

Application of Formal Methods in Development of

Information Systems

Željko Dobrović, Alen Lovrenčić
Faculty of Organization and Informatics

University of Zagreb
Pavlinska 2, 42000 Varaždin, Croatia

{zeljko.dobrovic, alen.lovrencic}@foi.hr

Abstract. During the 1960s IS community faced the
failure of unsuccessful development of complex
information systems, in spite of heaving large
computers and higher programming languages
available. This situation is known as “software
crisis” and solution is recommended at conferences
sponsored by NATO in 1968. and 1969. After
participants have come up with the conclusion that
more engineer-like discipline is needed in IS
development, the term “software engineering” was
introduced. Software engineering was based upon
some formal methods that should be used in software
development process. Since then philosophy that
underpins the formal methods hasn’t changed.
Numerous methods and methodologies have been
developed for supporting the IS development in last
three decades. Majority, if not all of them, are based
on common foundations provided by formal methods.
However, the importance of formal methods
decreased as development of structured methods
shifted from programming to the analysis of IS,
because analysis doesn’t look so “formal”. Great
number of IS developers nowadays use contemporary
IS development methods without even being aware of
formalism that lay inside these methods. The authors
in this paper elaborate the formal methods and
propose the possible area of their usage in
information system development.

Keywords. formal methods, information systems,
methodology

1 Introduction

In the 1960s, the information community was
characterised by two significant trends. On the one
hand, powerful computers (hardware) appeared, on
the other higher programming languages were
available. This resulted in the use of computers in the
construction of information systems for various types
of organisations. A large number of these information

systems was unsuccessful, running over-time and
running over-budget. These problems led to the
situation widely known as the “software crisis” [15].
The crisis showed that a methodological approach is
needed in the IS software development. In 1968 and
1969 NATO sponsored conferences at which this
problem was clearly defined and initial steps were
determined [16], [17]. The term “software
engineering” appeared, based on the idea that an
engineering-like approach should be applied to
software development. Although research in the field
of software engineering was carried out in the 1960s
and the 1970s, these had a moderate impact on
practical software development. However, the most
important concepts in the field were developed, such
as top-down formation, step-by-step improvement,
modularity and structured programming. These
concepts grew into methods and represented a turn in
the software development approach and the
development of IS in general. At the basis of the
mentioned software development methods (as well as
the ones created at a later point) lies a group of key
ideas related to formal methods. Formalism ensures a
unique philosophy in the creation of IS development
methods which has not changed over the last thirty or
so years. The first information systems were
characterised by a program code (software) which
was full of faults, since it was created without the use
of formal methods. Various testing techniques were
suggested in order to locate and eliminate the faults.
However, testing was not the best way to create
quality programmes. It was realised that it is the job
of the software engineer to develop several models or
real system descriptions with appertaining evidence
that the models on lower abstraction levels correctly
implement higher abstraction level models. Only this
design process can ensure high quality software, and
not testing. Dijkstra, the famous advocate of formal
methods made his famous statement that “testing
shows the presence, not the absence of bugs” Dijk
76. In other words, only the application of formal
methods can ensure the quality of software, not the
testing thereof. Numerous programmers apply the top-

Central European Conference on Information and Intelligent Systems__Page 268 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

down development and structured methods without
being aware of the underlying formal apparatus.
Critics of formal methods, on the other hand, point
out the problem of their applicability to large systems
and the impracticability of formalising naturally
complex characteristics of large systems [15].
Although the application of software engineering is
unavoidable, it does not cover all the activities in
information systems development [8].
2 Definition of formal methods

All papers Various definitions of formal methods
exist, depending on how widely their application is
observed. One of the wider definitions is as follows
(Nancy Leveson):

“A wide view on formal methods includes all
applications of (primarily) discrete mathematics to
software engineering problems. This application
usually includes modelling and analysis, where
models and analysis procedures are performed or
defined on mathematically precise bases.”

Narrower definitions of formal methods usually come
down to the use of formal languages. Such is the
definition by Jeannette M. Wing:

“Formal method in software development is a method
ensuring a formal language for the description of
software knowledge (eg. specifications, models,
source codes) in such a way as to enable evidence of
software knowledge features expressed in a formal
language.”

