
Considerations and Ideas in Component Programming -
Towards to Formal Specification

William Steingartner, Valerie Novitzká, Martina Benčková, Peter Prazňák
Faculty of Electrical Engineering and Informatics

Technical University in Košice
Letná 9, 04200 Košice, Slovakia

{william.steingartner, valerie.novitzka, martina.benckova}@tuke.sk, praznak@minv.sk

Abstract. Programming in present can be character-
ized as a composition of some prepared components.
New market was opened for providing components
for various applications. However, every compo-
nent library uses different standards, methods and
requirements for using its products. Another problem
is different terminology and a lack of some common
standards. This situation can be compared with
the period before setting open systems standards.
We assume that analyzing of common principles of
component programming can help to find unified
formal description and it enables to construct formal
models serving for solving and preventing troubles
in composing appropriate components into working
program systems. In our paper we try to present our
analysis and preliminary ideas for achieving these
aims.

Keywords. component programming, non-classical
logics, category theory

1 Introduction
In the last decades, new method of software develop-
ment - component oriented programming - has become
popular. It can be shortly characterized as a construc-
tion of program system from existing software enti-
ties by composition. At the first sight, component ori-
ented programming can be viewed as a continuation of
object oriented programming, but there are many im-
portant differences. Component oriented programming
enables reusing of prepared components in quite differ-
ent program systems. Reusability requires some inde-
pendence of components and some rules how to com-
pose and deploy them to achieve a working program
system.

In the past, program systems were developed from
the beginning, only with help of some tools and li-
braries. The libraries of procedures can be consid-
ered as the first examples of the simple form of com-
ponent programming. This approach has some advan-
tages, e.g. simple modifications, employing knowled-
ge and skills of clients, etc. But software developed

in this manner had high cost and it cannot be opti-
mally used out of given institution. Involving some
new functions in such systems, e.g. web access, local
or global interoperability can be very difficult for pro-
gramming teams. Present world is characteristic with
rapidly changing requirements and this classical pro-
gramming approach is not able to keep up with it.

Now, there are several companies providing compo-
nent libraries that can be used in different systems as
needed. Such purchased software can be adapted to
user requirements only slightly, it often enforces great
changes in the work mode in user institution. But all
administration, upgrading evolution and interoperabil-
ity is out of users. Among such known companies
providing components of wide spectrum belong OMG
(Object Management Group), CORBA (Common Ob-
ject Request Broker Architecture), Microsoft COM
(Component Object Model), CLR (Common Language
Runtime) and many others. These companies compete
on market; they have no common rules and no com-
mon standards for provided components. Development
of various components, their accessibility and reusabil-
ity leads to the situation when component-oriented pro-
gramming becomes a necessity, the main programming
method in software engineering.

There are many publications and web pages about
component programming, composition of components,
and methods for solving arisen problems. Most of them
deal with implementation details and issues, only small
number of them tries to provide some principal, exact
formal approach. Also in the terminology, as in every
rapidly evolved discipline, is some confusion.

The aim of our research is to find and formulate an
appropriate formal framework for specifying and mod-
eling component program systems with provable prop-
erties. Therefore our effort is to formulate unified ter-
minology, to analyze particular basic notions and their
properties, and to define formal description of basic
principles for composition of components. This pa-
per contains short analysis and our ideas considerations
about formal description and modeling component-
oriented program systems.

In this paper, in section 2 we analyze differences be-

Central European Conference on Information and Intelligent Systems__Page 332 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

tween objects and components. Section 3 contains ba-
sic notions used in component programming, starting
with interfaces, composition, interactions, contracts
and dependencies. In section 4 we present our prelimi-
nary ideas, proposed formal tools and methods how to
formulate formal framework serving for provable de-
scription and modeling of program systems composed
from components.

2 Component versus object
The notion of component is one of the notions with
many different definitions. First, we consider differ-
ences between objects and components, we present
definition of a component and we mention some prop-
erties that can be considered within the work with com-
ponents.

