

Assessing the Responsibility of Software Product Line

Platform Framework for Business Applications

Zdravko Roško

Faculty of Organization and Informatics

University of Zagreb

Pavlinska 2, 42000 Varaždin, Croatia

zrosko@gmail.hr

Abstract. Within the context of software product

lines for business applications, early indicators of the

software product line architecture quality attributes

can be used in order to avoid low-quality products

during the later stages of product development.

Today's application engineering is not mainly

concerned with business user requirements, as it

should be, but in practice we find it concerned with

the technical complexity and also, not enough

decoupled from directly using of too many external

third party components. In this paper we propose a

„Platform Framework Responsibility“ metrics which

can be used as an early indicators of the future

product's quality. The domain and application

engineering processes that use and apply the early

indicators of the platform framework quality

attributes will help ensure that final products are

stable, maintainable and better decoupled from

external third party component's dependencies.

Keywords. Software Product Lines, Metrics,

Platform Framework Responsibility, External

dependency, Business Applications.

1 Introduction

Business applications are a kind of software that is

used by business users to perform various business

functions. Most of the business applications are

interactive, they interact with a user through a user

interface in order to read, process or change some of

the persistent business data. The software product line

(SPL) for interactive business applications defines

product line requirements, software architecture and a

set of reusable components. One of the most

important parts of a SPL is its architecture (PLA). The

PLA plays a central role at the development of

products from a SPL as it is the abstraction of the

products that can be generated, and it represents

similarities and variabilities of a product line [1]. The

PLA must consider the needs of the complete set of

products in order to provide a framework for the

development and reuse of new assets. These new

assets have to be conceived with the required

flexibility in order to satisfy the needs of the different

products in the SPL [2]. PLA consist of frameworks

(Szyperski., 2002) as core assets, whose design

captures recurring structures, connectors, and control

flow in an application domain, along with the points

of variation explicitly allowed among these entities

[1]. In this paper we use the term „SPL platform

framework“ to represent the implementation of the

generic architecture and components which are not

business-specific but rather generic in the sense that

they can be used by more than one business domain

such as: banking, insurance, manufacturing, and etc.

The platform framework implements considerable

part of the product’s functionalities and is shared by

all or most of the products within the product line.

The philosophy of component frameworks is to

develop reusable components that are well-defined

and have specific use contexts and variability points,

which helps reduce the effort associated with using

external components, low-level middleware interfaces

or OS APIs [3].

Prod 1 Prod 2 Prod 3 Prod 4

Business-specific components

SPL Platform Framework

External Components

OS/Language Environment

Table 1. Proposed PLA structure

A product spawned from a SPL may depend on

architectural aspects at different levels of abstraction

and generality, from OS/Language at the low level

through external components and product line

platform framework, to business-specific components,

shown in Table 1 [4].

Platform framework is being developed through the

life time of a SPL, but most of the core features are

Central European Conference on Information and Intelligent Systems__Page 276 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

developed by the end of the development of the third

product in a SPL. We may call this time as an early

stage of the SPL development (Figure 1) partially

taken from [5]. It is commonly believed that the early

software process phases are the most important ones,

since the rest of the development depends on the

artifacts they produce [6].

1

2

3

4

5

6

Effort

1 2 3 4 5 6
Number of
products

Single product

Product line

Lower costs
per product

SPL
Early
stage
end

SPL
Early
stage
start

Figure 1. Cost of a SPL development

Since SPL platform framework is used by many

products, the emphasis should be on maintaining its

quality attributes at the early stage, rather than trying

to enforce quality at the later stages, as it will directly

impact the quality of the final SPL products.

