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Abstract. Various analyses of chess endgames are 

made with different purposes. These analyzes are 

usually based on exhaustive analysis using previous 

generated corresponding databases. It is often not 

investigated whether the endgame positions are legal 

(or why are not legal). Legality of endgame positions 

can be proven in several ways, and in this paper we 

present one of them: high-level computer-assisted 

proof based on reduction to propositional logic, more 

precisely to SAT. As case study we focus on a King 

and Rook vs. King endgame, and reduction to SAT is 

performed by using a constraint solving system 

URSA. We are not aware of other computer-assisted 

high-level proof of a legality of some chess endgame. 

The presented methodology can be applied to other 

chess endgames. Therefore, the point of this paper is 

not only presenting a proof of legality of an endgame, 

but also presenting a new methodology for computer-

assisted proving of legality of chess endgames in 

general. 
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1 Introduction 
 
A superficial definition of legal KRK (King and Rook 

vs. King) positions that naturally arise is the 

following: Legal KRK positions are those that meet 

the following conditions: 

- Two kings are not on adjacent squares; 

- The piece of the color to move does not attack the 

other color's king. 

The above definition is straightforward and 

intuitive. But, there are important subtle issues 

concerning this notion. Let us consider the position 

shown in Fig. 1. According to the above definition, 

this position is legal if black is to move. However, if 

black is to move, what was the last move by white? It 

can be easily checked that there was no legal move by 

white that could have led to the current position, so 

the given position is impossible. We see that even in 

such a simple endgame as is KRK, there are situations 

in which is necessary to look into the problem more 

deeply. The problem becomes more complex by 

increasing the number of pieces on the chessboard 

and by changing the kinds of pieces. 
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#  #  #  #  
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 #  #  #  # 
#  #  #  É Ä 

 

Figure 1. Illegal KRK position 

 

Such problems are actually subject to retrograde 

chess analysis [7], [9]. Generally, the ideal definition 

of the legality of a position would be that a position is 

legal if it is reachable from the initial chess position 

by a sequence of legal moves. But such a definition is 

practically useless because the problem of checking 

the legality of a given position is then building a 

sequence of legal moves which leads from the initial 

chess position to the given position. It is clear that 

such a move sequence for endgames can be very long. 

In short, it is necessary to build a whole chess game 

that leads to a given position and it actually becomes 

a problem of proof games or shortest proof games 

[13]. Such an extension of the problem is generally 

unnecessary and is not suitable for chess endgames 

which contain a small number of pieces. In addition, it 

can be assumed that strictly formal proving of the 

legality of the whole chess games is impossible. If 

this is true, it would mean that even formal proof of 

the legality of the endgames with a small number of 

pieces would never have been possible, but should 

always be based on the searching, generating 

corresponding databases, etc. 

Various analyses of chess endgames with different 

purposes are made with different methods. For 

example, using an arbitrary programming language, 

all positions and corresponding databases can be 

generated. Then, using a retrograde procedure [9], 
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[10], [12] some properties of these endgames can be 

verified (e.g. in which positions checkmate is 

possible). As another example, based on lookup tables 

with pre-calculated optimal moves for each legal 

position, it is possible to check the correctness of 

some strategy (which, for example, should always 

lead to checkmate or draw in the given endgame). 
This approach was, for example, used by Bramer [2] 

for testing the correctness of some endgame 

strategies, but also for refining strategies that turned 

out not to be correct. So, the mentioned approaches, 

instead of direct proofs, are based on a form of 

exhaustive analysis. The advantage of these 

approaches is that it is quite straightforward. Its 

drawback is that it does not provide a high-level, 

human-understandable and intuitive argument on why 

some position is illegal or why some strategy really 

works. What is most important for this paper is that it 

often happens that an analysis of endgames does not 

even investigate which of the positions in a given 

endgame is legal. In the case when illegal positions 

are correctly detected in the analysis, it often remains 

unknown which positions are illegal (and why are 

illegal). Finally, there may be errors in the results (due 

to errors in program code), but there are no formal 

proofs of illegality of positions. 

Due to the above reasons, in this paper we show 

one possible method of proving the legality of 

endgames. This method is based on the use of SAT-

based constraint solving.
1 We are not aware of other 

computer-assisted high-level proof of the legality of 

some chess endgame. A similar approach as the one 

in this paper is used in [8] but for other purposes (for 

proving the correctness of a chess endgame strategy). 