Components are often compared with objects and/or
classes in object oriented programming. Both objects
and components provide their services trough some ac-
cess points of some types. Between objects and com-
ponents are some interactions that can be described by
some patterns and frames. The basic difference be-
tween components and objects we list in the following
text.

The main difference between component oriented
programming and object oriented programming is that
component oriented programming places importance
on interfaces and composition while object oriented
programming on classes and objects [17, 19, 34].

An object can be viewed as

- a unit of instantiation having unique identity suf-
ficient to its identification;

- it has externally observable state;

- it encapsulates its behavior, only interface is visi-
ble, not implementation details.

A component

- is an independent deployable entity by composi-
tion;

- it has to have all important features, it must be
deployed whole, not partially;

- composition is successful when some agreements
and environment requirements are satisfied;

- has hidden implementation details from user;

- has involved interactions with environment by
well-defined typed ports;

- can be a subject of separate compilation;

- has no externally observable state; its initial state
is established after its deployment.

Many definitions of components are in literature.
For instance, among newer formulations in [4, 5, 29]
belongs the following characterization: a component is
a software implementation that can be deployed inde-
pendently and it is a subject to composition by the third
parties. This definition does not express all important
properties of components. Sometimes, a component
is compared with a black box, because of hiding im-
plementation details, it can be reused and it can have
some rules to be deployed in a program system in such
a manner that the whole system provides desired re-
sults.

Components can be considered as some classes
known from object oriented paradigm and their de-
ploying and instantiations lead to some kind of objects.
However, components have more properties than ob-
jects, even a component can involved several objects
[17, 35].

Often, to guarantee functionality of a component in
given program system, some own user code, additional
information and external files have to be used. Com-
ponents can be generic, i.e. substituting parameters (of
proper types) by appropriate arguments enable their us-
ing for different purposes [2, 13, 31].

There are other comparisons of components with ex-
isting entities in software engineering. For instance, a
component is similar to module as it is known from
programming language Modula [37] or to package in
Ada [7]. Both support separate compilation that en-
ables type checking across modules. Packages can be
also generic and instantiated by substituting (type) pa-
rameters with arguments.

The world of components is still in evolution. We try
to characterize some so called stable common features
as some starting points for our formal approach.

3 Basic Notions of Component
Oriented Programming

In this section we state the terminology and we char-
acterize basic notions needed for our approach. We
start with interfaces, visible parts of components, then
we analyze composition and interactions between com-
ponents and we characterize necessary information for
successful composition, i.e. contracts and dependen-
cies.

3.1 Interfaces
A component is often characterized as a black box with
only visible part called interface. All information, i.e.
data structures, data types, procedures and ports with-
out their implementation details constitute an interface
[38]. Only the content of an interface defines what can
be used in program system after deploying a compo-
nent. Hidden part contains implementation details that
are non-accessible for users. An interface contains

Central European Conference on Information and Intelligent Systems__Page 333 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

- typed data structures usable and movable between
components;

- operations over typed data structures;

- typed ports that are access points for moving data.
Every port is input/output for receiving/sending
data to corresponding port(s) of other compo-
nent(s) and serves for data of some specific type.

An interface is often specified as an abstract data type.
Typed ports are very important part of any interface
because cooperation between components can be per-
formed only through corresponding ports. Ports serve
as end points of interactions, they enable transfer of
data of some type in required direction [24]. Compo-
nents are the subjects of composition to build working
program system.

3.2 Composition of component system
Composition of components requires first to construct
some composition model. It can be considered as a
basic architecture expressing the roles of components,
their interconnecting, relations between them and the
rules of composing components together. Relations be-
tween components are called interactions [9].

It is not precisely established how a model for com-
ponent systems have to be built [32]. However, it is us-
able to extract the most important features of a program
system, to specify necessary known interconnections
between them and to encapsulate them into appropriate
structure with exactly defined properties. Such model
creates a basis for independence and cooperation of
components on some abstract level. It can be charac-
terized as a holistic view of a program system, defining
invariants, i.e. properties characterizing all the actual
program systems constructed on the base of this model.
A model can be based on principal considerations on
functionality and it should state some decision policy
ensuring correct interoperability of components. In
such complex and large systems as component-based
program systems are, it is obvious to construct models
in hierarchical mode with several layers.