At this time no metrics for measuring the

“responsibility” of the SPL platform framework

exists. One of the reasons for this is the lack of

appropriate mechanisms for measuring the properties

of software product lines [7]. Many software

engineering researchers have used measurement as

means of improving software quality [8]. The

objective of this paper is to define a metric for

software product line platform framework for

measuring “responsibility” of the platform framework

(PR) in the context of already developed product from

the SPL. The metric may be used as an early indicator

of product stability which is an important external

quality attribute of a product. The metric would also

serve to improve the quality of the resulting software

products by helping to predict the possible quality of

the final system and improve the resource allocation

process based on these predictions [9]. The rest of this

paper is structured as follows. In section 2, we

introduce the context of proposed metrics. Section 3

explains quality characteristics of platform

frameworks. Section 4 provides set of “responsibility”

metrics and its details.

2 The context of proposed metrics

Software product line engineering is concerned with

capturing the commonalities, universal and shared

attributes of a set of software-intensive applications

for a specific problem domain [5]. In terms of costs,

as stated by [5] SPL offer benefits when producing at

least a certain number of products.

To set the context of this paper, we begin with an

overview of software product line for business

applications. Suppose that we want to develop

business applications for a specific problem domain

such as banking. The process of the development of

business applications from a SPL is divided in two

main tasks: Domain Engineering and Application

Engineering as illustrated in Figure 2 [2]. Domain

engineering refers to the creation of shared assets

from scratch or from existing products, whereas

application engineering refers to the process of

developing individual products from those assets. The

development of shared assets is continuous and lasts

through the life time of the SPL but the core of the

shared assets are developed at the early stage of a SPL

as shown in Figure 1.

D
o
m

a
in

E
n

g
in

ee
ri

n
g

A
p

p
li

ca
ti

o
n

E
n

g
in

ee
ri

n
g

Asset Creation

Developing asset

from scratch

Developing asset

from existing products

Asset IdentificationAsset Composition

Product derived

from the SPL

Already developed

Products

 Figure 2. Domain and application engineering

processes

A platform framework is a group of components and

services that provide a coherent set of functionalities

through inheritance, interfaces and specific design

patterns. A product application derived from a given

platform framework may use these services without

worrying about how those services are implemented.

The application development process should be

concerned with the business requirements rather than

with the low level APIs or external component's

interaction rules. Platform framework needs to ensure

the application development process independence by

taking the „responsibility“ to interact with external

third-party components. By external components we

refer to a non-development components developed by

a third party organizations and used by the SPL

platform framework or by a products spawned from it,

illustrated in Figure 3. Referencing an external

component directly from a business application

product makes the product less stable and harder to

develop or change. The product line platform

framework should take as much as possible of the

„responsibility“ to interact with external components.

Among other mechanisms, the design patterns such as

Strategy [4] can be used as a variability mechanism to

enable use and replacement of different external

components or its versions. Thus, the external

components can be changed or evolved without

Central European Conference on Information and Intelligent Systems__Page 277 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

affecting the core business logic while multiple

external component types can be supported with the

same business application product. As technology

changes over time, the technical and implementation

architecture can be evolved to take advantages of the

new technologies, while still protecting the existing

products from those changes.

AppServer
RDBMS JMS

Hibernate/

JPA/Toplink

EJB

Container

JSP/

Servlet

Rule

Engine

Spring

Framework

Business Application /

Product

Business Application SPL

Platform Framework

Figure 3. External components context

Software metrics to measure quality attributes of

architecture such as “Design Quality” metrics [10],

metrics to measure structural soundness of product

line architecture [11], PLA metrics [12], PLA

architecture metrics [13] and complexity metrics for

software product line architectures [1] do not address

the quality of platform framework “responsibility”.

The instability metric [10] measures the stability of a

category by calculating the ratio between Afferent

Coupling (number of classes outside the category that

depend upon classes within the category) and Efferent

Coupling (number of classes inside the category that

depend upon classes outside the category).

This metrics cannot be used in the context where we

measure coupling between SPL and external

components, since external components do not

depend on any of internally developed components.

The evaluation of a SPL platform framework may be

measured by a set of metrics we propose.

