

SAT-based Analysis of the Legality of Chess Endgame

Positions

Marko Maliković

Faculty of Humanities and Social Sciences

University of Rijeka

Sveučilišna avenija 4, 51000 Rijeka, Croatia

marko.malikovic@ffri.hr

Abstract. Various analyses of chess endgames are

made with different purposes. These analyzes are

usually based on exhaustive analysis using previous

generated corresponding databases. It is often not

investigated whether the endgame positions are legal

(or why are not legal). Legality of endgame positions

can be proven in several ways, and in this paper we

present one of them: high-level computer-assisted

proof based on reduction to propositional logic, more

precisely to SAT. As case study we focus on a King

and Rook vs. King endgame, and reduction to SAT is

performed by using a constraint solving system

URSA. We are not aware of other computer-assisted

high-level proof of a legality of some chess endgame.

The presented methodology can be applied to other

chess endgames. Therefore, the point of this paper is

not only presenting a proof of legality of an endgame,

but also presenting a new methodology for computer-

assisted proving of legality of chess endgames in

general.

Keywords. Chess, Endgames, Legality, SAT, URSA

1 Introduction

A superficial definition of legal KRK (King and Rook

vs. King) positions that naturally arise is the

following: Legal KRK positions are those that meet

the following conditions:

- Two kings are not on adjacent squares;

- The piece of the color to move does not attack the

other color's king.

The above definition is straightforward and

intuitive. But, there are important subtle issues

concerning this notion. Let us consider the position

shown in Fig. 1. According to the above definition,

this position is legal if black is to move. However, if

black is to move, what was the last move by white? It

can be easily checked that there was no legal move by

white that could have led to the current position, so

the given position is impossible. We see that even in

such a simple endgame as is KRK, there are situations

in which is necessary to look into the problem more

deeply. The problem becomes more complex by

increasing the number of pieces on the chessboard

and by changing the kinds of pieces.

 # # # #

 # # # #

 # # # #

è
 # # # #
É Ä

Figure 1. Illegal KRK position

Such problems are actually subject to retrograde

chess analysis [7], [9]. Generally, the ideal definition

of the legality of a position would be that a position is

legal if it is reachable from the initial chess position

by a sequence of legal moves. But such a definition is

practically useless because the problem of checking

the legality of a given position is then building a

sequence of legal moves which leads from the initial

chess position to the given position. It is clear that

such a move sequence for endgames can be very long.

In short, it is necessary to build a whole chess game

that leads to a given position and it actually becomes

a problem of proof games or shortest proof games

[13]. Such an extension of the problem is generally

unnecessary and is not suitable for chess endgames

which contain a small number of pieces. In addition, it

can be assumed that strictly formal proving of the

legality of the whole chess games is impossible. If

this is true, it would mean that even formal proof of

the legality of the endgames with a small number of

pieces would never have been possible, but should

always be based on the searching, generating

corresponding databases, etc.

Various analyses of chess endgames with different

purposes are made with different methods. For

example, using an arbitrary programming language,

all positions and corresponding databases can be

generated. Then, using a retrograde procedure [9],

Central European Conference on Information and Intelligent Systems__Page 264 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

[10], [12] some properties of these endgames can be

verified (e.g. in which positions checkmate is

possible). As another example, based on lookup tables

with pre-calculated optimal moves for each legal

position, it is possible to check the correctness of

some strategy (which, for example, should always

lead to checkmate or draw in the given endgame).
This approach was, for example, used by Bramer [2]

for testing the correctness of some endgame

strategies, but also for refining strategies that turned

out not to be correct. So, the mentioned approaches,

instead of direct proofs, are based on a form of

exhaustive analysis. The advantage of these

approaches is that it is quite straightforward. Its

drawback is that it does not provide a high-level,

human-understandable and intuitive argument on why

some position is illegal or why some strategy really

works. What is most important for this paper is that it

often happens that an analysis of endgames does not

even investigate which of the positions in a given

endgame is legal. In the case when illegal positions

are correctly detected in the analysis, it often remains

unknown which positions are illegal (and why are

illegal). Finally, there may be errors in the results (due

to errors in program code), but there are no formal

proofs of illegality of positions.

