

Application Framework Development and

Design Patterns: Current State and Prospects

Marko Jurišić

Infonova GmbH

Lassalestrasse 7A, 1020 Vienna

mjurisic@gmail.com

Dragutin Kermek

Faculty of Organization and Informatics

University of Zagreb

Pavlinska 2, 42000 Varaždin, Croatia

dragutin.kermek@foi.hr

Abstract. Design patterns are one of the fundamental

skills for software developers as they describe best

practice solutions for recurring problems.

Frameworks provide standardized solutions for a

specific application domain.

This paper provides an overview of design

patterns and frameworks and explores the

relationship between design patterns and frameworks.

Two of the most popular frameworks for building

Java web applications were analyzed regarding their

design pattern use.

Keywords. Design pattern, Framework, Spring, Java

EE

1 Introduction

Design patterns help to identify, name and abstract

recurring problems in software development and to

identify best practice solutions. Christian Alexander

introduced design patterns as a means to easier

communicate common concepts that occurred in

designing buildings such as corridor, seating place

etc. [1]. Design patterns have been used since in many

other areas but they have an irreplaceable significance

in the field of computer science because they enable

experts to exchange ideas and high-level overview of

a system in a common language – language of

patterns.

One of the introductory books which brought

pattern languages to wider audience is a book Design

Patterns: Elements of Reusable Object-Oriented

Software [2] also known as Gang-of-four or GoF

book because this book was written by four authors:

Eric Gamma, Richard Helm, Ralph Johnson, and John

Vlissides. The GoF book described 23 classic

software design patterns dealing with common

problems involving object creation, internal structure

and behavior concerning communication with other

objects.

Design patterns are high-level descriptions of

recurring problems and their solutions. They are

usually presented in a well-defined format with

pattern name, problem and motivation, proposed

solution and finally limitations and interaction with

other patterns. A pattern has three main characteristics

[3]:

• The context is a surrounding condition under

which specified problem exists.

• The problem is a difficult and uncertain subject

area in the domain. It is limited by the context in

which it is being considered.

• The solution is a remedy for the problem under

consideration.

Ascending systems complexity and the need for

quick and efficient solutions have resulted in a vast

number of frameworks. A framework is a set of

cooperating classes together forming a reusable

design for a specific class of software [2] or a

reusable, semi-complete application that can be

specialized to produce custom applications by

implementing missing functionality or changing

predefined parts of the framework [4].

We begin by describing connection between

design patterns and frameworks in Chapter 2,

continued by framework classification in Chapter 3,

give an analysis of most prominent Java frameworks

in Chapter 4 followed by brief discussion in Chapter

5. Chapter 6 concludes the paper.

2 Design patterns and frameworks

Since GoF many other authors from the field of

computer science addressed design patterns. Notable

contributions are Pattern Oriented Software

Architecture series which deal with large applications

[5], service access and configuration, event handling,

synchronization, and concurrency [6], effective

resource management in a system [7], distributed

computing [8], pattern languages and pattern

collections [9]. Design patterns and pattern languages

have become one of the crucial elements of education

for every software developer.

Relationship between a framework and a design

pattern is described in GoF [2]:

Central European Conference on Information and Intelligent Systems__Page 306 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

1. Design patterns are more abstract than

frameworks.

2. Design patterns are smaller architectural

elements than frameworks.

3. Design patterns are less specialized than

frameworks.

Some frameworks have been implemented

multiple times in different programming languages

and they can be considered patterns too, for example

Model-View-Controller (MVC) [10], first introduced

in Smalltalk programming language [11], shown on

Figure 1. Framework used dictates the architecture of

the application, overall structure, classes and objects,

their collaboration and control. The main benefit from

frameworks is that they provide modularity,

reusability, extensibility and inversion of control

which means that the framework controls which

classes get called and when [11].

3 Framework classification

Frameworks can be classified by their structure

and communication with the rest of the application as

white box and black box. White box frameworks

contain incomplete or abstract classes and methods

which must be overridden in order to achieve desired

functionality by either inheriting from base classes or

overriding default functionality using patterns such as

Template Method. Black box frameworks offer

finished components and desired functionality is

achieved by composing those components or defining

new components that implement interfaces offered by

the framework and integrating those components into

the framework using patterns like Strategy. Points of

adding specific application functionality to framework

are called hot-spots [12].

