

An event based framework for facilitating database

activity tracking

Josip Saban

Hypo Alpe Adria International

Hypo Alpe Adria Platz 1

Klagenfurt, Austria

josip.saban@hypo-alpe-

adria.com

Toni Grzinic

Croatian Research and

Academic Network

J. Marohnica 5

Zagreb, Croatia

Toni.Grzinic@CARNet.hr

Leo Mrsic

Lantea Grupa d.d.

Ul. grada Gospića 1/A,
Zagreb, Croatia

leo.mrsic@lanteagrupa.hr

Abstract. During a database analytic investigation

investigator tracks intruder’s actions on the system

until incident occures - the investigator identifies that
the intruder has, indeed, accessed the database in an

unauthorized way. Combined with the data about the

actions following the incident, it is also crucial to

collect data about user activity on the server before

the incident so that a log of actions can be created.

The goal of this paper is to propose which data

should be collected before the security incident

occurs, focusing on two parts:

Users on the level of the operating system which have

access to either the shared file system or the direct
access to the operating system by using remote

connection

SQL database users (either native or domain users),

key tables with sensitive data and the activity of users

in relation to those tables

Keywords. Database system, misuse detection, fraud

transactions

1 Introduction
Discovering historical facts about user activity is a

part of usual duties of investigators searching for a

way to determine which actions an intruder performed

within a database server. Databases are often used by

applications to store, sort, and manipulate data. These

applications can range from web-based, online

banking applications designed to transfer funds that

use databases to store client account information, to

stand-alone applications that use a database solely to

store application configuration settings.

A properly configured server environment should be

spread across different network zones; network zones

are logical boundaries that typically restrict inbound

and outbound traffic depending on the application

layers that reside within the zone. There are three

main network zones:

 Untrusted zone - often contains data that is

not verified and cannot be trusted

 Semi-trusted zone - contains data that at one

point was verified, but due to exposure to

untrusted zone hosts, now cannot be fully
verified and trusted

 Fully trusted zone - data within this zone is

normally under full control of the

organization and, therefore, is fully trusted -

the trusted zone is rarely directly connected

to untrusted hosts

 From the server security perspective databases

typically consist of two parts - data files and backup

files. Both of these files belong (in an ideal case) in a

fully trusted zone (this scenario is usual for intranet
applications, where databases hold sensitive data).

In the cases where a fully trusted scenario is not

possible (when public access is required, either for

display in applications or in a process of data

validation inside of a business process which has

public interfaces) databases are hosted in semi-trusted

zone.

In this paper we shall try to define a required data

collection process that will take into account the

database and the environment in which the database is
installed, including an analytic model that could be

used for active data analysis. Although the database

itself has to be secured, a great deal of security

depends on the network settings, database user types

(database native or domain users) and general

environment of the server on which it is installed.

The main motive of the paper is to create a

framework that will bridge the gap in the features

available in the database and the underlying operating

system. It will be used to store correlated events and

information which will provide information about
access to sensitive or otherwise protected data in the

database. For example, in the banking environments,

there is a special class of customers that are marked as

“protected” - usually public officials - whose accounts

should not be accessed by curious employees - this

access needs to be specifically supervised and

reported, specially for internal audit and compliance

Central European Conference on Information and Intelligent Systems__Page 26 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

processes. In addition, commercial DBMS systems

like Microsoft SQL Server offer specialized audit

solutions, in this case SQL Audit, which offer logging

of almost all action on the database server. When

those events occur, they are reported either in the

form of alerts to audit administrators or saved to the

audit database which is usually stored on the separate

server.

Also, we cannot only look to database tables for

analysis, but we also have to take into account other
database objects that could be used to access or

manipulate sensitive data. This process should,

ideally, be in place at the time when database system

goes into production, and at the latest when the

system starts to be accessed from public networks.

2 Related work
Khanuja and Adane [1] created a list of all

available database artifacts that can be tracked, and,

although connected firmly to MySQL database,

presents some interesting pointers on which database

objects to track. Unfortunately, due to connection to
just one database vendor and lack of proposed model,

does not present a valid starting point for tracking

database activity.

In the work of Gawali and Gupta [3] a valid
model framework is designed, separating the tracked

database from data warehouse that collects and stores

the data, at the same mentioning no specific vendor.

The work is significant because it calculates algorithm

complexities of storing tracked data using different

algorithms, proposing in the end a variation of hash

algorithm that tracks all changes to rows, and creates

hashes of content at certain point in time, though

mentioning that this approach suffers from

performance penalties which could be problematic in

high - traffic databases.