Due to the above reasons, in this paper we show

one possible method of proving the legality of

endgames. This method is based on the use of SAT-

based constraint solving.
1 We are not aware of other

computer-assisted high-level proof of the legality of

some chess endgame. A similar approach as the one

in this paper is used in [8] but for other purposes (for

proving the correctness of a chess endgame strategy).

The rest of the paper is organized as follows:

Section 2 provides an overview of various types of the

illegality of positions, in Section 3 we present the

main features of the SAT-based constraint solving

system URSA, in Section 4 we give URSA

specification of the chess rules for KRK and in

Section 5 we provide the main proof of legality of

intuitively legal KRK positions.

2 Illegality of positions

Lippold [5], [6] distinguishes the following types of

illegality of positions:

Initially illegal are positions whose illegality "can

be seen immediately". This refers to situations in

1 SAT is the problem of deciding if a given propositional formula in

CNF (conjunctive normal form) is satisfiable, i.e., if there is any
assignment to variables such that all clauses are true. SAT was the

first problem shown to be NP-complete [3], and it still holds a

central position in the field of computational complexity. In recent
years, tremendous advances, including both high-level and low-

level algorithmic techniques, have been made in SAT solving

technology [1]. These advances in SAT solving make it possible to
decide the satisfiability of some industrial SAT problems with

hundreds of thousands of variables and millions of clauses.

which the pawn is in the first or last row, kings are on

adjacent squares, two pieces are in the same square, a

piece of the color to move threatens the other color's

king;

Derivedly illegal are positions which are initially

legal but simply (once) or n times derived illegal. It is

simply derived illegal if there is no initially legal

position from which it can be reached with one legal

move. For example, the position at Fig. 2 with black

to move is simply derived illegal. Position is n times

derived illegal if every position, from which it can be

reached with one legal move, is initially or m times

derived illegal with an arbitrary m smaller than n and

furthermore at least one position is n-1 times and no

position is n times derived illegal. With black to move

a three times derived illegal position is showed at Fig.

3. The position at Fig. 3 has only one previous

position (with white pawn at g2) while this previous

position has several possible previous positions. Two

of them are shown in Fig. 4. But none of these

positions has any previous position (because the black

king cannot be simultaneously in check with the white

queen and the other white bishop).

 # # # #

 # â # # #

 # # # #

è
 # # # #
É Ä

Figure 2. Simply derived illegal KRKN position

è # È # # #
Ç #
 # # # #
Á # #
 # # # #

Ë
 # # # #
À

Figure 3. With black to move a three times derived

illegal position

 # È # # #
é # Ç #
 # # # #
Á # #
 # # # #

 # # # Ê #
À

Â # È # # #
é # Ç #
 # # # #
Á # #
 # # # #

 # # # Ê #
À

Figure 4. Two possible positions two moves before

the position at Fig. 3

Central European Conference on Information and Intelligent Systems__Page 265 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

Isolatedly illegal are positions that are neither

initially illegal nor derivedly illegal but which cannot

be reached from the initial chess position and are

therefore illegal according to the ideal definition.

Such is for example the position with the white bishop

in the corner a1 and with the white pawn at b2, as is

shown at Fig. 5.

 # # è # #

 # # # #

 # # # #

 Ë # # #
Á # É #

Figure 5. Isolatedly illegal position

There is one additional aspect that is important in

an analysis of the legality of endgames. Sometimes it

is not sufficient to look only at the positions of the

analyzed endgame in checking whether it is derivedly

illegal. The position at Fig. 6 is derivedly illegal if we

consider only KRKN positions. But if we allow that

the rook comes from a1 and captured some black

piece at a4 then this position is (possibly) legal in

some 5-pieces endgame. So, in order to check legality

of some 4-pieces positions, it is sometimes necessary

to check the legality of previous 5-pieces positions.

Also, even if we restrict endgame to 4-pieces KRKN,

then the position in Fig. 7 is not derivedly illegal

because the rook could come from a1 and captured

black knight at a4. The position in Fig. 7 would be

derivedly illegal only if we restrict the endgame to the

3-pieces KRK endgame.

 # # # #

è # # # #

Ä É # # #

â #
 # # # #

Figure 6. Derivedly illegal 4-pieces position

 # # # #

è # # # #

Ä É # # #

 # # # #

Figure 7. Derivedly illegal 3-pieces position

So, even if we study only the endgames, it is

necessary to look at a chess game as a whole. Thus,

we can conclude that the position in Fig. 7 is not

actually an illegal position. It is legal because it can

be expanded to some 4-pieces endgame.