The rest of the paper is organized as follows: 

Section 2 provides an overview of various types of the 

illegality of positions, in Section 3 we present the 

main features of the SAT-based constraint solving 

system URSA, in Section 4 we give URSA 

specification of the chess rules for KRK and in 

Section 5 we provide the main proof of legality of 

intuitively legal KRK positions. 

 

 

2 Illegality of positions 
 
Lippold [5], [6] distinguishes the following types of 

illegality of positions: 

Initially illegal are positions whose illegality "can 

be seen immediately". This refers to situations in 

                                                 
1 SAT is the problem of deciding if a given propositional formula in 

CNF (conjunctive normal form) is satisfiable, i.e., if there is any 
assignment to variables such that all clauses are true. SAT was the 

first problem shown to be NP-complete [3], and it still holds a 

central position in the field of computational complexity. In recent 
years, tremendous advances, including both high-level and low-

level algorithmic techniques, have been made in SAT solving 

technology [1]. These advances in SAT solving make it possible to 
decide the satisfiability of some industrial SAT problems with 

hundreds of thousands of variables and millions of clauses. 

which the pawn is in the first or last row, kings are on 

adjacent squares, two pieces are in the same square, a 

piece of the color to move threatens the other color's 

king; 

Derivedly illegal are positions which are initially 

legal but simply (once) or n times derived illegal. It is 

simply derived illegal if there is no initially legal 

position from which it can be reached with one legal 

move. For example, the position at Fig. 2 with black 

to move is simply derived illegal. Position is n times 

derived illegal if every position, from which it can be 

reached with one legal move, is initially or m times 

derived illegal with an arbitrary m smaller than n and 

furthermore at least one position is n-1 times and no 

position is n times derived illegal. With black to move 

a three times derived illegal position is showed at Fig. 

3. The position at Fig. 3 has only one previous 

position (with white pawn at g2) while this previous 

position has several possible previous positions. Two 

of them are shown in Fig. 4. But none of these 

positions has any previous position (because the black 

king cannot be simultaneously in check with the white 

queen and the other white bishop). 

 

 #  #  #  # 
#  #  #  #  
 # â #  #  # 
#  #  #  #  
 #  #  #  # 

# #  #  #  # è 
 #  #  #  # 
#  #  #  É Ä 

 

Figure 2. Simply derived illegal KRKN position 

 

è # È #  #  # 
#  #  Ç  #  
 #  #  #  # 
#  Á  #  #  
 #  #  #  # 

# #  #  #  Ë  
 #  #  #  # 
#  #  #  # À 

 

Figure 3. With black to move a three times derived 

illegal position 

 

 # È #  #  # 
é  #  Ç  #  
 #  #  #  # 
#  Á  #  #  
 #  #  #  # 

# #  #  #  #  
 #  #  # Ê # 
#  #  #  # À 

 

Â # È #  #  # 
é  #  Ç  #  
 #  #  #  # 
#  Á  #  #  
 #  #  #  # 

# #  #  #  #  
 #  #  # Ê # 
#  #  #  # À 

 

 

Figure 4. Two possible positions two moves before 

the position at Fig. 3 
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Isolatedly illegal are positions that are neither 

initially illegal nor derivedly illegal but which cannot 

be reached from the initial chess position and are 

therefore illegal according to the ideal definition. 

Such is for example the position with the white bishop 

in the corner a1 and with the white pawn at b2, as is 

shown at Fig. 5. 

 

 #  # è #  # 
#  #  #  #  
 #  #  #  # 
#  #  #  #  
 #  #  #  # 

# #  #  #  #  
 Ë  #  #  # 
Á  #  É  #  

 

Figure 5. Isolatedly illegal position 

 

There is one additional aspect that is important in 

an analysis of the legality of endgames. Sometimes it 

is not sufficient to look only at the positions of the 

analyzed endgame in checking whether it is derivedly 

illegal. The position at Fig. 6 is derivedly illegal if we 

consider only KRKN positions. But if we allow that 

the rook comes from a1 and captured some black 

piece at a4 then this position is (possibly) legal in 

some 5-pieces endgame. So, in order to check legality 

of some 4-pieces positions, it is sometimes necessary 

to check the legality of previous 5-pieces positions. 

