

Case Study: Refactoring of Software Product Line

Architecture - Feature Smells Analysis

Zdravko Roško

Faculty of Organization and Informatics

University of Zagreb

Pavlinska 2, 42000 Varaždin, Croatia
zrosko@gmail.com

Abstract. Software Product Line (SPL) architecture
refactoring is typically performed to keep pace with
changing environment, such as client platforms,
operating system, language compilers, development
tools, external third party components and database
managements systems. Product Line Architecture
(PLA) is a shared architecture for a set of closely
related applications. In this paper we report the
experience conducting a case study on PLA refactoring
analysis to be used as an input to the next stage within
the process of its refactoring. Quantitative data are
collected from a product line for business applications
in a financial institution. The overall goal of the case
study was to understand the current characteristics of
the PLA with the intention of improving it and making
its necessary adaptive and preventive maintenance
changes. We propose a refactoring analysis steps for
product-preserving type of product line refactoring to
ensure improved PLA quality attributes.

Keywords. Software product lines, refactoring,
business applications, features smells, feature.

1 Introduction

One of the most successful approaches to planned and
proactive reuse of software assets is Software Product
Lines (SPL) approach. SPL is defined as a set of
software-intensive systems sharing a common,
managed set of features that satisfy the specific needs
of a particular market segment or mission and that are
developed from a common set of core assets in a
prescribed way [1]. A software product line (or
software product family) relies on a common product
line architecture (also called reference architecture) to
achieve a substantial increment in product cost, quality
and a time to market. Product Line Architecture (PLA)
is a base for all components that are used by individual
product in the product line. Architecture represents the
significant design decisions that shape a system, where

significant is measured by cost of change [2].
Therefore, the reference architecture development is a
key activity for organizations following a SPL
approach since this core asset allows to keep pace with
changing environment and with market’s present and
future needs. Specifics of product line refactoring
differ from refactoring in general, which is usual
practice in software development. To give additional
insights into product line refactoring specifics, we
summarize experience from a refactoring project we
performed using FORM (Feature-Oriented Reuse
Method [3]) process method.

2 Related work

Refactoring in general, not specific to product lines, are
typically traced to the dissertation of Opdyke [4].
Refactoring is the process of changing a software
system in such a way that it does not alter the external
behavior of the code yet improves its internal structure
[5]. A good source of refactoring in general in object-
oriented programming is the book by Flower [5].
However, in the context of product lines, this definition
is not sufficient, because it does not take into account
a whole family of applications and their relationship
with the common reference architecture. Alves et al.
were among the first to propose to extend traditional
notion of refactoring to software product lines [6].
Thum et al. proposed an automated analysis to identify
refactoring on feature models [7].
In this paper, we use extended traditional notion of
refactoring, in which SPL refactoring is a change made
to the structure of a SPL in order to improve (maintain
or increase) its configurability, make it easier to
understand, and cheaper to modify without changing
the observable behavior of its original products.

Central European Conference on Information and Intelligent Systems__Page 326 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

3 Case and study selection

The subject of this study was an implementation of
PLA for business applications in a financial institution.
There are 7 business applications using the same PLA
as a base to provide the required user functionality to
the business users of the institution. Examples of such
applications include loan processing application that
allow users to process a loan request, credit card
scoring application that allows users to calculate the
application score for a new credit card application, etc.
PLA consists of three large subsystems as shown in
Figure 1: Client for Java
applications, Shared components used on client and on
server side of the applications, and Server which

 consists of Business Logic and Server Persistence
layers. The starting version of the reference
architecture is based on Java 1.5 and the target
refactored Java platform is Java 1.7. Also, the starting
version support Java client applications only, but target
version should support web based Ajax enabled client
applications. Since Java 1.7 supports many of the
valuable language features which may help to improve
the quality attributes of reference architecture, our
domain analysis include the capabilities of the proven
programming approaches and techniques such as:
Aspect Oriented Programing (AOP), Annotations,
Inversion of Control (IoC), and some others.

Figure 1. PLA for Business Applications

Refactoring of a product line is an important activity
which needs to be planned since the changes performed
reflects not only a single application, but a set of
artifacts that may be used to generate a whole family
of applications. The study we present here reflects the
refactoring performed as a reaction to a feature smell,
a perceived problem in the source code, which belong
to an adaptive and preventive category of software
change [8]. Adaptive changes are made in reaction to a
changing environment such as new language compilers
(e.g. Java 1.7), new operating system, third party
external components, database management system,
integrated development environment and tools, etc.
Preventive changes are made to improve future
maintainability and reliability of the product line
components. Unlike adaptive reason for change,
preventive changes proactively seek to improve quality
attributes of the future product line applications and the
reference architecture components.
Overall, the central focus of this study is the
improvement of PLA maintenance quality attributes,

especially changeability and stability. Changeability
measures the impact made to a component of product
line to the rest of the reference architecture components
and related product line applications. Increasing
number of external third party components dependency
which are referenced by product line reference
architecture components or applications periphery
components, impacts the stability of product line.
Changes to the external third party components is a
threat to the stability of a product line. These changes
should be addressed by delegating the responsibility of
the changes to the reference architecture rather than
leaving them to be handled by product line applications
separately.
Product line includes core assets (reference
architecture components and application components)
and individual applications (products) composed from
those core assets. Synchronizing the release of features
and components in core assets with the product
releases is a key to managing product line. The release
of a product at a given point in time requires that core