This definition shows two important components:
 Formal method implies the use of formal

languages. Formal language is a character set
from a well defined alphabet. The rules
(productions) for the distinction of sets (words)
defined over the alphabet, belonging to a
language, from the sets which do not are given.

 Formal methods in software development support
formal thinking which can be formally verified.
The verification begins with a set of axioms
which are supposed to be true. The rules of
deduction say that, if a specific formula (premise)
is deductible from the axiom, then the second
formula (consequent) is deductible from the
axiom as well. The set of rules of deduction must
be specified for every formal method. The
verification consists of a set of well-defined
formulas from a language in which each formula
or axiom has been deducted from the previous
formula in the set.

Formal methods have their root in specific axiomatic
trends in mathematics of the 19th and the 20th century.
Through formal methods, these trends have been
adopted in software engineering. Edsgar Dijkstra, the
advocate of formal methods, stated that computer
sciences should be renamed into “Very Large Scale

Application of Logic“. In order to master formal
methods in software engineering, it is necessary to
understand the mathematic background. This
background includes formal logic (propositional
calculus and predicate calculus), set theory, formal
languages and final automation [4].

3 Application of formal methods

Taking a good look at the development stages of
structured methods shows that these move from
programming, over design and analysis to automated
techniques trying to provide computer support to a
complete life-cycle of IS development. The
application of formal methods in programming and
partly in design is clear, as no one doubts that formal
methods can be directly applied to these two stages of
the IS development life-cycle. Finally, formal
methods have had a direct influence on the
development and standardisation of a large number of
programming languages which provide a basic tool
for programmers [9]. However, in the analysis stage,
and especially in IS strategic planning, where the
organisation is analysed as a whole and we have
moved away from the programming code and action
diagrams, the application of formal methods becomes
less clear. The organisation analysis cannot avoid its
social and sociological features, which cannot be
easily formalised and modelled. This helps the critics
of formal methods who claim that the naturally
complex features of organisation systems cannot be
formalised. In other words, formal methods as
methods used in natural and technical sciences are not
applicable to organisation, as it is, among other
things, a social category (non-automated
organisations in which people work are considered).
However, successful attempts of describing social
phenomena using the methods of natural and technical
sciences are not unheard of. One of the more distinct
examples is cybernetics, the science of transforming
information for the purpose of managing complex
systems [7]. Cybernetics has brought together several
mathematical fields (information theory, game theory,
operation research, mathematical logic), while its
principles can be equally applied to mutually very
different science fields – biology, chemistry
mathematics, medicine, linguistics, pedagogy,
economics, law, organisation sciences etc. In addition,
scientific circles increasingly speak of scientism [11].
Webster’s Dictionary defines scientism as:

“trust that the assumptions, methods and research of
natural sciences are equally appropriate and relevant
to all other disciplines, including humanistic and
social sciences”.
Another field with an upward trend, important for the
understanding of the need for formal methods is
metamodeling. In short, metamodeling is the
modelling of reality with a specific purpose. One of

Central European Conference on Information and Intelligent Systems__Page 269 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

the uses of metamodeling is for a unique description
of data generated by certain methodologies. One of
the preconditions of good IS development
methodology is the existence of a unique
methodology metamodel encompassing data retrieved
from all methods applied in the methodology [3]. As
the metamodel of the IS development methodology
contains the description of the data generated during
IS analysis, where social characteristics of the
organisation are emphasised, it can be said that
metamodeling is another attempt of applying formal
methods in non-technical field.
In addition to the aforementioned three topics
(cybernetics, scientism and metamodeling), which
prove the application of methods of technical or
natural sciences to other fields, it should be
emphasised that CASE tool for support to the entire
life-cycle of the IS development is being developed.
The basis of the CASE tool is a metamodel (data
dictionary) which represents the scheme of the data
base in which all data generated during the IS
development are kept. Efforts are made in the
formalisation of the aforementioned life-cycle stages
(strategic planning, analysis) in order to facilitate and,
in a way, standardise access to IS development.
Problems in the application of formal methods to the
aforementioned life-cycle stages are not accidental
and can be categorised in the following way:
 Strategic planning and requests (specifications)

analysis are related to the top management of an
organisation which deals with strategic business
planning. The nature of the strategic business
planning [10] is uncertainty and the influence of
numerous informal elements. Taking into account
the fact that a large part of organisations does not
perform quality strategic planning, it is clear that
the application of formal methods to activities
this informal is extremely difficult (figure 1).