Also, even if we restrict endgame to 4-pieces KRKN, 

then the position in Fig. 7 is not derivedly illegal 

because the rook could come from a1 and captured 

black knight at a4. The position in Fig. 7 would be 

derivedly illegal only if we restrict the endgame to the 

3-pieces KRK endgame. 

 

 #  #  #  # 
#  #  #  #  
è #  #  #  # 
#  #  #  #  
Ä É  #  #  # 

# #  #  # â #  
 #  #  #  # 
#  #  #  #  

 

Figure 6. Derivedly illegal 4-pieces position 

 

 #  #  #  # 
#  #  #  #  
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Ä É  #  #  # 

# #  #  #  #  
 #  #  #  # 
#  #  #  #  

 

Figure 7. Derivedly illegal 3-pieces position 

 

So, even if we study only the endgames, it is 

necessary to look at a chess game as a whole. Thus, 

we can conclude that the position in Fig. 7 is not 

actually an illegal position. It is legal because it can 

be expanded to some 4-pieces endgame. 

 

 

3 Constraint solving system URSA 
 
In the constraint solving system URSA [4], the 

problem is specified in a language which is 

imperative and similar to programming language C, 

there are control-flow structures and there is support 

for procedures. At the same time, this language is 

declarative, as the user does not have to provide a 

solving mechanism for the given problem.  

Let us illustrate solving problems in URSA on one 

(artificial) chess-related toy problem. Let both 

columns and rows of the chessboard be denoted by 

the numbers 0, 1, ..., 7 and let the position of the 

white rook be given by (3,1). Suppose we want to find 

all the positions in which the black king is "left" and 

"lower" on the chessboard with respect to the white 

rook. For this we need to find all possible pairs of 

coordinates of the black king that satisfy a specified 

condition. There is a type in the URSA language for 

(unsigned) numerical with the names of variables 

starting with "n". If we introduce the coordinates of 

the black king as variables nBKx and nBKy then the 

specified condition can be expressed as nBKx < 3 ˄ 

nBKy < 1, and all possible positions can be obtained 

by the following URSA specification: assert(nBKx<3 

&& nBKy<1);, where assert(b) checks whether b is 

true. 

In URSA, the representation of symbolic 

numerical variables corresponds to a binary 

representation of unsigned numbers.
2
 Further, such 

variables are represented by the vectors of 

propositional formulae. In our example, chess 

coordinates are represented by vectors of 

propositional formulae of length 3 (because numerical 

values less than or equal to 7 can be represented by 

binary numbers of length 3). If nBKx and nBKy are 

represented by vectors [a,b,c] and [p,q,r], then the 

above assertion is translated by URSA to the 

following propositional formula: (¬ a ˄ (¬ b ˅ ¬ c)) ˄ 

(¬ p ˄ ¬ q ˄ ¬ r). This formula is transformed into the 

following formula in CNF: ¬ a ˄ (¬ b ˅ ¬ c) ˄ ¬ p ˄ ¬ 

q ˄ ¬ r. Over the set of variables a, b, c, p, q, r, there 

are three models for this formula: a model 0, 0, 0, 0, 

0, 0, a model 0, 0, 1, 0, 0, 0 and a model 0, 1, 0, 0, 0, 

0. The underlying SAT solver can find them, and on 

the basis of these models, URSA returns three 

solutions for (nBKx,bBKy): (0,0), (1,0), (2,0). 

 

 

                                                 
2 Variables nBKx and nBKy are symbolic variables, while 

operations over concrete values produce concrete values. 
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4 URSA Specification of the Chess 

Rules for KRK 
 
In this section we briefly present our specification of 

the KRK endgame in the URSA specification 

language. The specification is largely in accordance 

with [8] with the changes that are needed due to the 

specific topic of this paper. In this paper some of the 

longer parts of the specification are not listed but most 

are still here. If something is skipped it is also noted.
3
 

 

4.1 Underlying procedures 
 
If both columns and rows of the chessboard are 

denoted by the numbers 0, 1, ..., 7 (which is more 

suitable than 1, 2, ..., 8 since the former numbers can 

be represented by 3 bits), then each square can be 

represented by a pair of two such numbers, and hence, 

by 6 bits. In the case of KRK endgame, instead of 

dealing with values of 64 squares of the chessboard, it 

is more convenient to use only the positions of all 

three pieces (represented by 6 bits each). However, 

instead of passing six numbers as arguments to 

specification procedures, they can be packed together 

into one 18-tuple (i.e., into a bit-vector of the length 

18). In addition, the information on which player is on 

turn (one bit) is needed, so each KRK position can be 

stored in 19 bits. For this information we use another 

type that exists in URSA: Boolean type with names of 

variables starting with "b" and of the length 1 with 

value 0 for false and 1 for true. 