Certainly, in any model we abstract from a computer
architecture or implementation details. For our pur-
poses we consider a model as a collection of

- component frameworks and

- the rules of interoperability between these frame-
works.

Component frameworks contain specification of in-
terfaces and typed ports together with decision policy
on the component level. The rules of interoperability
state the conditions for successful cooperation between
components in the form of defining interactions. In the
following subsection we try to classify known and fre-
quently occurred interactions in the frame of compo-
nent model.

3.3 Interactions
It is interesting that different publications provide dif-
ferent classifications of interactions. In the following
literature [36, 32, 1, 20] authors form various patterns
of interactions. On this base we try to classify interac-
tions by three criteria:

- interactions based on pre- and post- conditions;

- interactions that are dealing with concurrency and
indeterminism;

- interactions based on what makes choice and what
follows-up.

The first group encapsulates interactions specified on
the base of Hoare’s pre- and post- conditions. If c1, c2
and c3 are preconditions and/or postconditions, p is an
input or output port, we can distinguish the following
interaction patterns:

- send pattern sequence: before executing function
send it is satisfied pre-condition c1, after it post-
condition c2 is satisfied. This pattern is illustrated
in Figure 1;

- pre- blocking send: in this pattern a message is
sent through port p. After pre-condition c1 until
message is not consumed, the sender component
blocks all activities as it is in Figure 2;

- post- blocking send: it is similar pattern as before
but sender component blocks all activities after
satisfying post-condition c2 until c3. This pattern
is in Figure 3;

- receive message: in this pattern receiver blocks all
activities until whole sent message is received;

- lossy receive: if the input port of receiver is not
able to accept sent message, a message is lost.

The second kind of interactions concerns concur-
rency and cases of internal and external indeter-
minisms. The difference between internal and external
indeterminism can be roughly specified as follows: in-
ternal indeterminism does not depend on some decision
or situation in environment; in external indeterminism
chosen activity depend on some external decision aris-
ing from environment. In this kind of interactions we
distinguish the following patterns:

- concurrent send (furcation): message is sent into
two different receiver ports concurrently;

- concurrent receive (rendezvous): two messages
are receiving from two different ports concur-
rently,

- sending choice (free choice): one message from
two ready messages is sent according to choice of
sender;

Central European Conference on Information and Intelligent Systems__Page 334 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

- receiving choice (dependent choice): one of two
sent messages is received depending on environ-
ment; it is external indeterminism;

- internal choice: it is combination of the two possi-
bilities above, the service does not make decision,
neither the environment. This case is internal in-
determinism.

The third kind of interactions contains interactions
based on what makes choice and what follows. In this
kind we distinguish:

- sending choice receiving follow-up: the sender
makes a choice and get information to the envi-
ronment and then the environment send a message
depending on the initial choice;

- receiving choice sending follow-up: the environ-
ment affects a choice of sender;

- sending choice sending follow-up;

- receiving choice receiving follow-up;

- internal choice sending follow-up.

Figure 1: Send pattern (sequence)

Figure 2: Pre- blocking send

The interactions above to be executed we have to
use typed ports. However, there can arise such situ-
ations in real world when ports are faulty. These not
desired events can be caused by some data or trans-
mission error, mismatching of protocols or incompat-
ible data models. These situation have to be carefully
treated because they cause shutting down interactions
between components[21].

Figure 3: Post- blocking send

3.4 Contracts and Dependencies

To be a system composed from components health,
some additional information for successful composi-
tion is needed. This information is known as

- contracts and

- context dependencies.