3 Constraint solving system URSA

In the constraint solving system URSA [4], the

problem is specified in a language which is

imperative and similar to programming language C,

there are control-flow structures and there is support

for procedures. At the same time, this language is

declarative, as the user does not have to provide a

solving mechanism for the given problem.

Let us illustrate solving problems in URSA on one

(artificial) chess-related toy problem. Let both

columns and rows of the chessboard be denoted by

the numbers 0, 1, ..., 7 and let the position of the

white rook be given by (3,1). Suppose we want to find

all the positions in which the black king is "left" and

"lower" on the chessboard with respect to the white

rook. For this we need to find all possible pairs of

coordinates of the black king that satisfy a specified

condition. There is a type in the URSA language for

(unsigned) numerical with the names of variables

starting with "n". If we introduce the coordinates of

the black king as variables nBKx and nBKy then the

specified condition can be expressed as nBKx < 3 ˄

nBKy < 1, and all possible positions can be obtained

by the following URSA specification: assert(nBKx<3

&& nBKy<1);, where assert(b) checks whether b is

true.

In URSA, the representation of symbolic

numerical variables corresponds to a binary

representation of unsigned numbers.
2
 Further, such

variables are represented by the vectors of

propositional formulae. In our example, chess

coordinates are represented by vectors of

propositional formulae of length 3 (because numerical

values less than or equal to 7 can be represented by

binary numbers of length 3). If nBKx and nBKy are

represented by vectors [a,b,c] and [p,q,r], then the

above assertion is translated by URSA to the

following propositional formula: (¬ a ˄ (¬ b ˅ ¬ c)) ˄

(¬ p ˄ ¬ q ˄ ¬ r). This formula is transformed into the

following formula in CNF: ¬ a ˄ (¬ b ˅ ¬ c) ˄ ¬ p ˄ ¬

q ˄ ¬ r. Over the set of variables a, b, c, p, q, r, there

are three models for this formula: a model 0, 0, 0, 0,

0, 0, a model 0, 0, 1, 0, 0, 0 and a model 0, 1, 0, 0, 0,

0. The underlying SAT solver can find them, and on

the basis of these models, URSA returns three

solutions for (nBKx,bBKy): (0,0), (1,0), (2,0).

2 Variables nBKx and nBKy are symbolic variables, while

operations over concrete values produce concrete values.

Central European Conference on Information and Intelligent Systems__Page 266 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

4 URSA Specification of the Chess

Rules for KRK

In this section we briefly present our specification of

the KRK endgame in the URSA specification

language. The specification is largely in accordance

with [8] with the changes that are needed due to the

specific topic of this paper. In this paper some of the

longer parts of the specification are not listed but most

are still here. If something is skipped it is also noted.
3

4.1 Underlying procedures

If both columns and rows of the chessboard are

denoted by the numbers 0, 1, ..., 7 (which is more

suitable than 1, 2, ..., 8 since the former numbers can

be represented by 3 bits), then each square can be

represented by a pair of two such numbers, and hence,

by 6 bits. In the case of KRK endgame, instead of

dealing with values of 64 squares of the chessboard, it

is more convenient to use only the positions of all

three pieces (represented by 6 bits each). However,

instead of passing six numbers as arguments to

specification procedures, they can be packed together

into one 18-tuple (i.e., into a bit-vector of the length

18). In addition, the information on which player is on

turn (one bit) is needed, so each KRK position can be

stored in 19 bits. For this information we use another

type that exists in URSA: Boolean type with names of

variables starting with "b" and of the length 1 with

value 0 for false and 1 for true.