With the chosen representation, the first 

miscellaneous procedures that are needed are those 

that pack individual coordinates ((nWKx, nWKy) of 

the white king, (nBKx, nBKy) of the black king, 

(nWRx, nWRy) of the white rook, along with 

bWhiteOnTurn which is true if white is on turn) into a 

19-tuple nPos and vice versa (as in C, & denotes bit-

wise conjunction, | denotes bit-wise disjunction, << 

and >> denote left and right shift, etc.)
4
: 

 
procedure Cartesian2Pos(nWKx,nWKy,nBKx,nBKy,nWRx,nWRy,bWhiteOnTurn,nPos) { 
  nPos = ite(bWhiteOnTurn,1,0); 
  nPos = (nPos << 3) | (nWRy & 7); 
  nPos = (nPos << 3) | (nWRx & 7); 
  nPos = (nPos << 3) | (nBKy & 7); 
  nPos = (nPos << 3) | (nBKx & 7); 
  nPos = (nPos << 3) | (nWKy & 7); 
  nPos = (nPos << 3) | (nWKx & 7);} 
 
procedure Pos2Cartesian(nPos,nWKx,nWKy,nBKx,nBKy,nWRx,nWRy,bWhiteOnTurn) { 
  nWKx = nPos & 7; 
  nWKy = nPos >> 3 & 7; 
  nBKx = nPos >> 6 & 7; 
  nBKy = nPos >> 9 & 7; 
  nWRx = nPos >>12 & 7; 
  nWRy = nPos >> 15 & 7; 
  bWhiteOnTurn = num2bool(nPos >> 18);} 
 

The procedure Cartesian2Pos assumes that the 

value nPos is an "output argument", while 

                                                 
3 The URSA specification is available online from: 

http://www.ffri.hr/~marko/sat_endgames/sat_krk.zip. 
4 Note that & and | are bit-wise operators applied on numerical 

values, while && and || are logical operators applied on Boolean 

values. 

Pos2Cartesian assumes that the value nPos is an 

"input argument" (however, generally there are no 

input and output arguments in URSA procedures - 

each argument can have both roles, as in Prolog, for 

instance). 

In chess, the term distance refers to the minimal 

number of moves a certain piece needs to reach a 

target square from the starting square. For kings two 

kinds of distances are the most important: Chebyshev 

distance as minimal number of any king moves, and 

Manhattan distance which is restricted to orthogonal 

king moves. Procedures which give specified 

distances are as follows (to compute the Chebyshev 

distance we also need a procedure that gives a 

maximum of two numbers): 

 
procedure Max(nx,ny,nMax) { 
  nMax = ite(nx>=ny,nx,ny);} 
 
procedure ChebyshevDistance(nx1,ny1,nx2,ny2,nCD) { 
call Max(nx2-nx1,ny2-ny1,nMax1); 
call Max(nx2-nx1,ny1-ny2,nMax2); 
call Max(nx1-nx2,ny2-ny1,nMax3); 
call Max(nx1-nx2,ny1-ny2,nMax4); 
nCD = ite(nx2>=nx1, 
            ite(ny2>=ny1,nMax1,nMax2), 
            ite(ny2>=ny1,nMax3,nMax4));} 
 
procedure ManhattanDistance(nx1,ny1,nx2,ny2,nMD) { 
  nMD = ite(nx2>=nx1, 
              ite(ny2>=ny1,(nx2-nx1)+(ny2-ny1),(nx2-nx1)+(ny1-ny2)), 
              ite(ny2>=ny1,(nx1-nx2)+(ny2-ny1),(nx1-nx2)+(ny1-ny2)));} 
 

As we will see, when specifying the problem that 

we deal in this paper we'll need both of the above 

distances. 

