning XML, 5th Edition, John Wiley &

Sons, Inc., USA, 2012.

[2.] Gössner, Stefan. JsonPath,

http://goessner.net/articles/JsonPath/,

downloaded: July 11th 2014.

[3.] Graham, James. Introduction to using XPath in

JavaScript,

https://developer.mozilla.org/en/docs/Introd

uction_to_using_XPath_in_JavaScript,

downloaded: July 11th 2014.

[4.] JSON. Introducing JSON, http://json.org/,

downloaded: May 12th 2014.

[5.] Lindo S. XML vs. JSON - A Primer,

http://www.programmableweb.com/news/x

ml-vs.-json-primer/how-to/2013/11/07,

downloaded: May 14th 2014.

[6.] mario. phpjson_decodingvs xml parsing,

http://stackoverflow.com/questions/4288849

/php-json-decoding-vs-xml-parsing,

downloaded: May 14th 2014.

[7.] Perkins L. Why JSON will continue to push

XML out of the picture,

http://blog.appfog.com/why-json-will-

continue-to-push-xml-out-of-the-picture,

downloaded: May 13th 2014.

[8.] w3schools. JSON Files,

http://www.w3schools.com/json/json_files.a

sp, downloaded: July 11th 2014.

[9.] w3schools. XPath Nodes,

http://www.w3schools.com/XPath/xpath_no

des.asp, downloaded: July 11th 2014.

[10.] Zazueta, R. API Data Exchange: XML vs.

JSON, http://www.mashery.com/blog/api-

data-exchange-xml-vs-json, downloaded:

May 13th 2014

Central European Conference on Information and Intelligent Systems__Page 275 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

http://www.fh-dortmund.de/de/studi/fb/5/personen/lehr/goessner/index.php
http://www.fh-dortmund.de/de/studi/fb/5/personen/lehr/goessner/index.php
http://goessner.net/articles/JsonPath/
https://developer.mozilla.org/en/docs/Introduction_to_using_XPath_in_JavaScript
https://developer.mozilla.org/en/docs/Introduction_to_using_XPath_in_JavaScript
https://developer.mozilla.org/en/docs/Introduction_to_using_XPath_in_JavaScript
http://json.org/
http://www.w3schools.com/json/json_files.asp
http://www.w3schools.com/json/json_files.asp
http://www.w3schools.com/XPath/xpath_nodes.asp
http://www.w3schools.com/XPath/xpath_nodes.asp