Contracts create a common basis for successful
composition and interactions between components in
a program system. The basic conditions stated by con-
tracts involve:

- correlations between ports constructing data and
the ports extracting these data;

- requirements to the ports of other components that
should be satisfied for making given component
working;

Contracts can be considered as specifications of non-
functional requirements. Their role is to state obliga-
tions for achieving desirable behavior of components
in program systems [33, 23]. The first formal speci-
fication of contracts follows from algebraic specifica-
tions of abstract data types, i.e. signatures and axioms
formulated in some logical system extended with some
constraints specific for given component. Among sim-
ple examples of contracts we can list component inter-
operability, pre- and post conditions of Hoare’s logic,
invariants, etc. [12, 18, 22].

A contract is a pair

(A,G)

where A is a specification of assumptions and G is a
specification of guarantees.

- Assumptions contain requirements on environ-
ment of a component and

- guarantees formulate what provide a components
if assumptions are satisfied.

Central European Conference on Information and Intelligent Systems__Page 335 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

interface 1

assumptions 1 guarantees 1

assumptions 2guarantees 2

interface 2

interaction contract

Figure 4: Interaction contract

Both specifications of assumptions and guarantees can
be formulated in some specification theory. If we con-
sider for a component its assumption specification A
and its guarantee specification G as abstract data types,
we can say that A <: G, i.e. assumption specification
is "subtype" of guarantee specification [10]. Compo-
sition of two components leads to working system if
all assumptions and guarantees of both components are
satisfied. Contracts for interaction between two com-
posed components is illustrated in Figure 3.4.
The mostly used specification methods for specifying
interaction contracts are:

- trace-based specifications [8] where assumption
and guarantees are specified as sets of runs and

- modal contracts [30] based on modal may- and
must- transitions.

Contracts are not enough for successful and work-
ing composition of components. Another information
is nedded: context dependencies. Dependency can be
characterized as follows: if a component C1 uses a
component C2, we say that C1 depends on C2. Depen-
dencies formulate conditions for reusing and upgrad-
ing components. An environment consisting of a set of
components together with their context dependencies
is called repository. Context dependencies involve:

- composition context dependencies - requirements
on environment for successful composition;

- deployment context dependencies - possible plat-
forms (hardware and software) where component
can work.

Due to different application domains there are many
ways how to build program systems from components.
Most of the components can be considered as data
structures with explicit or implicit data types, subpro-
grams, collections of subprograms, etc. One com-
ponent can require some modification in another one
component. This relation between new and existing
components is one of the forms of dependencies. A

simple example of dependencies between components
is e.g. in [36]. Let C1 and C2 be components with
corresponding explicitly typed data structures. Authors
classify known and frequently occurred context depen-
dencies as:

- data dependencies: a value of C1 can influence
data of C2, or data of C1 can be used for comput-
ing C2;

- type dependencies: type definitions and their
changes in C1 can influence data types in C2;

- subprogram dependencies: executing some proce-
dure or function of component C1 by calling with
data from C2 causes this kind of dependencies;

- source file dependencies: if some source file
serves as a common source for both components
C1 and C2 in program system;

- source location relationships,

- time and space dependencies, and many others.

Deployment context dependencies express hardware
and software platform for successful deploying of com-
ponents. Here belong hardware architectures, operat-
ing systems and their versions, representations of built-
in data, etc. Deployment context dependencies become
important in implementation process and we will think
they are hardly formalizable.

In newer literature, e.g. in [3] dependencies are clas-
sified into two groups:

- positive dependencies

- negative dependencies called conflicts.

Components relationships are described by depen-
dency graph, i.e. oriented graph where nodes are com-
ponents and oriented edges express dependencies or
conflicts. A system is said to be healthy when all com-
ponents have their dependencies satisfied and all con-
flicts unsatisfied.

From the previous analysis of dependencies follows
that dependencies can be described by first order for-
mulae in some appropriate logical system.

After this short analyzing and classifying of con-
tracts and dependencies we can extend the definition
of components with the following part: A software
component is a unit of composition with contractually
specified access points and explicit context dependen-
cies. Contracts and composition context dependencies
are stable parts in component-based programming and
they seem to be the first adepts for rigorous formaliza-
tion.

