Central European Conference on Information and Intelligent Systems

Page 326 of 344

Case Study: Refactoring of Software Product Line
Architecture - Feature Smells Analysis

Zdravko Rosko
Faculty of Organization and Informatics
University of Zagreb
Pavlinska 2, 42000 Varazdin, Croatia
zrosko@mai | . com

Abstract. Software Product Line (SPL) architecture
refactoring is typically performed to keep pace with
changing environment, such as client platforms,
operating system, language compilers, development
tools, external third party components and database
managements systems. Product Line Architecture
(PLA) is a shared architecture for a set of closely
related applications. In this paper we report the
experience conducting a case study on PLA refactoring
analysisto be used as an input to the next stage within
the process of its refactoring. Quantitative data are
collected from a product line for business applications
in a financial ingtitution. The overall goal of the case
study was to understand the current characteristics of
the PLA with the intention of improving it and making
its necessary adaptive and preventive maintenance
changes. We propose a refactoring analysis steps for
product-preserving type of product line refactoring to
ensure improved PLA quality attributes.

Keywords. Software product lines,
business applications, features smells, feature.

1 Introduction

refactoring,

significant is measured by cost of change [2].
Therefore, the reference architecture development is a
key activity for organizations following a SPL
approach since this core asset allows to keep pace with
changing environment and with market's present and
future needs. Specifics of product line refactoring
differ from refactoring in general, which is usual
practice in software development. To give additional
insights into product line refactoring specifics, we
summarize experience from a refactoring project we
performed using FORM (Feature-Oriented Reuse
Method [3]) process method.

2 Related work

Refactoring in general, not specific to product lines, are
typically traced to the dissertation of Opdyke [4].
Refactoring is the process of changing a software
system in such a way that it does not alter the external
behavior of the code yet improves its internal structure
[5]. A good source of refactoring in general in object-
oriented programming is the book by Flower [5].
However, in the context of product lines, this definition
is not sufficient, because it does not take into account
a whole family of applications and their relationship

One of the most successful approaches to planned a#gf" the common reference architecture. Alves et al.
proactive reuse of software assets is Software Produ€'® among the first to propose to extend traditional
Lines (SPL) approach. SPL is defined as a set djotion of refactoring to software product lines [6].
software-intensive systems sharing a common) hum et al. proposed an automated analysis to identify
managed set of features that satisfy the specific neef@factoring on feature models [7].

of a particular market segment or mission and that aré® this paper, we use extended traditional notion of
developed from a common set of core assets in tefactoring, in which SPL refactoring is a change made

prescribed way [1]. A software product line (or to tr_]e structurg ofa SF_’L in order to imprqve (maintain
software product family) relies on a common producf’ Increase) its configurability, make it easier to

line architecture (also called reference architecture) t4nderstand, and cheaper to modify without changing
achieve a substantial increment in product cost, qualitif® observable behavior of its original products.

and a time to market. Product Line Architecture (PLA)

is a base for all components that are used by individual

product in the product line. Architecture represents the

significant design decisions that shape a system, where

Varazdin, Croatia Faculty of Organization and Informatics September 17-19, 2014

Central European Conference on Information and Intelligent Systems Page 327 of 344

3 Case and study selection consists of Business Logic and Server Persistence
layers. The starting version of the reference

The subject of this study was an implementation ogrchitecture is based on Java 1.5 and the target
) y P refactored Java platform is Java 1.7. Also, the starting

PLA for business applications in a financial institution.v rsion support Java client applications onlv. but taraet
There are 7 business applications using the same PLA PP bp Ys 9

) . ; . version should support web based Ajax enabled client
as a base to provide the required user functionality to~ .~ ;
) A plications. Since Java 1.7 supports many of the
the business users of the institution. Examples of suc . .