3 Platform framework quality

SPL platform framework for business applications

provides a set of core components to be used by

business applications. Business applications are

sharing a set of domain-independent generic

components such as transaction, session, logging

(Figure 4), and a set of domain specific components

that can be used in applications of a particular domain

such as banking, manufacturing, and etc.

The domain-independent components packaged in the

form of platform framework should be responsible for

handling low level interface interactions to external

components, however its “responsibility” level

depends on the quality of its architectural design.

Figure 4. SPL Platform Framework Feature model

As Figure 5 shows, the “responsibility” (dotted line)

of a platform framework is higher and provides a

Better Quality Direction if a number of references

from SPL Product to External Components and

Environment is lower.

Environment

(rt.jar)

External

Components

SPL Products

SPL Platform

Better Quality

Direction

Figure 5. SPL Platform “responsibility”

The final goal for a sound platform framework is to

take full “responsibility” for interaction to external

components and leave the products free from low-

level interactions to the third-party external

components (dotted arrow line shows a wanted

direction). SPL platform framework properties have

an important impact on spawned products stability.

As illustrated in Figure 6 there are 5 distinct high

level dependency metrics of a SPL for business

applications. SPL platform framework depends on its

environment such as Java or .NET and on a number of

external third-party components while SPL products

depend on its platform framework, its environment

and on third-party external components as well. A

sound architecture assumes a minimal dependency

from SPL products on external components and even

on environment or operating system APIs.

Central European Conference on Information and Intelligent Systems__Page 278 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

1

Used Dependency

Environment

(rt.jar)

External

Components

SPL Products

SPL Platform

2

3

4 51

2

n

Not used

Figure 6. SPL Platform Framework Metrics

4 Responsibility metrics

A few studies for defining suitable product line

architecture metrics have been conducted [11] [12] [1]

[13]. Given a fact that single metric cannot capture all

of the various aspects of complexity [8], in our study

we propose five simple and intuitive architectural

metrics as a measurement for software product line

platform framework quality based on the architectural

elements dependency.

Software dependence is a relationship between the

two pieces of code, such as a data dependency, call

dependency, etc. [14]. Here we use the reference

dependence where each distinct reference to an

element is counted. For example, a relation (X, Y)

between elements X and Y signifies that X references

Y. Given these two elements X and Y, Y may be

referenced by X more than once. The reference count

is 0 or more, depending on total number of references

from X to Y.

 A dependency analysis for a product which is

spawned from a SPL platform can be performed to

ensure the stability of spawned products. The

dependencies that are computed can potentially be

viewed from more different angels: dependencies

between product and SPL platform, product and

external components, product and environment (e.g.

Java RTE), SPL platform and external components,

SPL platform and environment, projects, packages, or

types (classes and interfaces). The responsibility,

interdependence and stability of a category can be

measured by counting the dependencies that interact

with that category [10]. We use SPL product and SPL

platform as a dependency category. The proposed

SPL platform „responsibility“ metric uses the three

dependencies metrics:

D3: Platform Afferent Coupling: The number of

distinct references outside the Platform that depend

upon classes within the Platform.

D4: Product Efferent Coupling: the number of

distinct references inside the product that depend

upon classes within environment components (e.g.

Java RTE).

D5: Product Efferent Coupling: The number of

distinct references inside the product that depend

upon classes within external components.

Here we use the data from the dependency analysis to

calculate five metrics:

Measure

type

Measure name

Size Number of Platform/environment

(language) class dependencies (D1)

 Number of Platform/external components

class dependencies (D2)

 Number of Product/Platform class

dependencies (D3)

 Number of Product/environment (language)

class dependencies (D4)

 Number of Product/external components

class dependencies (D5)

Complexity Platform framework responsibility (PR)

Table 2. Dependencies metrics

PR: Platform Responsibility: (D4+D5 / (D3+D4+D5):

The range for this metric is from 0 to 1, where PR=0

indicates that SPL platform used by product makes

the products more stable and protected from frequent

changes to the external third party components, while

the SPL platform serves the products by taking the

responsibility to interact with external components.