SPL Reference Architecture

Client Layer

Core Data Cache Exceptions Security Reporting Services Session Transport Validation

Shared Components

Server Business Logic Layer

Server Persistence Layer

Data Transport

http json rmirmi jms

jsp

admin

facade

bl

Data Access

Connection

core

Converters

Reporting

Security

Services

Transaction

Session

Upload

Core MVC Types Security

Java

Rules

Process

Workflow

Meta Data
iSeriesRDBMS CICS WS JMS

Ajax (GWT) Ajax Mobile (GWT)

Core MVC Types Transport Security Core MVC Types Util

As Is

Ja
va

 1
.5

Ja
va

 1
.7

D
ep

. I
n.

A
sp

ec
ts

A
n

no
ta

tio
n

s

To Be

Central European Conference on Information and Intelligent Systems__Page 327 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

assets used by product meet or exceed the quality and
functionality for that product release. Figure 2
illustrates the synchronized product line release
generations (Baseline 1 through Baseline Refactored)
occurring on annually intervals [9]. In between there
were monthly synchronization points, based on user
requirements or maintenance changes. Time is shown
across the top horizontal axis. At the bottom of the
figure are the applications (products). Note that during
three years the number of products increases. The
refactored baseline, the last release of the baseline is
the final (“to-be”) release of the product line, which we
target by this refactoring activity.

Figure 2. SPL releases

4 Analysis procedure

We have selected to use the FORM, an architecture
design process to serve as basis for obtaining Baseline
Refactored release. FORM is a systematic method that
looks for and captures commonalties and differences of
applications in a domain in terms of "features" and
using the analysis results to develop domain
architectures and components. The model that captures
the commonalties and differences is called the “feature
model” and it is used to support both engineering of
reusable domain artifacts and development of
applications using the domain artifacts [3].
Applications users and software developers are both
familiar with use of the term "features" when
communicate a product characteristics in terms of
“features the product has or need to have”. FORM is
based on a commonality analysis expressed in a
domain model in terms of features. FORM process is
shown in Figure 3, where different types of features is
considered: functions provided by products, technical

operating environment, application domain
technologies, and implementation techniques.

Figure 3. FORM Engineering Process

4.1 Feature location

By analyzing the product line reference architecture
implementation and its 7 applications source code,
configuration parameters and technical documentation
including variability guide, we have identified the
product line features. We divided the product line
features into the two broad categories, one referring to
reference architecture technical features and the other
to application business logic features. The features
represent functionality a user would select when
customizing business applications. There are 25 server
layer reference architecture technical features, and 26
client layer reference architecture technical features for
application engineering process to select when
composing an applications. Also, there are 49 business
logic server features and 60 client presentation logic
features to select when customizing an application.
From these features we have selected 25 server
reference architecture and 49 business logic server
features for actual refactoring. The rest, mostly client
presentation logic features, will be refactored once the
new web-based reference architecture and its
components are developed.
Figure 4 shows a partial feature diagram of server
reference architecture implementation before
refactoring.

Baseline 1 Baseline 2 Baseline 3
Baseline
Refactored

Core Asset 1

Core Asset 2

Core Asset 3

Core Asset 4

Product A

Product B

Product C

Product D

Product E

Product F

Time

Space

Key:

Test

Production

Central European Conference on Information and Intelligent Systems__Page 328 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

Figure 4. Feature model for reference architecture server subsystem

Figure 5. Initial components order

Table 1 shows the steps we have followed to do PLA
analysis. After finding current state of product line
features, we needed to analyze the Java source code to
find the potential candidates for subsystem refactoring.
To analyze the subsystem structural complexity we
used Design Structure Matrix (DSM) tool named
Cambridge Advance Modeler (2010). The method of
analysis we applied is called sequencing. This form of
partitioning analysis involves reordering rows and
columns of the DSM to minimize cycles (i.e. to arrange
the feature components with as many interactions as
possible below the diagonal). The reordering of the
DSM rows and columns is done in such a way that the
new DSM transforming the DSM into an upper
triangular form.

Table 1. Steps for analyzing SPL features for
refactoring

Order Activity
1 Analyze feature dependency clusters

(DSM)
2 Find unused variability
3 Find unused features
4 Find fat products
5 Find duplicate code in alternative features
6 Analyze historical usage of PLA features
7 Analyze new user requirements

In this study we use reference architecture
implementation feature component as a unit of
analysis. Components as unit of analysis contain

Central European Conference on Information and Intelligent Systems__Page 329 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

functions and data structures associated to the same
feature. The initial order as shown at Figure 5 is the
result of initial random analysis. However, after
applying a Partition Matrix sequencing method the
components are reordered as shown at Figure 6. The
cells above the diagonal are marked (in circle), which
means that circular dependency among the components
exists.