S . . S aluable language features which may help to improve
applications include loan processing application tha

. he quality attributes of reference architecture, our
allow users to process a loan request, credit carg

scoring application that allows users to calculate thgomain analysis include the capabilities of the proven

application score for a new credit card application, etd)rogramming approaches and techniques such as:

PLA consists of three large subsystems as shown iﬁspect Oriented Programing (AOP), Annotations,

Figure 1: Client for Java Inversion of Control (IoC), and some others.

applications, Shared components used on client and on
server side of the applications, and Server which

SPL Reference Architecture

As Is | | Client Layer
Java Ajax (GWT) Ajax Mobile (GWT)

ol oot] sy

g
[ve)
(]

Java 1.5

Shared Components

‘ Core H Data H CacheHException%‘ Security H ReportingH ServicesH Session H TransponHVaIidation‘

Server Business Logic Layer

Data Transport ‘ core H facade H ProcessH jsp HReportingH ServicesH Session‘
D

Server Persistence Layer
‘ Transactioﬂ Data Acces% -

RDBMS iSeries
‘ Connectior” Meta Data‘

Figure 1. PLA for Business Applications

admin H bl HWorkrowHConverterH SecurityH Rules H Upload‘

‘Annotation#‘ Aspects H Dep. In. H Java 1.7 ‘

Refactoring of a product line is an important activityespecially changeability and stability. Changeability
which needs to be planned since the changes performatkasures the impact made to a component of product
reflects not only a single application, but a set ofline to the rest of the reference architecture components
artifacts that may be used to generate a whole familgnd related product line applications. Increasing
of applications. The study we present here reflects theumber of external third party components dependency
refactoring performed as a reaction to a feature smelyhich are referenced by product line reference
a perceived problem in the source code, which belongrchitecture components or applications periphery
to an adaptive and preventive category of software components, impacts the stability of product line.
change [8]Adaptive changes are made in reaction to aChanges to the external third party components is a
changing environment such as new language compilethreat to the stability of a product line. These changes
(e.g. Java 1.7), new operating system, third partghould be addressed by delegating the responsibility of
external components, database management systetine changes to the reference architecture rather than
integrated development environment and tools, etdeaving them to be handled by product line applications
Preventive changes are made to improve futureseparately.

maintainability and reliability of the product line Product line includes core assets (reference
components. Unlike adaptive reason for changearchitecture components and application components)
preventive changes proactively seek to improve qualitand individual applications (products) composed from
attributes of the future product line applications and th¢hose core assets. Synchronizing the release of features
reference architecture components. and components in core assets with the product
Overall, the central focus of this study is thereleases is a key to managing product line. The release
improvement of PLA maintenance quality attributes,of a product at a given point in time requires that core

Varazdin, Croatia Faculty of Organization and Informatics September 17-19, 2014

Central European Conference on Information and Intelligent Systems Page 328 of 344

assets used by product meet or exceed the quality angerating environment, application domain
functionality for that product release. Figure 2technologies, and implementation techniques.
illustrates the synchronized product line release
generations (Baseline 1 through Baseline Refactorec
occurring on annually intervals [9]. In between there FORM Dormain Engineering
were monthly synchronization points, based on use| [| [[recoce | (oo | | 2ot | [poe
requirements or maintenance changes. Time is show| | #= % e }”35?1‘33?;& {""‘"‘"“"}—’ni?‘fn‘iiﬁfé‘ *(oot
across the top horizontal axis. At the bottom of the [4 :
figure are the applications (products). Note that during
three years the number of products increases. Th ~ s

. . User Feature Application Application .
refactored baseline, the last release of the baseline Reg:i;;}:gms{s:;g;;g;;m rehieen Dggﬁg;ﬁmﬂ“é’i’}‘;’ili“
the final (“to-be”) release of the product line, which we