With the chosen representation, the first

miscellaneous procedures that are needed are those

that pack individual coordinates ((nWKx, nWKy) of

the white king, (nBKx, nBKy) of the black king,

(nWRx, nWRy) of the white rook, along with

bWhiteOnTurn which is true if white is on turn) into a

19-tuple nPos and vice versa (as in C, & denotes bit-

wise conjunction, | denotes bit-wise disjunction, <<

and >> denote left and right shift, etc.)
4
:

procedure Cartesian2Pos(nWKx,nWKy,nBKx,nBKy,nWRx,nWRy,bWhiteOnTurn,nPos) {
 nPos = ite(bWhiteOnTurn,1,0);
 nPos = (nPos << 3) | (nWRy & 7);
 nPos = (nPos << 3) | (nWRx & 7);
 nPos = (nPos << 3) | (nBKy & 7);
 nPos = (nPos << 3) | (nBKx & 7);
 nPos = (nPos << 3) | (nWKy & 7);
 nPos = (nPos << 3) | (nWKx & 7);}

procedure Pos2Cartesian(nPos,nWKx,nWKy,nBKx,nBKy,nWRx,nWRy,bWhiteOnTurn) {
 nWKx = nPos & 7;
 nWKy = nPos >> 3 & 7;
 nBKx = nPos >> 6 & 7;
 nBKy = nPos >> 9 & 7;
 nWRx = nPos >>12 & 7;
 nWRy = nPos >> 15 & 7;
 bWhiteOnTurn = num2bool(nPos >> 18);}

The procedure Cartesian2Pos assumes that the

value nPos is an "output argument", while

3 The URSA specification is available online from:

http://www.ffri.hr/~marko/sat_endgames/sat_krk.zip.
4 Note that & and | are bit-wise operators applied on numerical

values, while && and || are logical operators applied on Boolean

values.

Pos2Cartesian assumes that the value nPos is an

"input argument" (however, generally there are no

input and output arguments in URSA procedures -

each argument can have both roles, as in Prolog, for

instance).

In chess, the term distance refers to the minimal

number of moves a certain piece needs to reach a

target square from the starting square. For kings two

kinds of distances are the most important: Chebyshev

distance as minimal number of any king moves, and

Manhattan distance which is restricted to orthogonal

king moves. Procedures which give specified

distances are as follows (to compute the Chebyshev

distance we also need a procedure that gives a

maximum of two numbers):

procedure Max(nx,ny,nMax) {
 nMax = ite(nx>=ny,nx,ny);}

procedure ChebyshevDistance(nx1,ny1,nx2,ny2,nCD) {
call Max(nx2-nx1,ny2-ny1,nMax1);
call Max(nx2-nx1,ny1-ny2,nMax2);
call Max(nx1-nx2,ny2-ny1,nMax3);
call Max(nx1-nx2,ny1-ny2,nMax4);
nCD = ite(nx2>=nx1,
 ite(ny2>=ny1,nMax1,nMax2),
 ite(ny2>=ny1,nMax3,nMax4));}

procedure ManhattanDistance(nx1,ny1,nx2,ny2,nMD) {
 nMD = ite(nx2>=nx1,
 ite(ny2>=ny1,(nx2-nx1)+(ny2-ny1),(nx2-nx1)+(ny1-ny2)),
 ite(ny2>=ny1,(nx1-nx2)+(ny2-ny1),(nx1-nx2)+(ny1-ny2)));}

As we will see, when specifying the problem that

we deal in this paper we'll need both of the above

distances.

The following procedure Between gives an answer

to whether some square is between two other squares:

procedure Between(nx1,ny1,nx2,ny2,nx3,ny3,bBetween) {
bBetween = (nx1==nx2 && nx2==nx3 && ((ny1<ny2 && ny2<ny3) || (ny1>ny2 && ny2>ny3))) ||
(ny1==ny2 && ny2==ny3 && ((nx1<nx2 && nx2<nx3) || (nx1>nx2 && nx2>nx3)));}

After invoking the procedure Between, the

variable bBetween equals true if and only if the square

(nx2,ny2) is between squares (nx1,ny1) and (nx3,ny3).