 Stahlberg, Miklau and Levine [4] present a detailed

analysis of low-level file systems on which work

different MySQL and PostGRE data storage solutions.

They assess performance of these data storage
solutions and present costs and benefits of each one.

Although more concentrated on MySQL, PostGRE is

also analyzed, specially with the relation to its

clustering abilities, which is the key output of this

work. As data is divided to multiple servers it

becomes critical to collect data from all cluster

instances.

 Technically not so sophisticated, but still

significant from retrospective aspect is the work from

Khanuja and Adane [5], which creates a template of

steps that need to be taken in order to create a

successful database analytics solution. One key aspect

that authors especially state is that algorithm used for

authorization are equally important as those for

authentication, which is usually forgotten.

 Fowler [6] in his paper describes a case study for a

real-life forensic research which presents a starting

point for any forensic process and, although tightly

related to one vendor, Microsoft SQL Server, gives an

insight in the complexity of the topics. He covers all

phases, from verification of the incident existence,

evidence collection to data analysis. This presents a

true read for anyone interested in applied database

forensic analysis.

 In [13] authors Low and Teoh present a

fingerprinting method for detection of changed

records (instead of the more standard hashing

method). It replaces selected text columns with

predefined patterns and then, using regular

expressions, checks whether the content has changed.
Although the concept is sound, the performance

issues of string manipulations of this kind in relational

databases prevent the usage of this method in high

transaction environments - the performance decreases

linearly with the increase of transaction sizes or users.

The seminal work in misuse detection

systems is the work of D.Denning [7]. She presented a

rule-based expert system that collects host data (login

and session activity, command and program

execution, file access) and from this data creates

usage profiles. Misuses are detected from anomalous

profiles that deviate from normal usage profiles.

Jin et al [9] realized that traditional database

security mechanisms do not protect databases from

misuse. The authors similarly to Denning proposed

architecture for a database intrusion detection system.

Their system can detect misuse by collecting requests

to the database server on the network and host level.

They used a multi agent approach with agents on
supervising host monitoring changes and network

traffic. Their system is supervised only for Oracle

10.2.0.1.

For SQL Server databases Zhang and Chen
[2] proposed and implemented a rule based system

based on rough set theory. Database server events are

collected using the standard SQL Server profiler (for

versions 2000 and 2005). They used 47 attributes as

input to their classification model; every rule

consisted of rule head and rule options. Rule head

contains network specific data - source and target IP

addresses, ports and net masks. Rule options contain

alarm and pattern information needed for monitoring.

Zhang and Chen rules look similar to the network

intrusion detection system Snort1.

1 http://www.snort.org/

Central European Conference on Information and Intelligent Systems__Page 27 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

3 Methodology
In order to gather data we establish a pre-event

analytic environment where we track two major data-

sources:

 Operating system

 Database system

Model is created with a presumption of a Microsoft

Windows Server 2008 R2 and Microsoft SQL Server

2008 R2 database. Operating system, in the context of

data analysis, will be used for collecting following

data:

 Local and domain users who have access to
the server, and their logon history

 Access to the folders of those users where

the database files are stored

That data will be collected on the regular basis,

gathered and parsed from system activity log in order

to acquire logon information for each user, combined

with data from the local server store of the active

domain and local server users. We also track user

right changes, in the separate process, on the folder

that contain database files.

Database data collection focuses on three key areas:

 Key database tables – this will be a static

table, manually maintained by the analytic

database system administrator, that will list

all database tables that have analysis value

 Database users – a list of all database users

(local and domain users) that have

connection right to the database; also we

collect a list of their privileges in relation the

selected key database tables

 User activities – we collect data on the
activity of users in relation to the selected

key tables – these include, but are not limited

to, length of connection, executed SQL

command, time of those activates, plus

special flags which are raised if such

activities are performed

When the data collection process is active in both

areas, it is combined in the dedicated analytic

database which is, ideally, stored on the separate

database server and secured only to be accessible to
the data analytics team (both physical server and

database server). When the data from both sources is

gathered it is combined into one data model which

represents the main data source for further analysis in

the case of the security incident.

3.1 Server data collection
Data collected on the server side is comprised of

users that have remote or direct access to the server

combined with privileges on the folders where

database files are located.