Since we apply the layered architecture style we
needed to focus on what to change to reach the goal of
layered architecture. The results at Figure 6 suggests
that a refactoring might be used in order to reduce the
coupling among feature components.

Figure 6. Sequenced components order

Software dependency can be static or dynamic. Static
dependencies, generally known as “compile time”
dependency use the concept that one component is
required to compile another components. The tools
used here are good enough to discover static
dependencies, while dynamic dependencies such as
ones that use Java reflections are possible to discover
just by manual analysis.
PLA architecture documentation shows that dynamic
dependencies are consistently used to identify and
invoke server side business methods. In other cases the
architecture documentation prefers to avoid using
reflection.

4.2 Reference Architecture Analysis

Next, we have applied general refactoring steps, shown
in Table 2. After applying these steps for general
refactoring, we have found one external

Table 2. Steps for general refactoring analysis

Order Activity
1 Find current status for external

components
2 Find deprecated Java code in PLA

components
3 Find warning and error Java code in PLA

components
4 Find dead code (static) in PLA

components
5 Find similar code in PLA components
6 Find large classes
7 Find bugs
8 Find unused classes
9 Find potential cross-cutting (aspects)

component that is not supported by supplier after Java
1.5 version and need to be replaced by an alternative
solution. Eclipse IDE shows many Java classes,
interfaces and methods used by current product line

Central European Conference on Information and Intelligent Systems__Page 330 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

implementation that are deprecated. The alternatives
have to be analyzed and sample have to be tested in
order to apply them to the product line. All errors have
to be corrected and warnings need to be suppressed or
corrected by more appropriate programming
instructions. PLA components with similar code are
identified using Eclipse plugin CodePro AnalytixTM ,
tool [10]. We have identified 60 matches, a potential
candidates to merge into one class. To find bugs we
used Eclipse Refactoring feature and found 51 matches
which needs to be corrected. We have found 4 potential
candidate aspects to isolate in the reference
architecture modules to be responsible for crosscutting
concerns: exception handling, logging, performance
measuring and business feature interface authorization.
To facilitate communication among developers,
refactoring analysis findings have been collected in
refactoring catalog and describes using a uniform
structure: name of activity, motivation, addressed code
smell, actions needed for actual change, preconditions,
priority, dependency, risk assessment, and etc.

5 Conclusion and future work

Business applications, in the context of software
product lines, rely on a common reference architecture
which is usually developed based on a client-server and
layered architectural styles. The reference architecture
is designed to provide coherent picture of the different
components to be used throughout the different
products. The components can be arranged into a
useful configuration by restricting what each one is
allowed to use. In this paper we use the terms
subsystem to decompose of the whole product line
into: reference architecture components, client
components and server components.
The major objective of this study was to investigate the
product line components relation types based on the
implementation of software product line for business
applications in a financial institution.
Investigating components refactoring in the context of
product lines is interesting, because components are
used not only in a single product, but they may be used
to generate a whole family of products. Typically,
refactoring is performed as a reaction to a code smells
such as: duplicated code, long method, large class, long
parameter list, however, software product lines give
rise to a new group of code smells.
We plan to use the findings from this process as an
input to the next step of converting current release of
the product line PLA to the new refactored baseline.

6 References

[1] P. Clements and L. Northrop, Software product

lines: Practices and Patterns. Addison-Wesley
Boston, 2002.

[2] G. Booch, “Handbook of software architecture,”
2005.

[3] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and
M. Huh, “FORM: A feature-; oriented reuse
method with domain-; specific reference
architectures,” Ann. Softw. Eng., vol. 5, no. 1, pp.
143–168, 1998.

[4] W. F. Opdyke, “Refactoring object-oriented
frameworks,” University of Illinois, 1992.

[5] M. Fowler, Refactoring: improving the design of
existing code. Addison-Wesley Professional,
1999.

[6] V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P.
Borba, and C. Lucena, “Refactoring product
lines,” in Proceedings of the 5th international
conference on Generative programming and
component engineering, 2006, pp. 201–210.

[7] C. Kastner, T. Thum, G. Saake, J. Feigenspan, T.
Leich, F. Wielgorz, and S. Apel, “FeatureIDE: A
tool framework for feature-oriented software
development,” in Software Engineering, 2009.
ICSE 2009. IEEE 31st International Conference
on, 2009, pp. 611–614.

[8] R. C. Seacord, D. Plakosh, and G. A. Lewis,
Modernizing legacy systems: software
technologies, engineering processes, and
business practices. Addison-Wesley
Professional, 2003.

[9] C. W. Krueger, “New methods in software
product line development,” in Software Product
Line Conference, 2006 10th International, 2006,
pp. 95–99.

[10] CodePro Analytix. Google, Inc, 2011.

Central European Conference on Information and Intelligent Systems__Page 331 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