4.2 Initially legal KRK Positions

The conditions that, in a certain position (represented

by numerical value nPos), the white king and the

white rook cannot be on the same square, that the two

kings cannot be on the same or adjacent squares, and

that the black king is attacked by the white rook, can

be represented by the following procedures (with

Boolean arguments as "output arguments"):

procedure NotOnSameSquare(nPos,bNotOnSameSquare) {
 call Pos2Cartesian(nPos,nWKx,nWKy,nBKx,nBKy,nWRx,nWRy,bWhiteOnTurn);
 bNotOnSameSquare = (nWKx != nWRx) || (nWKy != nWRy);}

procedure NotKingNextKing(nPos,bNotKingNextKing) {
 call Pos2Cartesian(nPos,nWKx,nWKy,nBKx,nBKy,nWRx,nWRy,bWhiteOnTurn);
 bNotKingNextKing = nWKx>nBKx+1 || nBKx>nWKx+1 || nWKy>nBKy+1 || nBKy>nWKy+1;}

procedure BlackKingAttacked(nPos,bBlackKingAttacked) {
 call Pos2Cartesian(nPos,nWKx,nWKy,nBKx,nBKy,nWRx,nWRy,bWhiteOnTurn);
 call Between(nWRx,nWRy,nWKx,nWKy,nBKx,nBKy,bBetween);
 bBlackKingAttacked = (nWRx==nBKx ^^ nWRy==nBKy) && !bBetween;}

In the case where the white rook is captured, only

two kings remain on the chessboard and it makes no

Central European Conference on Information and Intelligent Systems__Page 267 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

sense to consider such positions. By convention, and

appropriate for the representation used in this paper,

in such situations the black king and the white rook

are on the same square. Whether the rook is captured

is represented by the following procedure:

procedure RookCaptured(nPos,bRookCaptured) {
 call Pos2Cartesian(nPos,nWKx,nWKy,nBKx,nBKy,nWRx,nWRy,bWhiteOnTurn);
 bRookCaptured = nWRx==nBKx && nWRy==nBKy;}

Finally, the procedure that checks whether a

position is initially a legal KRK position can be

represented as follows:

procedure LegalKRKPosition(nPos,bLegalKRKPosition) {
 call Pos2Cartesian(nPos,nWKx,nWKy,nBKx,nBKy,nWRx,nWRy,bWhiteOnTurn);
 call NotOnSameSquare(nPos,bNotOnSameSquare);
 call NotKingNextKing(nPos,bNotKingNextKing);
 call BlackKingAttacked(nPos,bBlackKingAttacked);
 call RookCaptured(nPos,bRookCaptured);
 bLegalKRKPosition = bNotOnSameSquare && bNotKingNextKing && !bRookCaptured &&
!(bBlackKingAttacked && bWhiteOnTurn);}

When invoking the procedure LegalKRKPosition

one can use a concrete value for position nPos and

bLegalKRKPosition will be a ground Boolean value -

true, if and only if the position is legal. However, one

can also use a symbolic value for nPos and

bLegalKRKPosition will be set to the condition that

nPos is legal in terms of propositional variables

forming the representation of nPos. In this case, one

can assert bLegalKRKPosition and URSA will

respond that there are 399112 values of nPos that lead

to bLegalKRKPosition equal true.

4.3 Moves of pieces

The rules for moving pieces are divided into: (i) parts

specifying movements rules themselves; (ii) a

constraint that all other pieces remained on their

original positions if not captured by the moving piece;

(iii) the condition that the current player is indeed on

turn and that another player is on turn after the move.

As an illustration, we give the part (i) specifying

movement rules for the white king (nPosS is starting

position and nPosE is ending position):

procedure MoveWhiteKing(nPosS,nPosE,bMoveWhiteKing) {
 call Pos2Cartesian(nPosS,nWKxS,nWKyS,nBKxS,nBKyS,nWRxS,nWRyS,bWhiteOnTurnS);
 call Pos2Cartesian(nPosE,nWKxE,nWKyE,nBKxE,nBKyE,nWRxE,nWRyE,bWhiteOnTurnE);
 call ChebyshevDistance(nWKxS,nWKyS,nWKxE,nWKyE,nCD);
 bMoveWhiteKing = (nCD==1);}

and the procedure that integrates all the constraints:

procedure LegalMoveWhiteKing(nPosS,nPosE,bLegalMoveWhiteKing) {
 call Pos2Cartesian(nPosS,nWKxS,nWKyS,nBKxS,nBKyS,nWRxS,nWRyS,bWhiteOnTurnS);
 call Pos2Cartesian(nPosE,nWKxE,nWKyE,nBKxE,nBKyE,nWRxE,nWRyE,bWhiteOnTurnE);
 call MoveWhiteKing(nPosS,nPosE,bMoveWhiteKing);
 call OtherAfterMoveWhiteKing(nPosS,nPosE,bOtherAfterMoveWhiteKing);
 bLegalMoveWhiteKing = bMoveWhiteKing && bOtherAfterMoveWhiteKing && bWhiteOnTurnS &&
!bWhiteOnTurnE;}

The procedure defining moves for the black king

is defined by analogy. The procedure for the white

rook is different, but defined in the same spirit and we

don't show it here.