The following procedure Between gives an answer 

to whether some square is between two other squares: 

 
procedure Between(nx1,ny1,nx2,ny2,nx3,ny3,bBetween) { 
bBetween = (nx1==nx2 && nx2==nx3 && ((ny1<ny2 && ny2<ny3) || (ny1>ny2 && ny2>ny3))) || 
(ny1==ny2 && ny2==ny3 && ((nx1<nx2 && nx2<nx3) || (nx1>nx2 && nx2>nx3)));} 
 

After invoking the procedure Between, the 

variable bBetween equals true if and only if the square 

(nx2,ny2) is between squares (nx1,ny1) and (nx3,ny3). 

 

4.2 Initially legal KRK Positions 
 
The conditions that, in a certain position (represented 

by numerical value nPos), the white king and the 

white rook cannot be on the same square, that the two 

kings cannot be on the same or adjacent squares, and 

that the black king is attacked by the white rook, can 

be represented by the following procedures (with 

Boolean arguments as "output arguments"): 
 
procedure NotOnSameSquare(nPos,bNotOnSameSquare) { 
  call Pos2Cartesian(nPos,nWKx,nWKy,nBKx,nBKy,nWRx,nWRy,bWhiteOnTurn); 
  bNotOnSameSquare = (nWKx != nWRx) || (nWKy != nWRy);} 
 
procedure NotKingNextKing(nPos,bNotKingNextKing) { 
  call Pos2Cartesian(nPos,nWKx,nWKy,nBKx,nBKy,nWRx,nWRy,bWhiteOnTurn); 
  bNotKingNextKing = nWKx>nBKx+1 || nBKx>nWKx+1 || nWKy>nBKy+1 || nBKy>nWKy+1;} 
 
procedure BlackKingAttacked(nPos,bBlackKingAttacked) { 
  call Pos2Cartesian(nPos,nWKx,nWKy,nBKx,nBKy,nWRx,nWRy,bWhiteOnTurn); 
  call Between(nWRx,nWRy,nWKx,nWKy,nBKx,nBKy,bBetween); 
  bBlackKingAttacked = (nWRx==nBKx ^^ nWRy==nBKy) && !bBetween;} 
 

In the case where the white rook is captured, only 

two kings remain on the chessboard and it makes no 
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sense to consider such positions. By convention, and 

appropriate for the representation used in this paper, 

in such situations the black king and the white rook 

are on the same square. Whether the rook is captured 

is represented by the following procedure: 

 
procedure RookCaptured(nPos,bRookCaptured) { 
  call Pos2Cartesian(nPos,nWKx,nWKy,nBKx,nBKy,nWRx,nWRy,bWhiteOnTurn); 
  bRookCaptured = nWRx==nBKx && nWRy==nBKy;} 
 

Finally, the procedure that checks whether a 

position is initially a legal KRK position can be 

represented as follows: 

 
procedure LegalKRKPosition(nPos,bLegalKRKPosition) { 
  call Pos2Cartesian(nPos,nWKx,nWKy,nBKx,nBKy,nWRx,nWRy,bWhiteOnTurn); 
  call NotOnSameSquare(nPos,bNotOnSameSquare); 
  call NotKingNextKing(nPos,bNotKingNextKing); 
  call BlackKingAttacked(nPos,bBlackKingAttacked); 
  call RookCaptured(nPos,bRookCaptured); 
  bLegalKRKPosition = bNotOnSameSquare && bNotKingNextKing && !bRookCaptured && 
!(bBlackKingAttacked && bWhiteOnTurn);} 
 

When invoking the procedure LegalKRKPosition 

one can use a concrete value for position nPos and 

bLegalKRKPosition will be a ground Boolean value - 

true, if and only if the position is legal. However, one 

can also use a symbolic value for nPos and 

bLegalKRKPosition will be set to the condition that 

nPos is legal in terms of propositional variables 

forming the representation of nPos. In this case, one 

can assert bLegalKRKPosition and URSA will 

respond that there are 399112 values of nPos that lead 

to bLegalKRKPosition equal true. 

 

4.3 Moves of pieces 
 
The rules for moving pieces are divided into: (i) parts 

specifying movements rules themselves; (ii) a 

constraint that all other pieces remained on their 

original positions if not captured by the moving piece; 

(iii) the condition that the current player is indeed on 

turn and that another player is on turn after the move. 