Figure 1. Complexity of applying formal methods in

the IS development (authors)
 Observing the organisation through the

decomposition of its processes (function, process,
activity), it can be determined that the reasons
making it difficult to introduce formal methods in
the analysis of business functions, are the same

reasons making it easy to introduce formal
methods in programming activities
(hierarchically the lowest processes which are
highly structured).

 If we observe the type of organisation processes
(decision-making, management and execution)
[1], the execution level is predominated by
operation processes which can easily be formally
described. Moving over the management level to
the decision-making level, more complex
processes become predominant, with an
increasing amount of uncertainty and various
informal influences, making the application of
formal methods more complex. On every level of
decomposition of organisation processes
(function, process, activity) all three types of
processes are present, to various extents.
Speaking of business functions, the decision-
making process is represented in the highest
amount, the execution process in the lowest
amount. On the other hand, speaking of activities,
the execution process is represented in the
highest amount, the decision-making process in
the lowest amount (figure 1).

Regardless of the difficulties in the application of
formal methods, it should be mentioned that they are
significant in software engineering and thus in the IS
development. They are applicable, up to the certain
degree, to all life-cycle stages of IS development:
requests analysis, design and programming, and have
significant influence on testing and maintenance of
the IS. They also have significant influence on current
research which could change the present practice in
the IS development, particularly in the non-researched
fields of requests analysis (specifications) and design.
They are built into life-cycle models which may
represent an alternative to the traditional “waterfall”
model, eg. rapid prototyping, Cleanroom method or
transformation paradigm.

4 Areas of usage of formal
specification

Formal methods enable a precise and strict
specification of those IS features which can be
expressed in a certain specification language.
Defining what the system needs to do and
understanding the consequences of this definition
represent the most difficult problems in software
engineering [15], so the use of formal methods is
highly advantageous. Generally speaking, the
practitioners of formal methods often use them for the
descriptions of precise specifications of the system
and not for formal verification, which is a mentally
more demanding process.
The functionality of the system (organisation) being
described is the most common subject for the use of

Central European Conference on Information and Intelligent Systems__Page 270 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

formal methods, so well-known formal methods,
adjusted to the IS development, contain a
specification language for the description of
functionality (Z, Vienna Development Method
(VDM), Formal Development Methodology (FDM).
Although the most common, the functionality of the
system is not the only subject of use of formal
methods. IS security and protection are examples of
other fields in which formal methods are occasionally
applied. The profit of proving that IS will not transfer
into an unwanted state, or that IS security will not be
jeopardised may justify the price of the complete
formal verification of specific IS elements (software),
should the organisation the IS belongs to find IS
security and protection important.
Formal methods may include graphic languages. Data
Flow Diagrams (DFDs) represent the best-known
graphic technique for the specification of system
functions (figure 1). Although these diagrams may be
considered semi-formal methods, various techniques
for their treatment in a fully formal way have been
examined.

Figure 2. Concepts of Data Flow Diagram (authors)

Data Flow Diagrams are significant in the IS
development for various reasons:
 enable IS designers a simple accrual of

knowledge and a better understanding of the
processes in an organisation,

 present a simple communication mechanism
between users and designers of the IS,

 process decomposition, as a logical result of their
application, suggests the structure of the future
application,

 the lowest level of the Data Flow Diagram
defines processes which are candidates for
program modules,

 the process model obtained by the drawing up of
Data Flow Diagrams can be used as basis for the
application of other models, such as ABC
(Activity Based Costing),

 Data Flow Diagrams identify all important
documents in an organisation, later used to create
data models,

 a number of CASE tools have been developed,
supporting the Data Flow Diagram method.

In addition to Data Flow Diagrams, a number of
formal methods with graphic languages exist, such as

Petri nets and final automaton, two fully formal
methods.
Software engineering practitioners create models and
define characteristics of the organisation system on
several levels of abstraction. The specification
(analysis) level should describe what the organisation
should do, but not how to do it. The design level
provides more detail, and most details are entailed in
the source code.
Summarizing the aforementioned, we reach the well-
known taxonomy of using formal methods in software
engineering:

1. Specification – With this form of use, the
method is used to define a model which is
then informally or formally translated into a
system using other formal methods.