Central European Conference on Information and Intelligent Systems__Page 336 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

4 Towards Formalization of Com-
ponent Composition

In this section we present our preliminary ideas how
formalize principles and properties of program systems
constructed by composition of components. First we
give reason about formal tools we would like to use
and then we sketch our approach.

After our good experience with several logical sys-
tems we assume that for description of some basic prin-
ciples and properties can serve some logic with great
expressive power. Using of logical system has another
advantage; descriptions can be proved by correspond-
ing deduction calculus. We choose linear logic [11]
formulated by J.-Y. Girard. Linear logic (LL) can ex-
press dynamics of systems and handling with such re-
sources as time and space [26]. Among useful proper-
ties of LL become the properties of linear connectives:

- multiplicative conjunction A ⊗ B expresses that
actions A and B can be performed simultane-
ously;

- additive conjunction ANB expresses dependent
choice, external indeterminism;

- multiplicative disjunction AOB expresses that if
A is not perform then B is perform and vice versa;

- additive disjunction A⊕B expresses free choice,
internal indeterminism;

- linear implication A (B has special properties:
a resource A is consumed after performing linear
implication, and action B follows after A;

- linear negation expresses consuming of a resource
A or a reaction of action A.

Every formula in (LL) can be considered as action or
a resource and can be represented as type. Extending
linear propositional logic with predicate symbols, lin-
ear term and quantifiers we get first order predicate lin-
ear logic (PLL) with high expressive power. PLL cov-
ers classical first order logics. Sequent calculus of lin-
ear logic enables proving of constructed formulae and
to provide a strong tool for verification purposes.

Formal description in linear logic has to be modeled
in some appropriate structure. We prefer as a basis
symmetric monoidal categories as very useful mathe-
matical structures providing wide spectrum of interest-
ing properties. In [14] is constructed categorical model
for object oriented program system with some indica-
tion how to extend it for complex program systems. In-
deed, PLL can be extended by modal operators as we
made in [27, 28].

Category theory provide two possibilities for model-
ing component base program systems [25, 15]. If we
are interesting in component composition then it is suit-
able to model component interfaces are category ob-
jects. In the case of modeling interactions as category

1

2

3

interfaces

contracts

dependencies

Figure 5: Proposed layers for formal framework

morphisms we have two possibilities: either we can
construct category morphisms as mappings expressing
functionality of interactions or we can model them as
relations which lead to relational categories. The latter
approach is not obvious and it requires deeper analysis.
If we are interesting in modeling observable behavior
of component program systems (for example [16]), it is
suitable to use coalgebras [6], where polynomial endo-
fuctor is constructed to model behavior of a system step
by step. This endofunctor is constructed over category
of states.

The aim of our research is to formulate formal
framework for specifying and modeling component
program systems. Because of complexity of this prob-
lem, it would be reasonable to construct this framework
hierarchically with three layers illustrated in Fig.4.

The layer 1 concerns with interfaces and interactions
between components. An interface can be specified
using algebraic specification consisting from signature
and axioms. A signature contains

- typed ports;

- specifications of operations.

Axioms can be written as obvious in equational logic or
in PLL. First layer component system then can be mod-
eled as a category of interfaces, where objects are rep-
resentations of interfaces (Σ-algebras) and morphisms
are interactions between components.

The role of second layer is to consider also contracts.
There are two possibilities:

- to extend specifications of interfaces by assump-
tions and guarantees or

- to formulate them by formulae in PLL.

Both solutions enable to protect "subtype" relation be-
tween assumptions and guarantees. This layer can re-
strict possible interactions between components to sat-
isfy contracts.

On the third layer dependencies will be introduced.
Dependencies we would like to formulate as predicates
of other formulae in PLL and model in an appropriate
category.

Our preliminary idea how particular layers are inter-
connected is to use some functors or natural transfor-
mations with suitable properties.