2
z&
2%
-
g2

E

target by this refactoring activity. FORM Application Engineeri
—— 3 ModelReuse e » Feedback for Updating the Domain Model
Baseline 1 Baseline 2 Baseline 3 gz?:g‘lered Key: l:l Process :l Product
i o e e A Tes
Core st © producien Figure 3. FORM Engineering Process
Core Asset 2 - Time SE——
Core Asset 3
Core Asset 4 H
UL N | R "a 4.1 Feature location
Product \%‘@ \)\
Product C)) .
Product : ’ i By analyzing the product line reference architecture
. *5 e implementation and its 7 applications source code,

configuration parameters and technical documentation
including variability guide, we have identified the
product line features. We divided the product line
. features into the two broad categories, one referring to
4 Analysis procedure reference architecture technical features and the other
to application business logic features. The features
We have selected to use the FORM, an architectumepresent functionality a user would select when
design process to serve as basis for obtaining Baselimeistomizing business applications. There are 25 server
Refactored release. FORM is a systematic method thétyer reference architecture technical features, and 26
looks for and captures commonalties and differences aflient layer reference architecture technical features for
applications in a domain in terms of "features" andapplication engineering process to select when
using the analysis results to develop domaircomposing an applications. Also, there are 49 business
architectures and components. The model that capturtmic server features and 60 client presentation logic
the commonalties and differences is called the “featurfeatures to select when customizing an application.
model” and it is used to support both engineering ofFfrom these features we have selected 25 server
reusable domain artifacts and development ofeference architecture and 49 business logic server
applications using the domain artifacts [3].features for actual refactoring. The rest, mostly client
Applications users and software developers are botpresentation logic features, will be refactored once the
familiar with use of the term "features" when new web-based reference architecture and its
communicate a product characteristics in terms ofomponents are developed.
“features the product has or need to have”. FORM ifigure 4 shows a partial feature diagram of server
based on a commonality analysis expressed in weference architecture implementation before
domain model in terms of features. FORM process isefactoring.
shown in Figure 3, where different types of features is
considered: functions provided by products, technical

Figure 2. SPL releases

Varazdin, Croatia Faculty of Organization and Informatics September 17-19, 2014

Central European Conference on Information and Intelligent Systems Page 329 of 344

Business Application Server

._7_7_7_7_,_,

Transaction Data Access Ohject Data Source Connection Data V- idation Caching 59.3]"@,
A /N P <.:\>\‘
ah z A o - B
App Server Xyz Pool Rule Engine Xyz Val LDAF Xyz Security
JTATXMN || EJBTXN | | XYZTXN | JDBC || CICS | | iSeries Apache Poul Server Memary

Figure 4. Feature model for reference architecture server subsystem

Server

[= = === 2= = 2= i =]

o
o

uEhenticaton rbac. ease O
(=
(n
(s

[= 0= = = = == D=) =)

gaton mac facade)

de

sccusty autorzation, mac da jdte O]

SEPIE0S EOTPEREBIICR 156000
codes da jdbe

SOrNO0S 00T ponsaton
Sainist mbo 18008
datadictionary facads

SEFCGS A pens M d 3 gt
dxladictionary 40 jbe

23400 Bacode 62 Jibe

da valuslstandior
connecaion. asdOo

conne ciion be

socy
secuys
ocy

3 88400
e

8 ey
Bean saction
S N
core

oodes. tacade

tnporthep
Emngport s
B

[0 tag
sorvicos

o

23400 e

bl

O vansporhip

O transporjms

O e

0 ptag

O sorvices

O sorvices compensation
=
O aaer
O 5200 tacade

e iticen 1pcacy

O codes taode

O sorvices compensation tacade

O socurity authentication tac facade
O socurity. authorization.rbac facade
0 soavity tacade

0 datadictionary. incade

0w

0 sonvices compensation 4 jdbx:

0 gamdicionary. da b

O pocurity sushonizaton rbac da g
0 codes.da b

0 25400 tacade da jdbc

O da.as400

O dajobe

0

O aakey

O ga valseisthandien

Q yansaction a
0 conneciion as400

(] o o

O connection jdbe

(] aoooa o

ODooDoago
(]