PR=1 indicates a completely irresponsible SPL

platform where products are directly referencing

external components while SPL platform does not

help to improve their stability. Figure 7 shows a

dependency counts from Eclipse Java sample project.

Dependencies between the elements are displayed as

directed lines (lines with arrows at either one end or

both in case of mutually dependent elements). The

elements are divided into three groups, SPL elements

(ceciis2013 product and ceciis2013 platform),

external elements (itext.zip, jxl.jar) and environment

element (rt.jar).

Figure 7. SPL Product dependencies

Central European Conference on Information and Intelligent Systems__Page 279 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

We assume there are no mutually dependent elements,

since they would be an early sign of not using even

the basic principles of the SPL approach. A quick

glance at this graph (Figure 7) shows 4 dependencies

between SPL Product and SPL Platform, 3

dependencies between SPL Product and external

components, 3 dependencies between SPL Platform

and rt.jar, 5 dependencies between SPL Platform and

external components and 3 dependencies between

SPL Product and rt.jar.

Figure 8 show the difference between Efferent

Coupling (Ce) defined by Robert Martin and D3

metrics which we use here. According to Ce (the

number of classes inside the category that depend

upon classes outside the category) the counter would

be 3, but since we use number of references instead of

number of classes and we may count 4 dependencies.

Also, we count references at the first level of

abstraction which is a number of relationships among

the classes. The second level dependency where a

number of class and data references are counted is not

used here. Number of first level references (we count

arrows) from left to right side classes as shown below

is four while number of second level references where

class and data references are included is five (2,1,1,1).

Figure 8. SPL Product class references

PR: Platform Responsibility calculated from the

elements on figure 7 is shown in table 3. Calculation

of the PR metric: D4+D5 / (D3+D4+D5) = 3+3/

(4+3+3) = 0,6 shows that product derived from the

platform is instable while the platform framework is

not fully responsible for interactions with the external

components and the environment API.

Dependency (D1) 3

Dependency (D2) 5

Dependency (D3) 4

Dependency (D4) 3

Dependency (D5) 3

Platform Responsibility [0-1] 0,60

Table 3. PR calculation

The dependency metrics, proposed by Robert Martin,

measure the responsibility, independence and stability

of a category. According to Martin, a category can be

at different levels of granularity: projects, packages,

or types. In the context we analyze here in this paper

we add to the levels, and we view a software product

line business application (product) as a level of

granularity. Also, the common components of a

product line which are produced within the domain

engineering process in the form of the SPL platform

framework are viewed as a category in the context of

dependency analysis. Categories in this paper are the

SPL platform framework and the products derived

from it.

The most responsible product lines are those that are

both (D4, D5) independent and responsible (D3).

Figure 9 illustrates the case where the product

dependencies on external components are transferred

to the platform framework. Platform framework takes

the responsibility of interactions to the external

components and helps to make a product more stable.

Figure 9. SPL Product dependencies

Calculation of the PR metric for a product derived

from a product line (Figure 9):

PR =D4+D5 / (D3+D4+D5) = 3+0 / (4+3+0) = 0,43

The calculated result shows that product derived from

the platform is stable while the platform framework is

responsible for interactions with external components.

Dependency (1) 3

Dependency (2) 5

Dependency (3) 4

Dependency (4) 3

Dependency (5) 0

Platform Responsibility [0-1] 0,43

Table 4. PR calculation

We can calculate a total Platform Responsibility (PR)

for a product line platform framework by taking in

account all of the products spawned from it through

the following equation:

𝑃𝑅 = ∑
D5i + D4i

D3i + D5i + D4i

n

i=1

where n is the number of products spawned from the

platform framework. The PR can be calculated for

each product or for all of the products spawned from

the product line. Table 5 shows the calculation of the

PR for three products (P1, P2, and P3). The early

stage for a product line ends when the third product

has been developed. At that time, the calculation of

total “responsibly” for all products may be used as a

Central European Conference on Information and Intelligent Systems__Page 280 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

validator for the platform framework. Let’s assume

that PR <= 0,5 indicates that platform framework is

responsible enough and the new products may be

developed. In case PR > 0, 5 it indicates that the PR

measure of platform framework does not indicate a

new products based on it should be developed before

the platform is improved.