Another way of framework classification is by

their scope [13]:

 System infrastructure frameworks

 Middleware integration frameworks

 Enterprise application frameworks

System infrastructure frameworks simplify the

development of portable and efficient applications

and are generally used only internally within software

organization, they are not offered to customers as

separate products. Examples are communication

frameworks, user interface frameworks or language

processing tools.

Middleware integration frameworks are used to

integrate distributed applications and components,

enhancing the ability to modularize, reuse and extend

the software. Examples are message-oriented

middleware or transactional databases.

Enterprise application frameworks are used in

broad application domains and are the cornerstone of

enterprise business activities. Comparing to other

types of frameworks enterprise application

frameworks are expensive to develop or purchase and

their learning curve is steeper but they can provide a

substantial return on investment since they support the

development of end-user applications and products

directly. These frameworks are best suited for

domains where numerous similar applications are

built from scratch because they offer a possibility to

create working full-featured applications in a very

short time.

Developing a framework is vastly different from

developing a standalone application because a

framework addresses problems that are, at least on the

surface, different from those that justified the creation

of the framework. If the application development is

hard, toolkit development harder, framework

development is hardest of all [2]. Design pattern

catalogs essentially attempt to pick out frameworks

that are not too domain-specific [14] and describe

them as patterns via established pattern language.

The most profoundly elegant framework will

never be used unless the cost of understanding it and

then using its abstractions is lower than the

programmer's perceived cost of writing them from

scratch [15]. Overuse of design patterns and multiple

layers of abstraction obscure many implementation

details and sometimes it becomes impossible to

understand particular design decisions without hints

or detailed documentation [4].

Sometimes applications are based on multiple

frameworks that have to be integrated with one

another as well as with class libraries and existing

legacy components which brings new problems

because most frameworks are designed with the

assumption of full control over event loop [16].

Most modern frameworks use the convention over

configuration approach. Convention over

configuration is a software design paradigm which

reduces necessary effort required to achieve standard

functionality by providing standardized methods.

Flexibility is not reduced because standard behavior

can be easily overridden through additional

configuration [17], usually via property files so that

the application must not be recompiled or redeployed

for every configuration change.

4 State of the art Java Web

frameworks

Java has been used for building of all kinds of

applications in different domains and there are

Figure 1MVC pattern [10]

Central European Conference on Information and Intelligent Systems__Page 307 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

frameworks that facilitate all kinds of tasks. In this

section we focus on web and enterprise frameworks.

During Java history many frameworks were

popular at a time but later faded out. Today we have a

choice of frameworks with similar features but

different focuses which can be used to build

comprehensive web applications. Some of them are

listed in Table 1 for reference

We focus on Java EE&JSF and Spring framework

in the rest of the chapter because they are currently

the most widely used and offer most additional

features.

Enterprise Java platform has gone through many

fundamental changes, going from bloated and difficult

to develop infrastructure of J2EE to a lightweight

standardized solution of Java EE [22].

Java EE comes with many features that are

supported out of the box such as transactions via Java

transaction API - JTA, object persistence via Java

persistence API – JPA, scalability through stateless

beans managed by container, security, messaging etc.

Web pages are usually made with backing beans and

JSF for frontend using one of many faces libraries

which bring additional user interface elements.

Java Server Faces (JSF) technology is a server-

side user interface component framework for building

Java technology-based web applications. It is part of

the Java EE specification and is considered the

standard solution for building web-based user

interfaces.

Java Server Faces consists of the following [23]:

 An API for representing components and

managing their state; handling events, server-

side validation, and data conversion; defining

page navigation; supporting

internationalization and accessibility, and

providing extensibility for all these features –

it is possible to write new components or to

combine existing components for easier

reuse

 Tag libraries for adding components to web

pages and for connecting components to

server-side objects

Java Server Faces technology provides a well-

defined programming model and various tag libraries.

There are also numerous extensions and additional tag

libraries which bring new components such as

sortable and editable data tables with automatic

paging and various widgets. Some examples are

ICEfaces, MyFaces, OpenFaces, Primefaces,

RichFaces.

JSF is a part of the Java EE specification focused

on building user interfaces but a quick source code

analysis shows that most of the GoF patterns are used

throughout the framework with their original names.