Users are divided into two groups - local server users

(which exist only on the server and are not proxies of

any domain-level process) and domain level users

which are given rights to the server. Those users are

divided into two subgroups:

 Those that have direct remote access to the

server, using VPN or any kind of remote

access solution (full or limited access to the

server)

 Users that only have shared folder privileges

and that can access the database through
direct data access

User activity data is collected by parsing through

the security section of Windows Server logs, while

the list of users and their privileges on the system are

acquired through the user catalog (for local users) or

domain catalog (for domain users). Login and logoff
activities are marked with category number 12544 and

12525 respectively, network access events (not Active

directory access) are recognized by the logon type 3

and their source IP address can be retrieved from the

attribute “IpAddress” contained in the event log.

Network access stands for access to Windows share

folder and similar activities.

Windows systems use different login protocols, the

options in the Windows security subsystem

architecture are: Negotiate, Kerberos, NTLM,
SChannel (secure channel) and Digest. Interactive

logins, where user enters user credentials in the initial

Windows logon form (provided by the Graphical

Identification and Authentication DLL -

MSGINA.dll), is handled by the User32 process and

has LogonType 2 which stands for the interactive

login. LogonProcess and LogonType are fields stored

in the additional section of logon events. Active

Directory uses Kerberos for authentication, where

domain controller and client exchange tickets in order

to authenticate user logins; the logon process is called
Kerberos and domain logins are marked with type 3.

Active Directory events differ from interactive logins,

and store information about host and controller

communication. More about Windows login types can

be found in Gupta’s paper Windows logon forensics

[13] and Russinovich’s Windows Internals [14].

Folder location of the database files, in general,

should not be accessible for users that do not have

interactive remote logon rights (folders with database

files should never be available through shared

folders). Privileges on the folder are retrieved on the

defined period and combined with the previously
collected data. User and folder privilege data are then

combined in one dataset, using the user ID and data

collection time as the primary key for identifying a

state in time.

3.2 Database data collection
Database data collection is divided into three distinct
parts:

Central European Conference on Information and Intelligent Systems__Page 28 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

 Key tables

 Database users

 Database activity

First step in the process of defining a database

monitoring process is to define key tables which hold

relevant data as tracking entire set of tables would

give us no additional value. These tables are listed in

the analytics database with the following properties:

 Table name

 LogUPDATE tracked (are update commands
tracked)

 LogDELETE tracked (are delete commands

tracked)

 LogINSERT tracked (are insert commands

tracked)

 LogDataDEFINITION tracked (are data

definition changes tracked)

 TableNOTIFICATION needed (should we

immediately notify responsible person on

any table event)

Next step is to retrieve, on periodic basis, all

database users and their privileges on the selected

database tables. This is done by retrieving data from

database system catalogs and saving it regularly to the

dedicated table in the analytics database. Again we

retrieve both local database users, domain users and

groups which have access to the database based on

domain settings.

The last element we store is the user activity on the

selected tables, in accordance with the data retrieval

or changes that we have deemed important. This is
done in real-time (when the event occurs), unlike the

previous activities which are collected in a

periodically executed process.

Table “KeyTables” is manually maintained

by analytics database administrators, and holds table

names for which we are collecting data, plus

additional information which information are we

tracking for the selected table - the granularity is one

the level of DDL statements, data definition changes

and notification of defined responsible persons about
selected tracked operations. Table “ActivityLog”

holds actual logged data in the form of executed

command and the number of affected rows.

To make data retrieval database vendor

independent triggers are used for acquiring

information we need, both for the data modification

(DML triggers) and data structure changes (DDL

triggers). Additional requirement, that cannot be

generically recommended because it depends on

database vendor, is that selected tables cannot be

dropped during operational database work, but this

has to be implemented based on a specific case.

Once all this data is stored, it is combined

with the data collected on the server side, using the

same user ID and data collection time as reference,

while the real-time data is also stored in the analytics

database but their create time is not used as a

referential key.

It is important to note that local database user names

usually do not correspond to the local server users
(even though they may have the same name they are

not the same user), and are treated as separate entities.

On the other hand, domain users on the database can,

but do not have to, exist on the server, as domain

users do not need server access to gain database

access.

3.2 Framework’s model
The created model (Figure 1), in detail explained in

Table 1, is used to store both the data from the server

and from the database collection processes. Each

entity is described in detail, along with each entities

attributes.