 D3 D4 D5 PR

P1 4 3 3 0,60

P2 4 3 0 0,43

P3 4 0 0 0,00

Total 12 6 3 0,43

Table 5. Total Platform Responsibility

The proposed metrics may be analyzed within the

framework of measurement theory such as the

Distance framework [15] and framework based on

desirable properties which serves guidance provided

to define proper measures for specific problem [6].

These frameworks ensure that the metrics developed

using these guidelines are tested to be valid and that

they can be used as measurement instruments. The

Distance framework proposes a set of mandatory

properties, such as: identity, non-negativity,

triangular inequality and symmetry that are

mandatory for any metric in order to be considered as

an acceptable measure. Property-based measurement

framework provides a set of properties for metric

types such as: complexity (additivity, identity,

monotonicity, non-negativity, and symmetry), length

(identity, monotonicity, non-negativity, null-value)

and size (null value, aditivity, non-negativity).

Table 6 shows that proposed metrics respect the four

mandatory properties required by the Distance

framework. Furthermore, Table 6 shows that metrics

for size respect the properties defined by property-

based measurement framework.

Properties Size Complexity

 D1-D5 PR

Non-negativity Y Y

Null value Y Y

Symetry Y Y

Non-increasing monotonicity NA Y

Identity Y Y

Non-decreasing monotonicity NA Y

Additivity Y Y

Triangular inequality Y Y

Table 6. Theoretical properties of defined metric

The complexity metrics defines five desirable

properties while the metrics respect all five of them.

Given the introduction of a set of theoretically valid

software metrics for software product line platform

responsibility, an empirical validation of their

usefulness can be done in the future research work.

5 Related works

The major research in the area of product line

architecture have been done by [16] where they have

developed a class of closely related metrics that

specifically target product line Architectures such as

metrics base on Provided Service Utilization (PSU)

and Required Service Utilization (RSU). The metrics

are based on the concept of service utilization and

explicitly take into account the context in which

individual architectural elements are placed.

However, such metrics are based on concept of

service that is defined as any public accessible

resource and do not consider dependencies on

external components and its influence on the quality

of the final products

Rahman [11] proposes a component based product

line architecture metrics to measure PLA quality

attributes like observability, customizability, interface

complexity, modularity, service utilization, and

maturity. This metrics can contribute to better

understand the product line quality attributes but do

not measure the “responsibility” of core assets from

the perspective of spawned products.

Aldekoa [17] extended the Maintainability Index

where the maintainability index of each features is

measured. The metric is based on the average of the

McCabe’s Cyclomatic Complexity value. However, it

is based on the generated code and not on the

structure of dependencies among set of classes which

are used by final product spawned from a software

product line.

Oliviera et al. [1] proposed a measurement suite for

product line complexity quality attributes

(ComplPLA) and empirically validated them. The

proposed metrics measure complexity of interfaces,

variation points, variability, but does not address the

platform framework stability and responsibility

contribution to the over all stability and

maintainability of products.

5 Conclusions

A sound software product line for business

application’s architecture in the form of platform

framework is the main foundation to build the

products within time, quality and budget constraints.

Since platform framework serves as base for deriving

many applications from a software product line, its

quality influences the final properties of the

developed applications. Therefore it is important to

consider ensuring the quality of platform framework

at the early stage of its development. The early stage

of product line architecture is the period when

platform framework is developed from scratch or

from initial products. The platform framework is

Central European Conference on Information and Intelligent Systems__Page 281 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

developed all the time product line is alive. The

external quality of the final products spawned from

the product line depends on the “responsibility” of its

platform framework. For this reason, we have

proposed and theoretically validated a platform

“responsibility” and its related metrics.