Some of the patterns that are not mentioned

specifically by name but are used nevertheless are

State and Observer patterns – among the main

features of JSF are automatic preservation of state

between requests and updating of visual components

when backend data changes.

J2EE was intended to solve problems associated

with distributed application development. The

development process with J2EE platform was very

complicated and difficult to test because components

could not run outside of container (this problem has

been solved in newer versions of Java EE), so

development community started to build mainly open

source alternatives for elements in the J2EE software

stack such as Struts which is based on servlet API or

Hibernate which deals with object persistence.

 Spring, built on the idea of overcoming the

limitations of J2EE, offers a full stack solution,

providing out-of-the-box components and integrating

best single-tier frameworks such as Hibernate. Spring

framework assembles best and well-tried open source

solutions and brings a full stack solution. Spring

programming model is based on POJOs (plain old

Java objects) which allows easier testing of software

using automated unit tests for single class testing or

for integration tests starting up the test application

context and testing entire workflows.

GWT Google Web Toolkit - development toolkit for building and optimizing complex browser based

applications, used internally in Google products such as AdSense. Developers write code in Java

which is then converted to optimized JavaScript which runs in all browsers.

JSF Java Server Faces – part of Java EE standard for building server-side user interfaces

Play Available for Java and Scala, based on a lightweight, stateless architecture and features

predictable and minimal resource consumption (CPU, memory, threads) for highly-scalable

applications

Spring Core support for dependency injection, transaction management, web applications, data access,

messaging, testing and more for a wide range of applications

Struts Apache Struts is a free, open-source, MVC framework for creating elegant, modern Java web

applications. It favors convention over configuration, is extensible using a plugin architecture,

and ships with plugins to support REST, AJAX and JSON.

Vaadin Built on top of GWT, has large number of ready-to-use interface components, controls and

widgets, supports client-side and server-side programming model

Wicket Mark-up/logic separation, a POJO data model, powerful, reusable components written with plain

Java and HTML

Table 1 Overview of Java Web Frameworks

Central European Conference on Information and Intelligent Systems__Page 308 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

Spring framework is a Java platform that provides

comprehensive infrastructure support for developing

Java applications, handling infrastructure so that

developers can focus on the actual application [18]. It

was built on top of Java EE technologies and created

with a notion of simplifying development of Java

enterprise applications, aiming to make J2EE easier to

use. One of Spring’s main benefits is its layered

architecture which allows selecting only the needed

modules. Spring framework consists of about 20

modules which are grouped into Core Container, Data

Access/Integration, Web, AOP (Aspect Oriented

Programming), Instrumentation, and Test, shown in

Figure 2. The system is very flexible because modules

can be used independently which enables developers

to use only some modules and build the rest of the

enterprise application with non-spring components

e.g. using JSF for Web GUI.

Figure 2 Spring framework overview [16]

Spring framework was created with vision of

providing best practice solutions for common

problems so it is basically a collection of state of the

art design patterns. Overview of J2EE design patterns

grouped in several tiers (presentation tier, business

tier, integration tier) and their implementations with

Spring framework is given in [3]. J2EE had a set of

established patterns for different business tiers of

which some are still used, although a change of

technology and new versions of Java EE have made

most of them obsolete or brought new solutions which

work out-of-the box [19].

Central pattern used in Spring is Inversion of

control (IoC), also called Dependency Injection (DI)

[20], although IoC can be viewed as one of the

possible ways of achieving DI. Usually in

applications the developer controls which objects are

instantiated, which methods are called and when.

Inversion of control inverts this principle releasing the

control of some aspects to the framework –

framework calls the application code and manages the

flow of control. The principle is usually described in

literature as “Hollywood principle” i.e. “Don’t call us,

we’ll call you” [21]. It is used in many other

frameworks, notably Google Guice and Java EE

platform since version 5.

A quick analysis of Spring source code shows that

most of GoF patterns are frequently used. This is

especially true for creational and structural patterns

which deal with object creation and internal structure,

the only exception being Flyweight pattern but since

all most classes in Spring are POJOs Flyweight

pattern is implicitly used. The same conclusion can be

made about Chain of responsibility – it is not

explicitly named or documented but one of the

primary Spring functions is forwarding requests

between different application aspects via various

controllers.