2. Verification – The use of formal methods to
verify the correctness of the designed
program solution.

3. Implementation – Formal methods can be
used in the creation of a program product
from predefined specifications.

5 Tools and Methodology

The development of technology for the formalisation
of software solutions has been accompanied by the
development of support tools. The basic idea is that
the final product is not merely an acting system
(application). Specifications and evidence that the
application will meet the specification requirements
are equally important. Evidence is difficult to develop
after the application been finished. Therefore,
evidence and programmes should be developed
simultaneously, with strong mutual bonds during the
development of the application. Since program
correctness needs to be proved, only those program
constructs which can be fully understood should be
used. This was the basic motivation for the use of
structured programming.
However, the first challenge was the application of
these ideas to large-scale projects. The application of
formal specification can be widened much more
easily than the application of formal verification.
Despite that, ideas related to formal verification are
applicable to projects of any scale, particularly if the
level of formalism may vary. David Gries suggests
the application of analysis and design methods which
entail a certain amount of heuristics, that is, he
encourages the application of methods of researching
new knowledge. The design results achieved this way
will be more reliable and more easily proved. In
accordance, Harlan Mills has developed the
Cleanroom approach. It is the IS development life-
cycle where formal methods, inspections and
reliability modelling have been integrated into the

Central European Conference on Information and Intelligent Systems__Page 271 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

social process of software production, thus opening
the way for formal methods into higher levels of the
IS development life-cycle – analysis and design.
Formal methods have been an inspiration for the
creation of numerous program tools. On the other
hand, these tools have contributed to a wider use of
formal methods. Some of the tools animate system
specifications, thus converting formal specifications
into an executive IS prototype. Other tools derive
programmes from specifications through various
automated transformations. According to some
approaches, programmes are solutions to equations set
in a formal language. Transformation implementation,
as one of the modern approaches, suggests a future
where numerous software systems would be
developed without programmers or at least with a far
larger proportion of automatism, high productivity
and less human work.

The first examples of using formal methods in
software engineering are related to the verification of
program products. In the 1960s, E. Dijkstra developed
a verification method of program correctness which
converted the program code into algebraic equations,
exchanging the semantics of the program language for
algebraic model. Numerous formal methods and tools
for code verification were developed later, based on
algebraic equations or predicate calculus [13]. Today
a variety of tools exist which automatically verify
code correctness (Frama-C, PolySpace). The Dijkstra
method, as well as the mentioned tools, primarily
deals with syntax analysis and code verification.
Semantic code verification is much more complex,
making the methods and tools allowing serious
semantic analysis much rarer. The best developed
method of semantic code verification is Semantic and
Description Language (SDL) and its implementation
in a tool set called SITE. This method steps out of the
field of code verification and covers, in addition to
verification, semantic specification. It can thus be
used as automated code generator from formal
specification, as well as the verifier of its semantics.
But formal methods dealing in verification are not
restricted solely to program code verification and
testing, but formal methods for verification exist as
well.

The methods for IS specification are the most
common and most developed. One of the best-known
method for specification of a part of the IS is the
relational model, the best prevailing formal method in
computing in general. The relational model was
defined by F.E.Codd in 1971. There are methods
using for the specification of the dynamic (process)
part of the IS, but these cannot be called formal, as
they have no strictly defined declarative and
operational semantics. Naturally, the methods used in
CASE tools must be formalised, but it is only handy
formalisation, not defined on the method level, but
used only to allow the implementation of the method

on a computer. Methods defined in the IDEF
methodology [5] are closest to formalisation. The
IDEF methodology strictly defines the semantics of
each symbol used. There are, however, formal
methods for system specification. One of the best
known formal methods for program code
specification is the Abstract State Machines method.
One of the main contributors, particularly in the field
of connecting Evolving algebra with the Warren
Abstract Machine (WAM) and Prologue was Dean
Rozenzweig, a scientist from Zagreb, Croatia. Today,
the ASM is most commonly used as formal
specification of program code. This method, however,
is not as popular as the less formal UML, most
commonly used today. Another method used for
formal specification of program code is the Z notation
[12]. It enables formal specification of data and
processes in the system, making it suitable for
complete IS specification. The problem with the Z
notation is that it is oriented at generating the program
code and not the system. Similar to the Z notation is
the B method which operationalises the ASM taking a
Z-like notation. The B method is implemented in the
B-Toolkit of several tools, such as ABTOOLS, B-
Core, B4free and Rodin.