Given the introduction of a set of theoretically valid

software product line metrics for evaluation of its

platform framework, in the future we will do an

empirical validation of their usefulness for quality

assessment in practice. The advanced statistical

analysis techniques will be used to evaluate the

efficiency of these metrics for external quality

attributes prediction such as stability, maintainability,

error prediction, and etc.

References

[1] I. M. G. J. C. M. Edson A Oliveira Junior,

"Empirical Validation of Variability-based

Complexity Metrics for Software Product Line

Architecture," 2001.

[2] C. Parra, "Towards Dynamic Software Product

Lines: Unifying Design and Runtime

Adaptations," 2011.

[3] D. C. S. A. G. J. G. Y. L. G. L. Gan Deng,

"Evolution in model-driven software product-line

architectures," 2008.

[4] Z. Roško, "Strategy Pattern as a Variability

Enabling Mechanism in Product Line

Architecture," 2012.

[5] K. a. G. B. Pohl, "Software product line

engineering: foundations, principles, and

techniques," 2005.

[6] L. C. S. M. a. V. R. B. Briand, "Property-based

software engineering measurement," Software

Engineering, IEEE Transactions on 22.1, pp. 68-

86, 1996.

[7] D. G. Ebrahim Bagheri, "Assessing the

maintainability of software product line feature

models using structural metrics," 2011.

[8] M. N. NE Fenton, "Editorial-Software metrics:

Successes, failures and new directions," Journal

of Systems and Software, pp. 149-158, 1999.

[9] J. Bansiya, "A hierarchical model for object-

oriented design quality assessment," IEEE

Transactions on Software Engineering, pp. 4-17,

2002.

[10] R. Martin, "OO design quality metrics. An

analysis of dependencies.," 1994.

[11] A. Rahman, "Metrics for the Structural

Assessment of Product Line Architecture," 2004.

[12] N. M. a. A. v. d. H. Ebru Dincel, "Measuring

Product Line Architectures," Software Product-

Family Engineering, pp. 151-170, 2002.

[13] L. D. J. W. Q. Z. C. M. Tao Zhang, "Some

Metrics for Accessing Quality of Product Line

Architecture," International Conference on

Computer Science and Software Engineering,

2008.

[14] T. B. Nachiappan Nagappan, "Using software

dependencies and churn metrics to predict field

failures: An empirical case study," Empirical

Software Engineering and Measurement, 2007.

ESEM 2007., pp. 364-373, 20 9 2007.

[15] G. a. G. D. ". a. f. f. s. m. c. D. R. R. 9. (. 1.-4.

Poels, "DISTANCE: a framework for software

measure construction," DTEW Research Report

9937, pp. 1-47, 1999.

[16] A. E. D. a. N. M. Van Der Hoek, "Using service

utilization metrics to assess the structure of

product line architectures," Software Metrics

Symposium, 2003. Proceedings. Ninth

International. IEEE., pp. 298-308, 2003.

[17] G. T. S. S. G. D. O. U. M. A. G. .. &. D.

Aldekoa, "Experience measuring maintainability

in software product lines," Jornadas de

Ingenieria del Software y Bases de Datos, 2006.

[18] C. K. F. B. J. M. G. S. a. T. L. Thomas Thüm, "

FeatureIDE: An Extensible Framework for

Feature-Oriented Software Development,"

Science of Computer Programming, 2012.

[19] W. Harrison, "Software measurement: a

decision-process approach," Advances in

Computers, volume 39, p. 51–105, 1994.

[20] F. S. Mohammad Ali Torkamania, "Some

metrics to evaluate reusability of software

product line architecture," 2nd World Conference

on Information Technology (WCIT-2011), 2011.

Central European Conference on Information and Intelligent Systems__Page 282 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