O connaction

0 com

Figure 5. Initial components order

Table 1 shows the steps we have followed to do PLAable 1. Steps for analyzing SPL features for

analysis. After finding current state of product linerefactoring

features, we needed to analyze the Java source code to

find the potential candidates for subsystem refactoring.Order Activity

To analyze the subsystem structucamplexity we 1 Analyze feature dependency clusters

used Design Structure Matrix (DSM) tool named (DSM)

Cambridge Advance Modeler (2010). The method of 2 Find unused variability

analysis we applied is called sequencing. This form gf 3 Find unused features

partitioning analysis involves reordering rows an 4 Find fat products

columns of the DSM to minimize cycles (i.e. to arrange g Find duplicate code in alternative features

the feature components with as many interactions as— g Analyze historical usage of PLA featurels
7

possible below the diagonal). The reordering of th
DSM rows and columns is done in such a way that th
new DSM transforming the DSM into an upper
triangular form.

Analyze new user requirements

analysis. Components as unit of analysis co

Varazdin, Croatia Faculty of Organization and Informatics September 17-19, 2014

In this study we use reference architecture
implementation feature component as a unit of

ntain

Central European Conference on Information and Intelligent Systems Page 330 of 344

functions and data structures associated to the sannce we apply the layered architecture style we

feature. The initial order as shown at Figure 5 is theeeded to focus on what to change to reach the goal of
result of initial random analysis. However, afterlayered architecture. The results at Figure 6 suggests
applying aPartition Matrix sequencing method the that a refactoring might be used in order to reduce the
components are reordered as shown at Figure 6. Tleupling among feature components.

cells above the diagonal are marked (in circle), which

means that circular dependency among the components

exists.
Oo00000000000000000000000000000a0
i :
2
g &g g é
243 3 3
g 585 |g 2 2 |3 £ 5
3 358 |3 |8 |5 |8 5| 3|3
k (8.8 |Z]|.|8 |Ble 2 § 88
8 5ggc22fe 23 2% 3| |B|Bl%
5% B B 38325 E/38 (3|8 % (8855 s
HEE 2 EIETES 2% elss8 d 3
388 g 2g382883 %3 £33 3/8883%8;z
¥ a §§§z===3 288|032 83|82z E 8388
E5gg33 588888355083 8bg885§s5s85E54d3s
O transpor.nitp
O transport jms.
D 5o
O jsp.tag
="
0 administration. tacade
0 as400 facade

0 codes facade

0 sorvices.compensation.facade

O socurity authan tication, bac facade
O socurity authorization rhac facade
O socurity facade

0 datad ictionary.tacade

(=

0 datad ictionary da jdbe

0 codes.da jdbe

0 25400 facade.da jdbe

0 com

O socurity authorization roac.da jdba
0 connection jabe

D da jobe

O da as400

0 da vaku bsthandior

0 sorvices

0 sorvices compensation

0 sorvices compensation.da jdbe
0 connection as400

0 transaction

0 connection

O da kery

=P a oo

Figure 6. Sequenced components order

Software dependency can be static or dynamic. St:’;lti-[;"mIe 2. Steps for general refactoring analysis

dependencies, generally known as “compile time’

dependency use the concept that one component i&rder | Activity

required to compile another components. The tools 1 Find current status for external
used here are good enough to discover static components _
dependencies, while dynamic dependencies such as 2 Find deprecated Java code in PLA
ones that use Java reflections are possible to discover components

just by manual analysis. 3 Find warning and error Java code in PLA
PLA architecture documentation shows that dynamic components

dependencies are consistently used to identify and 4 | Find dead code (static) in PLA
invoke server side business methods. In other cases the components

architecture documentation prefers to avoid using Find similar code in PLA components
reflection. Find large classes

Find bugs

Find unused classes

Find potential cross-cutting (aspects)