Finally, in one procedure we unite all possible

moves of one player. For example, for the white

player the procedure is as follows:

procedure LegalMoveWhite(nPosS,nPosE,bLegalMoveWhite) {
 call LegalMoveWhiteKing(nPosS,nPosE,bLegalMoveWhiteKing);
 call LegalMoveWhiteRook(nPosS,nPosE,bLegalMoveWhiteRook);
 bLegalMoveWhite = bLegalMoveWhiteKing || bLegalMoveWhiteRook;}

5 Legality of KRK positions

5.1 KRK positions with at least one

previous position

We want to show that the KRK positions with at least

one previous position are also legal according to the

ideal definition. So, first we have to limit the set of

KRK positions on a set with at least one previous

position. Such positions nPos may be obtained by the

following constraint (nPos0 are eventual previous

positions of nPos):

call LegalKRKPosition(nPos,bLegalKRKPosition);
call LegalKRKPosition(nPos0,bLegalKRKPosition0);
call LegalMoveWhite(nPos0,nPos,bW);
call LegalMoveBlack(nPos0,nPos,bB);
bPosHasPrevPos = bLegalKRKPosition && bLegalKRKPosition0 && (bW || bB);

In the upper constraint, bLegalKRKPosition and

bLegalKRKPosition0 are equal true if nPos and

nPos0 are initially legal positions, and bW or bB are

true for all white's or black's move which leads from

nPos0 to nPos. Finally, bPosHasPrevPos is equal true

if all the bLegalKRKPosition, bLegalKRKPosition0

and (bW || bB) are equal true.

5.2 Proof of the main theorem

As we have already mentioned, we want to prove that

all the initially legal positions with at least one

previous position are legal also according to the ideal

definition. To prove this, we will prove the following

theorem:

Theorem: For each initially legal position P (which

has some previous initially legal position P0) there is a

sequence of four previous initially legal positions P4,

P3, P2, P1 (with legal moves from P4 to P3, from P3 to

P2, from P2 to P1 and from P1 to P) such that:

(1) P4 is closer to one selected position PFix than P;
5

(2) P4 has some previous position;

(3) PFix is legal according to the ideal definition.

Proof:

(1) First we choose a concrete position PFix showed

at Fig. 8.

5 The meaning of the term closer is explained in the proof that
follows.

Central European Conference on Information and Intelligent Systems__Page 268 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

 # # # #

 # # # #
é É #
 # # # #

 # # # #
Ä

Figure 8. Concrete position PFix

Note that we did not specify which color is to

move into position PFix (PFix with white to move

and PFix with black to move are two different

positions). We did that because it greatly simplifies

the proofs that follow. However, this means that we

have to prove point (3) of the theorem for both cases

(which is a much easier problem).

Next, we found a mapping (measure) M from the

set of legal KRK positions to the set of natural

numbers such that for all positions P exists a sequence

of four previous legal positions P4, P3, P2, P1 such

that M(P4) < M(P). The measure of position P is

relative with respect to position PFix, and is equal to:

M(P)=2∙CDWK+MDWK+2∙CDBK+MDBK+DWR

If the squares in which the pieces are in a position

PFix is called target squares, then in the above

formula is:

CDWK = Chebyshev distance of white king at P and

his target square

CDBK = Chebyshev distance of black king at P and

his target square

MDWK = Manhattan distance of white king at P and

his target square

MDBK = Manhattan distance of black king at P and

his target square

DWR = minimal number of moves in which white

rook can reach his target square (it can be 0, 1 or 2)