As an illustration, we give the part (i) specifying 

movement rules for the white king (nPosS is starting 

position and nPosE is ending position): 

 
procedure MoveWhiteKing(nPosS,nPosE,bMoveWhiteKing) { 
  call Pos2Cartesian(nPosS,nWKxS,nWKyS,nBKxS,nBKyS,nWRxS,nWRyS,bWhiteOnTurnS); 
  call Pos2Cartesian(nPosE,nWKxE,nWKyE,nBKxE,nBKyE,nWRxE,nWRyE,bWhiteOnTurnE); 
  call ChebyshevDistance(nWKxS,nWKyS,nWKxE,nWKyE,nCD); 
  bMoveWhiteKing = (nCD==1);} 
 

and the procedure that integrates all the constraints: 

 
procedure LegalMoveWhiteKing(nPosS,nPosE,bLegalMoveWhiteKing) { 
  call Pos2Cartesian(nPosS,nWKxS,nWKyS,nBKxS,nBKyS,nWRxS,nWRyS,bWhiteOnTurnS); 
  call Pos2Cartesian(nPosE,nWKxE,nWKyE,nBKxE,nBKyE,nWRxE,nWRyE,bWhiteOnTurnE); 
  call MoveWhiteKing(nPosS,nPosE,bMoveWhiteKing); 
  call OtherAfterMoveWhiteKing(nPosS,nPosE,bOtherAfterMoveWhiteKing); 
  bLegalMoveWhiteKing = bMoveWhiteKing && bOtherAfterMoveWhiteKing && bWhiteOnTurnS && 
!bWhiteOnTurnE;} 
 

The procedure defining moves for the black king 

is defined by analogy. The procedure for the white 

rook is different, but defined in the same spirit and we 

don't show it here. 

Finally, in one procedure we unite all possible 

moves of one player. For example, for the white 

player the procedure is as follows: 

 
procedure LegalMoveWhite(nPosS,nPosE,bLegalMoveWhite) { 
  call LegalMoveWhiteKing(nPosS,nPosE,bLegalMoveWhiteKing); 
  call LegalMoveWhiteRook(nPosS,nPosE,bLegalMoveWhiteRook); 
  bLegalMoveWhite = bLegalMoveWhiteKing || bLegalMoveWhiteRook;} 

 

 

5 Legality of KRK positions 
 

5.1 KRK positions with at least one 

previous position 
 
We want to show that the KRK positions with at least 

one previous position are also legal according to the 

ideal definition. So, first we have to limit the set of 

KRK positions on a set with at least one previous 

position. Such positions nPos may be obtained by the 

following constraint (nPos0 are eventual previous 

positions of nPos): 

 
call LegalKRKPosition(nPos,bLegalKRKPosition); 
call LegalKRKPosition(nPos0,bLegalKRKPosition0); 
call LegalMoveWhite(nPos0,nPos,bW); 
call LegalMoveBlack(nPos0,nPos,bB); 
bPosHasPrevPos = bLegalKRKPosition && bLegalKRKPosition0 && (bW || bB); 
 

In the upper constraint, bLegalKRKPosition and 

bLegalKRKPosition0 are equal true if nPos and 

nPos0 are initially legal positions, and bW or bB are 

true for all white's or black's move which leads from 

nPos0 to nPos. Finally, bPosHasPrevPos is equal true 

if all the bLegalKRKPosition, bLegalKRKPosition0 

and (bW || bB) are equal true. 

 

5.2 Proof of the main theorem 
 
As we have already mentioned, we want to prove that 

all the initially legal positions with at least one 

previous position are legal also according to the ideal 

definition. To prove this, we will prove the following 

theorem: 

 

Theorem: For each initially legal position P (which 

has some previous initially legal position P0) there is a 

sequence of four previous initially legal positions P4, 

P3, P2, P1 (with legal moves from P4 to P3, from P3 to 

P2, from P2 to P1 and from P1 to P) such that: 

 

(1) P4 is closer to one selected position PFix than P;
5
 

(2) P4 has some previous position; 

(3) PFix is legal according to the ideal definition. 