Table 1. Entities descriptions of the proposed

framework

Entity Name Entity Description
WindowsUsers Master data collected about

server local and domain users

WinLoginActi

vity

History of login activity of

users defined in table

“WindowsUsers”

KeyTables List of tables we are tracking

for structure changes and data

modification

SQLUsers Database users, both local

database users and domain
users

DDLActivityT

ype

List of tracked activities,
which are listed previously in

the chapter about database

data collection

ActivityLog A combined log of database

users, key tables and DDL

activity types, with details

about each event

Central European Conference on Information and Intelligent Systems__Page 29 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

Figure 1 – Entity relationship diagram of the proposed framework

4 Conclusion and further work
Recent research in database analytics have shown

that the need for correct, secure and reportable history

of key database data is evident, both in commercial

and academic environments, especially in

environments that are subject to possible forensic

research. Current findings suggest that, although
much of the research is already done, standardized

data collection in time before the incident is the key to

later analysis, and this paper proposes such data

model, which, although implemented on dedicated

vendor technology, can be replicated in any

environment with minimal changes. Also, this model

provides sufficient data quality and event granularity

that it can be useful for further analysis.
Some database systems offer integrated auditing

solutions, like the before - mentioned Microsoft SQL

Server Audit, but in most cases analysis of audit data

is not supported. Also, we are collecting data about

the underlying operating system’s user activity which

is also a key parameter for further analysis on

database actions. Our framework would be used as

basis for analyzing collected information and isolating
potentially malicious or otherwise important events.

As a next step we would propose to define key

attributes for the classifications of the events, which

are able to differentiate normal and abnormal

behavior of users. Decision attributes would be used

for creation of a rule-based decision support system,

ideally based on fuzzy logic concepts, that would be

used to predict improper cases of key tables usage as
an early warning system. Prerequisite for building a

classification model is a training set with previously

abnormal events. Data from this model can also be

used as a basis for modeling reports that are used for

historical or forensic data analysis.

References

[1] Khanuja, H. K., & Adane, D. S. (2012). A

Framework for database forensic analysis,.

Computer Science & Engineering, 2(3).

[2] Zhang, J., & Chen, X. (2012). Research on

Intrusion Detection of Database based on Rough

Set. Physics Procedia, 25, 1637-1641.

[3] Gawali, P. P., & Gupta, S. R. Database

Tampering and Detection of Data Fraud by Using

the Forensic Scrutiny Technique.

[4] Stahlberg, P., Miklau, G., & Levine, B. N. (2007,

June). Threats to privacy in the forensic analysis

of database systems. In Proceedings of the 2007

ACM SIGMOD international conference on

Management of data (pp. 91-102). ACM.

[5] Khanuja, H. K., & Adane, D. D. (2011). Database

Security Threats and challenges in Database

Forensic: A survey. In Proceedings of 2011

International Conference on Advancements in

Information Technology (AIT 2011), available at

http://www.ipcsit. com/vol20/33-ICAIT2011-

A4072.pdf.

[6] Kevvie Fowler (2007) Forensic Analysis of a

SQL Server 2005 Database Server, SANS

Institute InfoSec Reading Room

Central European Conference on Information and Intelligent Systems__Page 30 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

[7] Denning, D. E. (1987). An intrusion-detection

model. Software Engineering, IEEE Transactions

on, (2), 222-232.

[8] Lee, S. Y., Low, W. L., & Wong, P. Y. (2002).

Learning fingerprints for a database intrusion

detection system. In Computer Security—

ESORICS 2002 (pp. 264-279). Springer Berlin

Heidelberg.

[9] Jin, X., & Osborn, S. L. (2007). Architecture for

data collection in database intrusion detection

systems. In Secure data management (pp. 96-

107). Springer Berlin Heidelberg.

[10] Sunil Gupta, Windows Logon Forensics

https://www.sans.org/reading-

room/whitepapers/forensics/windows-logon-

forensics-34132, Sans Institute, January 2013

[11] Russinovich, Mark E., David A. Solomon, and

Alex. Ionescu.Windows Internals, Part 1 (6th

Edition) ,page 555, Microsoft Press, 2009.

[12] Spalka, A., & Lehnhardt, J. (2005). A

comprehensive approach to anomaly detection in

relational databases. In Data and Applications

Security XIX (pp. 207-221). Springer Berlin

Heidelberg.

[13] Low, W. L., Lee, J., & Teoh, P. (2002, April).
DIDAFIT: Detecting Intrusions in Databases

Through Fingerprinting Transactions. In ICEIS

(pp. 121-128).

Central European Conference on Information and Intelligent Systems__Page 31 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

https://www.sans.org/reading-room/whitepapers/forensics/windows-logon-forensics-34132
https://www.sans.org/reading-room/whitepapers/forensics/windows-logon-forensics-34132
https://www.sans.org/reading-room/whitepapers/forensics/windows-logon-forensics-34132