5 Discussion

Any nontrivial solution is built using one or more

application frameworks. Today nobody writes their

own object-relational-mapping or model-view-

controller framework because there are high-quality

 Java EE Spring

Server type Java EE application server such as

Jboss/WildFly

Web container (Tomcat/Jetty) or Java

EE application server

Dependency injection JSR-330, CDI IoC

Aspects Interceptors/Decorators Spring AOP, AspectJ

Persistence JPA2 JPA2, Hibernate

Transactions JTA, EJB 3.1 JTA, JDBC, JPA, Hibernate, JDO

Presentation

framework

JSF 2 JSF2, Spring MVC

Web Services JAX-WS, JAX-RS JAX-WS, Spring MVC Rest, JAX-

RPC, XCF, Axis

Messaging JMS, EJB 3.1 JMS, Spring Integration

Testing CDI, EJB 3.1, JPA2 JUnit, TestNG

Security JAAS Spring security

Scheduling EJB 3.1 Quartz

Batch processing JSR-352 Spring batch

Table 2 Java EE and Spring side by side [27]

Central European Conference on Information and Intelligent Systems__Page 309 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

frameworks available and most of them are

completely free for commercial use. There are many

advantages of using tried frameworks – not many

organizations can afford months or years of

framework development for skeleton that does not

bring business value – it is much easier and cheaper to

use existing and well tested frameworks which have

proven their worth in thousands of systems. One

downside is a sometimes steep learning curve but if

the company does development with common

frameworks it is easier to find developers that already

have experience in their use.

In enterprise Java landscape the most prominent

are Java EE reference implementation which comes

bundled with Java EE Application servers such as

WildFly or Glassfish and Spring which can run on

any servlet container such as Tomcat or Jetty.

Java EE is advertised as a standard solution but

that is also the main pitfall – Java Community Process

achieving consensus about what goes in the

specification is a long term process. The process of

defining Java EE 8 features is currently in progress -

Java EE 8 Community Survey shows that the most

wanted features in Java EE 8 are JCACHE, Java API

for JSON binding, standardization of server-side

events, MVC alternative to JSF, security interceptors,

standardization of logging, embedded web and Java

EE container and pruning of legacy technologies such

as CORBA and EJB 2.x [24] but it might take years

before they are accepted and implemented and a few

more years before we can use them in production

systems.

Open source frameworks such as Spring are free

to grow and adapt to current technology trends in a

much more agile way. Spring already has built-in

support for noSQL databases, Android components,

Social Network support, and even Java 8 support on

the day of the official release [25].

Although there are frequent heated debates about

which framework is better and more suited for

specific needs both frameworks can be used together,

one can for example use Spring for the business layer

and JSF with backing beans for the frontend. Final

functionality of both approaches is similar; Table 2

shows a brief overview. Best ideas are exchanged and

end up in both frameworks, sometimes only with

small changes – one example is JSR-352/Spring batch

[26]. Balanced competition is always good for both

developers and vendors.

6 Conclusion

Design patterns have become one of the essential

tools in software developer’s toolbox. Knowing the

best practice patterns and being able to recognize

when and how to apply them makes solving difficult

problems easier. Another important aspect of design

pattern usage is facilitation of communication

between developers because design patterns help to

convey complex architectural ideas in a well-

established jargon and avoid misunderstanding.

Frameworks such as Spring or Java EE enable

developers to create new applications quickly and

those applications have better quality than

applications based on frameworks developed in-house

because they can build on thousands of hours invested

in developing, testing and debugging framework

code. Framework does the heavy lifting and takes care

of common aspects such as transactions and security

and developers can concentrate on solving specific

business problems. Another advantage of using well

known frameworks is that it very likely that new

developers will already have knowledge of the

framework and will sooner be able to contribute to the

project.

Spring and Java EE will continue to co-exist and

exchange ideas and best practices. Spring is by

definition more agile and free to pick up the trends via

versatile Spring projects which can quickly cover any

emerging technologies while Java EE as standard

implementation can always count on large enterprise

support from the likes of Oracle, IBM and RedHat.

Using standardized frameworks and design

patterns facilitates communication between

developers and also speeds up the development

process while increasing the quality of applications so

that the additional effort spent on learning the

frameworks and design patterns usually pays off

quickly.

References

[1] C. Alexander, S. Ishikawa, and M. Silverstein,

A pattern language: towns, buildings,

construction, vol. 2. Oxford University Press,

USA, 1977.