Central European Conference on Information and Intelligent Systems__Page 337 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

5 Conclusion

Component based programming is an actual and
rapidly evolving paradigm of programming. There are
many useful research results in the frame of imple-
mentation, composition of components and eliminat-
ing arisen problems. We analyzed basic principles of
this new method and formulated basic notions. Our
analysis and discussion serves for our aim - to prepare
a suitable formal framework for verifiable formal de-
scription and modeling component based program sys-
tems. Our future research will be concerned to working
out in detail particular ideas presented in this paper.

6 Acknowledgments

This work has been supported by KEGA grant project
No. 050TUKE-4/2012: "Application of Virtual Reality
Technologies in Teaching Formal Methods", and by the
Slovak Research and Development Agency under the
contract No. APVV-0008-10: "Modelling, simulation
and implementation of GPGPU-enabled architectures
of high-throughput network security tools."

References

[1] AALST W.M.P van, MOOIJ A.J., STAHL C.,
WOLF K.: Service Interaction: Patterns, Formal-
ization, and Analysis, In: Proc. of 9th Interna-
tional School on Formal Methods for the Design of
Computer, Communication, and Software Systems,
Bertinoro, Italy, 1-6 June 2009, LNCS Vol.5569,
Springer, 2009, pp.42-88.

[2] AALST W.M.P van der, HEE K.M. van, R.A.
TOORN R.A van der: Component-Based Software
Architectures: A Framework Based on Inheritance
of Behavior, Science of Computer Programming,
Vol. 42, No. 2-3, Elsevier, 2002, pp.129-171.

[3] ABATE P., BOENDER J., DI COSMO R., ZAC-
CHIROLI S.: Strong Dependencies between Soft-
ware Components, Tech.Rep.0002, 7th Frame-
work Programme FP7-ICT-2007, University Paris
Diderot, 2009

[4] AOYAMA M.: New Age of Software Develop-
ment: How Component- Based Software Engineer-
ing Changes the Way of Software Development, In-
ternational Workshop on CBSE, ICSE’98, 1998.

[5] BACHMANN F., BASS L., BUHMAN C.,
COMELLA-DORDA S, LONG F., ROBERT J.,
SEACORD R., WALLNAU K.: Technical Concepts
of Component-Based Software Engineering, Vol-
ume II, Carnegie Mellon, Techn.Report CMU/SEI-
2000-TR-008, ESC-TR-2000-007, May 2000.

[6] BARBOSA, L.: Components as coalgebras, PhD.
Thesis, University Minho, 2001.

[7] BARNES J.: Programming in Ada 2005, Addison-
Wesley, 2005.

[8] BENVENISTE A. et al: Multiple viewpoint
contract-based specification and design, LNCS
5382, Springer-Verlag, 2007, pp.200-225.

[9] COUNCILL B., HEINEMAN G.T.: Definition
of a Software Component and Its Elements, Ch.1,
Component-based software engineering, Addison-
Wesley Longman, 2001, pp.5-19.

[10] ENSELME D., FLORIN G., LEGOND-AUBRY
F.: Design by Contracts: Analysis of Hidden Depen-
dencies in Component Based Applications, Journal
of Object Technology, Vol.3, No.4, 2004,pp.23-45.

[11] GIRARD, J.Y.: Linear logic, Theoretical Com-
puter Science, Vol. 50, No.1, 1987, pp. 1-102.

[12] HAN J.: An Approach to Software Component
Specification, Melbourne, 2004.

[13] HATCLIFF J., DENG W., DWYER M.B., JUNG
G., RANGANATH V.: Cadena: An Integrated De-
velopment, Analysis, and Verification Environment
for Component Based Systems, Software Engineer-
ing, 2003, pp.160-172.

[14] JENČÍK M., Mihályi D.: Category for
component-based program system, Electrical
Engineering and Informatics, Košice, 2012, pp.
575-579.

[15] Knighten R.L.:, Notes on Category Theory, MIT,
2011.