OO |N[O|O1

4.2 Reference Architecture Analysis

Next, we have applied general refactoring steps, shown))
in Table 2. After applying these steps for generapomponent that is not supported by supplier after Java
refactoring, we have found one external 1.5 version and need to be replaced by an alternative

solution. Eclipse IDE shows many Java classes,
interfaces and methods used by current product line

Varazdin, Croatia Faculty of Organization and Informatics September 17-19, 2014

Central European Conference on Information and Intelligent Systems Page 331 of 344

implementation that are deprecated. The alternative§ References

have to be analyzed and sample have to be tested In

order to apply them to the product line. All errors have

to be corrected and warnings need to be suppressed[dl P. Clements and L. Northrofoftware product

corrected by more appropriate programming lines; Practices and Patterns. AddiSOﬂ-WESley

instructions. PLA components with similar code are ~ Boston, 2002.

identified using Eclipse plugin CodePro Analytix, FZ] G. Booch, “Handbook of software architecture,”

tool [10]. We have identified 60 matches, a potentia 2005.

candidates to merge into one class. To find bugs we

usedEclipse Refactoring feature and found 51 matches [3] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and

which needs to be corrected. We have found 4 potential M. Huh, “FORM: A feature-; oriented reuse

candidate aspects to isolate in the reference method with domain-; specific reference

architecture modules to be responsible for crosscutting ~ architectures,Ann. Softw. Eng., vol. 5, no. 1, pp.

concerns: exception handling, logging, performance 143-168, 1998.

measuring and business feature interface authorizatiorh]

To facilitate communication among developers,

refactoring analysis findings have been collected in

refactoring catalog and describes using a unifornf5] M. Fowler, Refactoring: improving the design of

structure: name of activity, motivation, addressed code ~ existing code. Addison-Wesley Professional,

smell, actions needed for actual change, preconditions, 1999.

priority, dependency, risk assessment, and etc. [6] V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P.
Borba, and C. Lucena, “Refactoring product
lines,” in Proceedings of the 5th international

5 Conclusion and future work conference on Generative programming and
component engineering, 2006, pp. 201-210.

W. F. Opdyke, “Refactoring object-oriented
frameworks,” University of lllinois, 1992.

Business applications, in the context of softwar§71 ¢ kastner. T. Thum. G. Saake. J. Feigenspan, T.
product lines, rely on a common reference architecture * | gich E. Wielgorz and S. Apely “EeaturelDE: A

which is usually developed based on a client-server and 1,5 framework for feature-oriented software
layered architectural styles. The reference architecture development,” irSoftware Engineering, 2009.
is designed to provide coherent picture of the different |~og 2009 |EEE 31t International Conference
components to be used throughout the different on, 2009, pp. 611-614.

products. The components can be arranged into a

useful configuration by restricting what each one id8] R.C. Seacord, D. Plakosh, and G. A. Lewis,
allowed to use. In this paper we use the terms Modernizing legacy systems: software
subsystem to decompose of the whole product line technologies, engineering processes, and

into: reference architecture components, client businesspractices. Addison-Wesley
components and server components. Professional, 2003.

The major objective of this study was to investigate th 9] C.W. Krueger, “New methods in software

product line components relation types based on th product line development,” iSoftware Product

implementation of software product line for business | e Conference 2006 10th International. 2006
applications in a financial institution. pp. 95-99. ’ ' ’

Investigating components refactoring in the context of
product lines is interesting, because components afé0] CodePro Analytix. Google, Inc, 2011.
used not only in a single product, but they may be used
to generate a whole family of products. Typically,
refactoring is performed as a reaction to a code smells
such as: duplicated code, long method, large class, long
parameter list, however, software product lines give
rise to a new group of code smells.

We plan to use the findings from this process as an
input to the next step of converting current release of
the product line PLA to the new refactored baseline.

Varazdin, Croatia Faculty of Organization and Informatics September 17-19, 2014