All of the aforementioned methods, with the
exception of the relational model, are oriented
relatively low, on formal specification and
verification of computer programmes. Although very
useful, they do not satisfy the needs of IS designers.
For this, methods defining data classes and processes
in the IS are needed. Statistical (data) part of the IS is
formalised through relational model, but the
formalisation of the active (process) part of the IS has
not been formalised to a satisfying extent. There are
methods formalising this part, but they are not nearly
as wide-spread or accepted as the relational model. A
method called process algebra or process calculus ((-
calculus) should be mentioned here. Process algebra
is a mathematical apparatus for defining processes in
a system. It has been through several concretisations
appropriate for designing the active part of the IS.
C.A.R. Hoare developed a method called
Communicating Sequential Processes (CSP) in 1978,
enabling the modelling of systems with sequential
processes [6]. R. Milner defined the Calculus of
Communicating Systems (CCS) in 1980 and J.W.
Klop the Algebra of Communicating Systems (ACS)
in 1982. In 1990, the International Organization for
Standardization standardised LOTOS (Language of
Temporal Ordering Specification), which brings the
-calculus closer to practical users, providing simpler
syntax, more appropriate for work on computer.
Lately, as concurrent systems have gained a more
significant position in the IS development, ambient
calculus was developed (L. Cardelli i A.D. Gordon,
1998), -calculus adapted to concurrent systems.
Lately, repeated requests are heard for defining
methods for IS design specification and verification

Central European Conference on Information and Intelligent Systems__Page 272 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

based on object orientation, including both the static
and dynamic part of the IS. However, due to the
complexity of object design formal methods for the
specification and verification of the system design
based on object orientation have not been defined.

Lately, the application of formal methods is spreading
even to earlier IS development stages, all the way to
the IS planning. Formal methods for the specification
and verification of the static part of the IS are again
developing much faster than the ones specifying the
process part. Research in the field of system ontology
is being conducted, planning relationships and
connections between objects, thus formally
specifying, as well as verifying early specifications of
the IS. Several ontology development approaches
have been developed, based on the description logic
and OWL, as well as Frame Based Logic and Flora.
Tools for the verification of the developed ontology
have been developed, such as CELL, SHER and
Pellet, enabling the verification of the developed
ontology. UML, used for specification in later stages
of the IS development, has been expanded to Object
Constraint Language (OCL), a declarative language
enabling the definition of ontologies within the UML
specification. The development of the active part of
the IS in earlier stages is far more modest, as is the
case with the formal methods to accompany it.
Currently no wide-spread formal method for the
specification and verification of IS processes in the
early stages exists, although some methods are
starting to develop. But these are not nearly as wide-
spread or formalised.

6 Example of formal method:
Edsger Dijkstra and the
development of correct programmes

Edsger Dijkstra, one of the pioneers and advocates of
formal methods, developed a special approach to
writing correct programmes [2]. His formal apparatus,
with the use of the diktran formal language, enables
writing correct programmes or programmes which
will surely correctly finish when started and once they
finish, will determine the truthfulness of the
conclusion they were designed for. With the use of
the predicate calculus and a number of logical
transformations, the mechanism (programme) code is
created. Programmes created in this way need not be
tested – they are designed to be correct. Dijkstra is
one of the pioneers of software engineering (an active
participant in the aforementioned NATO
conferences). His statement that „testing shows the
presence, not the absence of bugs” is well-known.
The most significant concept used in the writing of
correct programmes is the weakest precondition for
mechanism (programme) S to determine the
truthfulness of the conclusion R. This concept is a

logical predicate (formula), marked with wp (S, R)
and represents a set of all the states from which
mechanism S, if started, will correctly finish and
determine the truthfulness of the conclusion R.