The mapping M is specified by the following

URSA procedure:

procedure Measure(nPos,nMeasure) {
 call Pos2Cartesian(nPos,nWKx,nWKy,nBKx,nBKy,nWRx,nWRy,bWhiteOnTurn);
 call ChebyshevDistance(nWKx,nWKy,4,4,nCDWK);
 call ChebyshevDistance(nBKx,nBKy,2,4,nCDBK);
 call ManhattanDistance(nWKx,nWKy,4,4,nMDWK);
 call ManhattanDistance(nBKx,nBKy,2,4,nMDBK);
 nDWR = ite(nWRx==7 && nWRy==0,0,ite(nWRx==7 ^^ nWRy==0,1,2));
 nMeasure=2*nCDWK+nMDWK+2*nCDBK+nMDBK+nDWR;}

The key feature of the measure M is that for any

legal KRK position P, there exists a sequence of four

previous legal positions P4, P3, P2, P1 such that the

measure is less in P4 than in P, and that is exactly

what assertion (1) claims. This assertion can be

encoded in URSA as follows:

call LegalKRKPosition(nPos4,bLegalKRKPosition4);
call LegalKRKPosition(nPos3,bLegalKRKPosition3);
call LegalKRKPosition(nPos2,bLegalKRKPosition2);
call LegalKRKPosition(nPos1,bLegalKRKPosition1);

bSequenceOfLegalPositions = bLegalKRKPosition4 && bLegalKRKPosition3 &&
bLegalKRKPosition2 && bLegalKRKPosition1;

call Exists4PliesThatMeasureDecrease(nPos,nPos1,nPos2,nPos3,nPos4,bMD4);

assert_all(bPosHasPrevPos && bSequenceOfLegalPositions && !bMD4);

The condition bSequenceOfLegalPositions states

that all of P4, P3, P2, P1 are initially legal KRK

positions. Further, in the procedure

Exists4PliesThatMeasureDecrease(nPos,nPos1,nPos

2,nPos3,nPos4,bMD4) (not listed here because it has

over 50 lines and two auxiliary procedures) the value

of bMD4 is equal to false only if M(P4) ≥ M(P) for all

sequences P4, P3, P2, P1. Finally, the main assertion

bPosHasPrevPos && bSequenceOfLegalPositions

&& !bMD4 is in fact a negation of assertion (1).

URSA proves that this is unsatisfiable (i.e., there is no

such position P), which proves the assertion (1).

URSA gives a result in this form:

No solutions found
[Formula generation: 799.34s; conversion to CNF: 860.352s; total: 1659.69s]
[Solving time: 909.02s]
[Formula size: 1041262 variables, 6391975 clauses]

(2) This assertion actually ensures that position P4 is

not four times derived illegal. To prove this, we can

prove a stronger assertion (but which is easier to set

up and which requires less computer resources). This

stronger assertion is: For each legal position P1 which

is a previous position of some legal position P there is

at least one previous position P2.

To prove this, we need an additional procedure:

procedure ExistsPreviousPositionOfPreviousPosition(nPos1,nPos2,bPP)
{
 bPP = false;
 for (nMoveWi=1;nMoveWi<=24;nMoveWi++) {
 call NextMoveWhite(nPos1,nMoveWi,nPos2,bNMW);
 call LegalMoveWhite(nPos2,nPos1,bLMW);
 bPP ||= bNMW && bLMW;
 }
 for (nMoveBm=1;nMoveBm<=8;nMoveBm++) {
 call NextMoveBlack(nPos1,nMoveBm,nPos2,bNMB);
 call LegalMoveBlack(nPos2,nPos1,bLMB);
 bPP ||= bNMB && bLMB;
 }
}

The value of bPP will be equal to false only if for

some position P1 there is no previous position P2.

Now, assertion (2) can be simply encoded in

URSA in the following way and proved (also using

proof by refutation):

call LegalKRKPosition(nPos,bLegalKRKPosition);
call LegalKRKPosition(nPos1,bLegalKRKPosition1);
call LegalMoveWhite(nPos1,nPos,bW);
call LegalMoveBlack(nPos1,nPos,bB);
bPosHasPrevPos = bLegalKRKPosition && bLegalKRKPosition1 && (bW || bB);
call LegalKRKPosition(nPos2,bLegalKRKPosition2);
call ExistsPreviousPositionOfPreviousPosition(nPos1,nPos2,bPP);

assert_all(bPosHasPrevPos && bLegalKRKPosition2 && !bPP);

URSA solves the assertion and claims that it is not

satisfiable, so assertion (2) holds.