 

Proof: 

 

(1) First we choose a concrete position PFix showed 

at Fig. 8. 

 

                                                 
5 The meaning of the term closer is explained in the proof that 
follows. 
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 #  #  #  # 
#  #  #  #  
 #  #  #  # 
#  é  É  #  
 #  #  #  # 

# #  #  #  #  
 #  #  #  # 
#  #  #  # Ä 

 

Figure 8. Concrete position PFix 

 

Note that we did not specify which color is to 

move into position PFix (PFix with white to move 

and PFix with black to move are two different 

positions). We did that because it greatly simplifies 

the proofs that follow. However, this means that we 

have to prove point (3) of the theorem for both cases 

(which is a much easier problem). 

Next, we found a mapping (measure) M from the 

set of legal KRK positions to the set of natural 

numbers such that for all positions P exists a sequence 

of four previous legal positions P4, P3, P2, P1 such 

that M(P4) < M(P). The measure of position P is 

relative with respect to position PFix, and is equal to: 

 

M(P)=2∙CDWK+MDWK+2∙CDBK+MDBK+DWR 

 

If the squares in which the pieces are in a position 

PFix is called target squares, then in the above 

formula is: 

 

CDWK = Chebyshev distance of white king at P and 

his target square 

CDBK = Chebyshev distance of black king at P and 

his target square 

MDWK = Manhattan distance of white king at P and 

his target square 

MDBK = Manhattan distance of black king at P and 

his target square 

DWR = minimal number of moves in which white 

rook can reach his target square (it can be 0, 1 or 2) 

 

The mapping M is specified by the following 

URSA procedure: 

 
procedure Measure(nPos,nMeasure) { 
  call Pos2Cartesian(nPos,nWKx,nWKy,nBKx,nBKy,nWRx,nWRy,bWhiteOnTurn); 
  call ChebyshevDistance(nWKx,nWKy,4,4,nCDWK); 
  call ChebyshevDistance(nBKx,nBKy,2,4,nCDBK); 
  call ManhattanDistance(nWKx,nWKy,4,4,nMDWK); 
  call ManhattanDistance(nBKx,nBKy,2,4,nMDBK); 
  nDWR = ite(nWRx==7 && nWRy==0,0,ite(nWRx==7 ^^ nWRy==0,1,2)); 
  nMeasure=2*nCDWK+nMDWK+2*nCDBK+nMDBK+nDWR;} 
 

The key feature of the measure M is that for any 

legal KRK position P, there exists a sequence of four 

previous legal positions P4, P3, P2, P1 such that the 

measure is less in P4 than in P, and that is exactly 

what assertion (1) claims. This assertion can be 

encoded in URSA as follows: 

 
call LegalKRKPosition(nPos4,bLegalKRKPosition4); 
call LegalKRKPosition(nPos3,bLegalKRKPosition3); 
call LegalKRKPosition(nPos2,bLegalKRKPosition2); 
call LegalKRKPosition(nPos1,bLegalKRKPosition1); 

bSequenceOfLegalPositions = bLegalKRKPosition4 && bLegalKRKPosition3 && 
bLegalKRKPosition2 && bLegalKRKPosition1; 
 
call Exists4PliesThatMeasureDecrease(nPos,nPos1,nPos2,nPos3,nPos4,bMD4); 
 
assert_all(bPosHasPrevPos && bSequenceOfLegalPositions && !bMD4); 
 

The condition bSequenceOfLegalPositions states 

that all of P4, P3, P2, P1 are initially legal KRK 

positions. Further, in the procedure 

Exists4PliesThatMeasureDecrease(nPos,nPos1,nPos

2,nPos3,nPos4,bMD4) (not listed here because it has 

over 50 lines and two auxiliary procedures) the value 

of bMD4 is equal to false only if M(P4) ≥ M(P) for all 

sequences P4, P3, P2, P1. Finally, the main assertion 

bPosHasPrevPos && bSequenceOfLegalPositions 

&& !bMD4 is in fact a negation of assertion (1). 

URSA proves that this is unsatisfiable (i.e., there is no 

such position P), which proves the assertion (1). 