Example 1. Let mechanism S denote a value
assignment statement a:= b+5 and let conclusion R
a>b be set. The states that mechanism S can be found
in are defined by the values of variables a and b. From
which states will mechanism S, if started, determine
the truthfulness of the conclusion R? The answer to
the question shall be gained in the following way:

The result is the logical constant T (true), meaning
that the statement a:= b+5 will determine the
truthfulness of the conclusion a>b regardless of which
state it is started from. In other words, regardless of
the current values of variables a and b, the assignment
statement will determine, after being executed, that
a>b. In cases as simple as this one, where the
observed mechanism (program) is a single value
assignment statement, and the conclusion a simple
judgement, the weakest precondition calculus is easily
executed. A much more complex example is the case
where it is necessary to define mechanism (program)
S which will, once started, determine the truthfulness
of the conclusion R.

Example 2. For the set N1 (N1>0) and N2 (N2>0), a
mechanism (program) S needs to be written, which
will, once carried out, determine the truthfulness of
the conclusion R:

In other words, a program needs to be written which
will calculate the stated sum product for the set values
N1 and N2. Intuitively, most programmers would
think the following: the program needs to read two
values N1 and N2 and contain two loops (iteration
mechanisms) – internal for the sum and external for
the product. However, the formal method suggested
by Dijkstra begins with the conclusion the program
needs to determine (1). From the conclusion the so
called invariant is defined, or the predicate which
must be true during the entire implementation of the
program. This is followed by a number of
transformations from which program instructions
result. The weakest precondition is calculated for
statements to determine the truthfulness of the
invariant. What is most significant for the application
of this method is the fact that the final program
significantly depends on the way the conclusion was
defined. Without going further into formalism, we
will examine two ways of defining conclusions (a)
and the resulting two different programmes.

   TbbbababawpRSwp a
b   055),"5:("),(5

)1(:
2

1

1

1

2 







N

l

lN

Ni

iproductR

Central European Conference on Information and Intelligent Systems__Page 273 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

The conclusion (1) can be written in the following
way:

If the sum index i=N1 is exchanged with the
statement i=N1+0 in the second part of statement (2),
and the constant 0 is exchanged with the variable k,
the conclusion R will have the following form:

Starting from this conclusion, Dijkstra’s formal
method, with certain optimisation, will lead to the
following mechanism (program):

if N1>0 and N2>0 
 j, product:= 0,1;
 do j<>N2  k, f := j+2, 0;
 do k<>0  k := k-1; fakt := N1+k;

 f := f+fakt*fakt od;
 product := product*f;
 j := j+1
 od
fi

Once the resulting program finishes, it will determine
the truthfulness of conclusion (3) and the truthfulness
of conclusion (1) accordingly.
Let us observe the conclusion (1) written in the
following form:

Applying Dijkstra's formal apparatus to conclusion
(4), we come to the following program:

if N1>0 and N2>0 
 k, product, sum := 0, 1, N1*N1;
 do k<>N2  k := k+1;
 sum:= sum + (N1+k)*(N1+k);
 product := product*sum;
 od
fi

The gained program only has one do-loop (iteration),
unlike the previous one, it is faster and simpler.
The example shows that the final look and simplicity
of the program resulting from this formal method
depends on the manner the conclusion that the
program needs to confirm has been defined. The
conclusion represents the essence of the future
program and program instructions are gained from it

through specific transformations. Programmes created
in this way need not be tested – they are conceptually
designed in such a way not to have errors.
The main argument against the application of such
formal methods is that applications today are
developed with the help from the application
generator. However, there will always be a need for
writing specific program codes which can be
automatically generated.

7 Conclusion

This paper provides a short overview of formal
methods, their basics and applicability to certain
stages of the IS life-cycle development. Although
primarily used in lower stages of IS development
(code formation and partly design), it can be stated
that the idea of their application in the entire life-cycle
is nothing new. Generally, formal methods enable:
 More precise system specifications,
 Better internal designer – user communication,
 Possibility of verifying the design prior to code

execution,
 Higher IS quality and productivity.

These advantages do not come without costs
related to the training and use of formal methods.
There are no strict and quickly applicable rules on the
correct choice and amount of formalism in the IS
development projects, or defined manners of the
introduction of formal methods into specific
organisations. Their application is more a question of
enthusiasm of those employees in organisations aware
of the possibilities of formal methods in solving
specific problems. The fact that the integration of
formal methods into the life-cycle of the IS
development is being seriously considered is proved,
among other, by the Cleanroom methodology,
developed by Harlan Mills. This approach combines
formal methods and structured programming with
statistical process control, spiral life-cycle, inspection
and modelling software reliability.