(3) As we explained in the Introduction of this paper,

our intention is to avoid formal proof that the position

PFix is legal according to the ideal definition. It is

sufficient to find a legal chess game that leads to this

position. As we already mentioned, actually there are

Central European Conference on Information and Intelligent Systems__Page 269 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

two positions PFix (with white to move and with

black to move). If position PFix is legal (more

precisely, both its variants) then it is trivial to find

such games (not taking into account the quality of

these games). Such games can be derived using any of

the computer programs for solving proof games (for

example, see [11]). So, we give one game which leads

to a variant of PFix in which is black to move: 1. e4

e5 2. d4 exd4 3. Qxd4 d5 4. Qxd5 Qxd5 5. exd5 c6 6.

dxc6 bxc6 7. b4 c5 8. bxc5 Bxc5 9. Be3 Bxe3 10. fxe3

f5 11. e4 fxe4 12. Nf3 exf3 13. gxf3 g5 14. f4 gxf4 15.

Bg2 f3 16. Bxf3 h5 17. Bxh5+ Kd7 18. c4 Nf6 19. Nc3

Nxh5 20. Nd5 Nf4 21. Nb6+ axb6 22. c5 bxc5 23. Rc1

Rxh2 24. Rxh2 Nd5 25. Rxc5 Nb4 26. Rxc8 Nxa2 27.

Rxb8 Rxb8 28. Rxa2 Rb2 29. Rxb2 Kd6 30. Rh2 Kc6

31. Kd2 Kd6 32. Kd3 Kc6 33. Kd4 Kd6 34. Ke4 Kc6

35. Ke5 Kc5 36. Rh1.

With this the whole theorem is proved.

Now we can give the following conclusion: To

conclude whether some KRK position is legal

according to the ideal definition, it is sufficient to

conclude whether it is initially legal and whether it

has at least one previous position.

Note that in a set of legal KRK positions (which

are not covered by this conclusion), there are

(possibly) still those which are legal because they can

be extended to some 4-pieces position (see Fig. 7). To

prove their (possible) legality, it is necessary to

extend the system to 4-pieces endgames and conduct

proofs analogous to the proof presented in this paper.

References

[1] Biere, A; Heule, M. J. H; van Maaren, H; Walsh,

T. (editors). Handbook of Satisfiability, volume

185 of Frontiers in Artificial Intelligence and

Applications. IOS Press, 2009.

[2] Bramer, M. A. Correct and optimal strategies in

game playing programs. The Computer Journal,

23(4):347-352, 1980.

[3] Cook, S. A. The complexity of theorem-proving

procedures. In Proceedings of the third annual

ACM symposium on Theory of computing, pages

151-158, ACM Press, 1971.

[4] Janičić, P. URSA: A System for Uniform

Reduction to SAT. Logical Methods in Computer

Science, 8(3:30):1-39, 2012.

[5] Lippold, D. Legality of Positions of Simple

Chess Endgames, Endgame Tablebases Web

Page, http://archive.is/hXsdC, downloaded: July

15th 2012.

[6] Lippold, D. The legitimacy of positions in

endgame databases. ICCA Journal, 20(1):20-28,

1997.

[7] Maliković, M; Čubrilo, M. What Were the Last

Moves?. International Review on Computers and

Software, 5(1):59-70, 2010.

[8] Maliković, M; Janičić, P. Proving Correctness of

a KRK Chess Endgame Strategy by SAT-based

Constraint Solving. ICGA Journal, 36(2):81-99,

2013.

[9] Thompson, K. Retrograde analysis of certain

endgames. ICCA Journal, 9(3):131-139, 1986.

[10] Thompson, K. 6-piece Endgames. ICCA Journal,

19(4): 215-226, 1996.

[11] Wassong, P. The Natch home page,

http://natch.free.fr, downloaded: December 4
th

2013.

[12] Wendroff, B; Warnock, T; Stiller, L; Mayer, D;

Brickner, R. Bits and pieces: constructing chess

endgame databases on parallel and vector

architectures. Applied Numerical Mathematics,

12(1-3): 285-295, 1993.

[13] Wilts, G; Frolkin, A. Shortest Proof Games.

Privately published in Karlsruhe, 1991.

Central European Conference on Information and Intelligent Systems__Page 270 of 344

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 17-19, 2014