URSA gives a result in this form: 

 
No solutions found 
[Formula generation: 799.34s; conversion to CNF: 860.352s; total: 1659.69s] 
[Solving time: 909.02s] 
[Formula size: 1041262 variables, 6391975 clauses] 
 

(2) This assertion actually ensures that position P4 is 

not four times derived illegal. To prove this, we can 

prove a stronger assertion (but which is easier to set 

up and which requires less computer resources). This 

stronger assertion is: For each legal position P1 which 

is a previous position of some legal position P there is 

at least one previous position P2. 

To prove this, we need an additional procedure: 

 
procedure ExistsPreviousPositionOfPreviousPosition(nPos1,nPos2,bPP) 
{ 
  bPP = false; 
  for (nMoveWi=1;nMoveWi<=24;nMoveWi++) { 
    call NextMoveWhite(nPos1,nMoveWi,nPos2,bNMW); 
    call LegalMoveWhite(nPos2,nPos1,bLMW); 
    bPP ||= bNMW && bLMW; 
  } 
  for (nMoveBm=1;nMoveBm<=8;nMoveBm++) { 
    call NextMoveBlack(nPos1,nMoveBm,nPos2,bNMB); 
    call LegalMoveBlack(nPos2,nPos1,bLMB); 
    bPP ||= bNMB && bLMB; 
  } 
} 
 

The value of bPP will be equal to false only if for 

some position P1 there is no previous position P2. 

Now, assertion (2) can be simply encoded in 

URSA in the following way and proved (also using 

proof by refutation): 

 
call LegalKRKPosition(nPos,bLegalKRKPosition); 
call LegalKRKPosition(nPos1,bLegalKRKPosition1); 
call LegalMoveWhite(nPos1,nPos,bW); 
call LegalMoveBlack(nPos1,nPos,bB); 
bPosHasPrevPos = bLegalKRKPosition && bLegalKRKPosition1 && (bW || bB); 
call LegalKRKPosition(nPos2,bLegalKRKPosition2); 
call ExistsPreviousPositionOfPreviousPosition(nPos1,nPos2,bPP); 
 
assert_all(bPosHasPrevPos && bLegalKRKPosition2 && !bPP); 
 

URSA solves the assertion and claims that it is not 

satisfiable, so assertion (2) holds. 

 

(3) As we explained in the Introduction of this paper, 

our intention is to avoid formal proof that the position 

PFix is legal according to the ideal definition. It is 

sufficient to find a legal chess game that leads to this 

position. As we already mentioned, actually there are 
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two positions PFix (with white to move and with 

black to move). If position PFix is legal (more 

precisely, both its variants) then it is trivial to find 

such games (not taking into account the quality of 

these games). Such games can be derived using any of 

the computer programs for solving proof games (for 

example, see [11]). So, we give one game which leads 

to a variant of PFix in which is black to move: 1. e4 

e5 2. d4 exd4 3. Qxd4 d5 4. Qxd5 Qxd5 5. exd5 c6 6. 

dxc6 bxc6 7. b4 c5 8. bxc5 Bxc5 9. Be3 Bxe3 10. fxe3 

f5 11. e4 fxe4 12. Nf3 exf3 13. gxf3 g5 14. f4 gxf4 15. 

Bg2 f3 16. Bxf3 h5 17. Bxh5+ Kd7 18. c4 Nf6 19. Nc3 

Nxh5 20. Nd5 Nf4 21. Nb6+ axb6 22. c5 bxc5 23. Rc1 

Rxh2 24. Rxh2 Nd5 25. Rxc5 Nb4 26. Rxc8 Nxa2 27. 

Rxb8 Rxb8 28. Rxa2 Rb2 29. Rxb2 Kd6 30. Rh2 Kc6 

31. Kd2 Kd6 32. Kd3 Kc6 33. Kd4 Kd6 34. Ke4 Kc6 

35. Ke5 Kc5 36. Rh1. 

 

With this the whole theorem is proved. 

Now we can give the following conclusion: To 

conclude whether some KRK position is legal 

according to the ideal definition, it is sufficient to 

conclude whether it is initially legal and whether it 

has at least one previous position. 

Note that in a set of legal KRK positions (which 

are not covered by this conclusion), there are 

(possibly) still those which are legal because they can 

be extended to some 4-pieces position (see Fig. 7). To 

prove their (possible) legality, it is necessary to 

extend the system to 4-pieces endgames and conduct 

proofs analogous to the proof presented in this paper. 
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