In order to be used to their full extent, formal
methods need to be incorporated into standard
procedures of organisations dealing with software
production. Software development is also a social
process, so the applied techniques must support this
process. How to fully incorporate formal methods into
the life-cycle of IS development is not entirely clear.
Perhaps no universal answer exists, only different
solutions by individual organisations.

The most evident obstacle of a stronger break of
formal methods in the practice of software
engineering is the gap between theoreticians
developing formal methods and practitioners who are
supposed to use them. Theoreticians develop
mathematical models which are complicated and
difficult to understand for practitioners. More often
than not, a language adapted to work on computer is

)2()()(:
2

1

1

1

2 







N

l

lN

Ni

iifandifproductR

)3(0)()(:
2

1

1

1

2 







N

l

lN

kNi
kandiifandifproductR

)4(20:
1

1

1

2 NkandiproductR
k

l

lN

Ni
  







Central European Conference on Information and Intelligent Systems__Page 274 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

defined on the basis of a developed formal method,
but even with the developed language the formal
method remains unintelligible and too difficult to be
used in practice. A clear example of this statement is
the development of the ASM formal method, which
formalises the specification of the program code and
the UML language, which does the same in a practical
way. Although much more concise than the UMPL in
its concepts, the ASM is not used in practice as it
holds heavy mathematical notation and is not
understandable enough for people who are not
mathematicians.

This is also one of the directions that further
development of formal methods should take in
software engineering. Another direction, repeatedly
mentioned in the paper, is the strengthening of the
application of formal methods applicable to the
specification and verification of the active part of the
IS, particularly in the earlier stages of the
development, as well as the development of the object
oriented formal methods which would combine the
specification and verification of the active and passive
part of the IS, thus providing a better insight into the
complete IS specification, as well as verification of
the IS features including aspects of its operational, as
well as data part.

References

[1] Brumec, J. Contribution to General Taxonomy of

Information Systems. In Proceedings of 7th
International Symposium on Information
Systems, Varaždin, Croatia, 1996.

[2] Dijkstra, E.W. A Discipline of Programming.
Prentice-Hall, 1976.

[3] Dobrovic, Z. Information System’s Design and
Development Methods for Object Systems with
Time Changeable Functions. Doctoral
Dissertation, Varaždin: Faculty of Organization
and Informatics, Republic of Croatia, 1998.

[4] Gries, D. The Science of Programming.
Springer-Verlag New York Inc., 1983.

[5] Hanrahan, R.P. The IDEF Process Modeling
Methodology. Software Technology Support
Center, 2002.

[6] Hoare C.A.R. Communicating Sequential
Processes. Communications of the ACM, 21(8),
pp 666-677, 1991.

[7] Kalužnin, L.A. What is Mathematical Logic.
Školska knjiga, Zagreb, 1971.

[8] Kopella, M.; Mursu, A.; Soriyan, H.A.
Information Systems Development as an
Activity. Computer Supported Cooperative Work,
2002.

[9] Manna, Z. Mathematical Theory of Computation.
McGraw Hill, 1974.

[10] Martin, J.Leben, J. Strategic Information
Planning Methodologies. Prentice-Hall, 1989.

[11] Menton, D.N. Carl Sagan: Prophet of Scientism.
Missouri Association for Creation, 1997.

[12] Spivey J.M. The Z Notation: A Reference
Manual, University of Oxford, Programming
Research Group

[13] Tucker; Noonan, R. Programming Languages:
Principles and Paradigms, 2nd ed., McGraw-
Hill, 2002

[14] Vienneau, R.L. A Review of Formal Methods.
Department of Defense, Data & Analysis Center
for Software, 1996.

[15] U.S. DoD (Department of Defense), IAC
(Information Analysis Center). A State of the Art
Report: Software Design Methods. DoD DACS
(Data & Analysis Center for Software), 1997.

[16] NATO Science Committee. Software
Engineering. Report on a Conference, Garmisch,
Germany, October 1968.

[17] NATO Science Committee. Software
Engineering Techniques. Report on a
Conference, Rome, Italy, October 1969.

Central European Conference on Information and Intelligent Systems__Page 275 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