[16] Harasthy, T., Turan, J., Ovsenik, L.: Road line
detection based on Optical Correlator, In: 36th In-
ternational Convention on Information & Commu-
nication Technology Electronics & Microelectron-
ics (MIPRO), 2013, Opatija, 20-24 May 2013, pp.
298-300, IEEE 2013

[17] Komponentenprogrammierung und Middleware-
Component programming with C# and .NET,
http://www.dcl.hpi.uni-potsdam.de/LV/
Components04/VL7/04_NET-components.pdf,
April 2014.

[18] KOZACZYNSKI W.:, Composite Nature of Com-
ponent, In: International Workshop on Component-
Based Software Engineering, 1999 pp.73-77.

[19] KWON O., YOON S., SHIN G.: Component-
Based Development Environment: An Integrated
Model of Object-Oriented Techniques and Other
Technologies, In: International Workshop on
Component- Based Software Engineering, 1999, pp.
2252-2256.

Central European Conference on Information and Intelligent Systems__Page 338 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

[20] MAIN M., SAVITCH W.: Data Structures and
Other Objects Using C++, Addison-Wesley Long-
man, 2010.

[21] MARIANI L.: A Fault Taxonomy for Component-
based Software, Electronic Notes in Theoretical
Computer Science, Vol. 82, No. 6, 2003, pp. 55-65.

[22] Meyer B.: Applying design by contract, Com-
puter, Vol. 25, No.10, 2002, pp.40-51

[23] Messabihi M., André P., Attiogbé C.: Multilevel
Contracts for Trusted Components, In: The 7th
International Conference on Software Engineering
Advances, ICSEA, 2012, pp.71-85.

[24] NING J.Q.: A Component Model Proposal, Inter-
national Workshop on Component- Based Software
Engineering, USA, 17-18 May 1999, pp.13-17.

[25] NOVITZKÁ V., SLODIČÁK V.: Categorical
structures and their applications in informatics,
Equilibria, 2011 (in Slovak).

[26] NOVITZKÁ V., MIHÁLYI D.: Resource-
oriented programming based on linear logic, In:
Acta Polytechnica Hungarica, Vol.4, No.2, 2007,
pp.157-166.

[27] MIHÁLYI D., NOVITZKÁ V.: Towards the
Knowledge in Coalgebraic model of IDS, Comput-
ing and Informatics. Vol.33,No.1,2014, pp. 61-78.

[28] MIHÁLYI D., NOVITZKÁ V.: Intrusion Detec-
tion System Episteme, Central European Journal of
Computer Science. Vol.2,No.3,2012, pp. 214-220.

[29] POLBERGER D.: Component technology in an
embedded system, Lund University, USA, 2009.

[30] RACLET J.B. et al: A modal interface theory for
component-based design, Fundam. Inform, Vol.108,
No.1-2, 2011, pp.119-149.

[31] RAYMOND K.: Reference Model of Open Dis-
tributed Processing (RM-ODP): Introduction, Uni-
versity of Queensland, Brisbane, Australia, 1996

[32] SZYPERSKI C., GRUNTZ D., MURER S.:
Component Software beyond Object- Oriented Pro-
gramming, ACM Press, New YORK, USA, 2002.

[33] URTING D., BAELEN S. van, HOLVOET T.:
Yolande BERBERS, Embedded software develop-
ment: components and contracts, Belgium, 2001.

[34] WANG A., Kai QIAN K.: Component-oriented
programming, Wiley-Interscience, 2005.

[35] WEGNER P.: Concepts and Paradigms of object-
oriented programming, ACM SIGPLAN OOPS, Vol.
1 No. 1, 1990 pp. 7-87.

[36] WILDE N., Program Dependencies, Carnegie
Mellon, Tech.Report SEI-CM-26, 1990.

[37] WIRTH N.: Programming in Modula-2, 4th edi-
tion, Springer-Verlg, 1989.

[38] YACOUB S., AMMAR H., Ali MILI A.:
A Model for Classifying Component Interfaces,
ICSE’99 West Virginia, USA, May 1999.

Central European Conference on Information and Intelligent Systems__Page 339 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