[2] J. Vlissides, R. Helm, R. Johnson, and E.

Gamma, “Design patterns: Elements of

reusable object-oriented software,” Reading:

Addison-Wesley, vol. 49, 1995.

[3] D. Kayal, Pro Java EE Spring Patterns: Best

Practices and Design Strategies Implementing

Java EE Patterns with the Spring Framework.

Apress, 2008.

[4] W. Pree and H. Sikora, “Design patterns for

object-oriented software development

(tutorial),” Proceedings of the 19th

international conference on Software

engineering - ICSE ’97, pp. 663–664, 1997.

[5] F. Buschmann, R. Meunier, H. Rohnert, P.

Sommerlad, and M. Stal, Pattern-oriented

Software Architecture: A System of Patterns,

Volume 1, vol. 1. John Wiley & Sons, 2008.

[6] D. C. Schmidt, M. Stal, H. Rohnert, F.

Buschmann, and J. Wiley, Pattern-oriented

Software Architecture: Patterns for

Central European Conference on Information and Intelligent Systems__Page 310 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

Concurrent and Networked Objects, Volume

2. Wiley, 2000.

[7] M. Kircher and P. Jain, “Pattern-oriented

software architecture volume 3: Patterns for

resource management,” 2004.

[8] F. Buschmann, K. Henney, and D. C.

Schmidt, Pattern-oriented Software

Architecture: a Pattern Language for

Distributed Computing, Volume 4, vol. 4.

John Wiley & Sons, 2007.

[9] F. Buschmann, K. Henney, and D. C.

Schmidt, “Pattern-oriented software

architecture: On patterns and pattern

languages, vol. 5.” John Wiley & Sons Inc,

2007.

[10] R. Johnson, “Components, frameworks,

patterns,” ACM SIGSOFT Software

Engineering Notes, no. 217, pp. 1–23, 1997.

[11] G. E. Krasner, S. T. Pope, and others, “A

description of the model-view-controller user

interface paradigm in the smalltalk-80

system,” 1988.

[12] W. Pree and D.- Constance, “Essential

Framework Design Patterns.”

[13] M. Fayad and D. Schmidt, “Object-oriented

application frameworks,” Communications of

the ACM, 1997.

[14] W. Pree, “Framework development and reuse

support,” 1994.

[15] G. Booch, “Designing an application

framework,” Dr Dobb’s Journal-Software

Tools for the Professional Programmer, vol.

19, no. 2, pp. 24–35, 1994.

[16] M. Mattsson, J. Bosch, and M. Fayad,

“Framework integration problems, causes,

solutions,” Communications of the ACM, vol.

42, no. 10, 1999.

[17] N. Chen, “Convention over configuration,” h

ttp://softwareengineering. vazexqi.

com/files/pattern. htm l, 2006.

[18] R. Johnson, J. Hoeller, A. Arendsen, C.

Sampaleanu, R. Harrop, T. Risberg, D.

Davison, D. Kopylenko, M. Pollack, T.

Templier, and others, “The spring framework-

reference documentation,”

Interface21.(accessed 30.04. 07), 2008.

[19] A. Bien, Real World Java EE Patterns

Rethinking Best Practices. 2009.

[20] M. Fowler, “Inversion of control containers

and the dependency injection pattern.” 2004.

[21] R. Johnson, “J2EE development

frameworks,” Computer, vol. 38, no. 1, pp.

107–110, 2005.

[22] A. Bien, Real World Java EE Night Hacks. .

[23] Oracle Corporation, The Java EE 6 Tutorial,

no. January. 2013.

[24] Results from the Java EE

 8 Community Survey,

28.04.2014

[https://java.net/downloads/javaee-

spec/JavaEE8_Community_Survey_Results.p

df]

[25] J. Hoeller, Java 8 in Enterprise Projects,

21.03.2014

[https://spring.io/blog/2014/03/21/java-8-in-

enterprise-projects]

[26] D. Woods, Java EE 7, Spring Standardize

Batch 21.03.2014

[http://www.infoq.com/news/2013/06/ee7-

spring-batch]

[27] R. Rahman, Spring and Java EE Side by Side,

2013

[http://de.slideshare.net/reza_rahman/java-

ee-and-spring-sidebyside]

Central European Conference on Information and Intelligent Systems__Page 311 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

