

Useful Patterns for BPEL Developers

Darko Andročec, Dragutin Kermek

Faculty of Organization and Informatics

University of Zagreb

Pavlinska 2, 42000 Varaždin, Croatia

{darko.androcec, dragutin.kermek}@foi.hr

Abstract. Modern enterprises use service-oriented

architecture to accommodate business agility. One of

the most important SOA standards is BPEL, because

it provides a means to specify business processes and

their interaction. In this paper we examine patterns

that are related to BPEL or can be implemented in

BPEL. The most important identified pattern types are

SOA patterns, workflow patterns and integration

patterns. We analyze these aforementioned sets of

patterns, sort out and briefly describe patterns used

for web service composition and patterns that can be

implemented in BPEL. The main aim of this paper is

to list existing patterns that are relevant to BPEL

developers.

Keywords. Pattern, service oriented, BPEL,

workflow, integration

1 Introduction

To accommodate business agility, modern enterprises

can use web services to form a set of autonomous

loosely coupled business processes [14]. The purpose

of the service-oriented architecture (SOA) is to

address the requirements of loosely coupled and

protocol-independent distributed computing. The

main resources of SOA are services which provide

business functionality and have independent state and

context. Services are described using standard

definition language and have a published interface.

SOA is a design philosophy which is independent of

any specific technology. Service is a pair of a service

interface (the identity of a service and its invocation)

and a service implementation. All functions in a SOA

are autonomous services. Nowadays web services are

the preferred implementation technology for service-

oriented architecture. BPEL is a process-oriented

language for web service composition.

We examine patterns which are useful for web

service compositions developers (patterns that are

related to BPEL or can be implemented in BPEL).

This paper proceeds as follows. Firstly, in Section 2,

we present a brief overview of the BPEL, a language

used for web service composition. Section 3 shows

related work. In the next section we analyze BPEL

related patterns, sort out and briefly describe patterns

used for web service composition and patterns that

can be implemented in BPEL. Finally, our

conclusions are presented in the last section.

2 BPEL

The logic of the interactions between a service and its

environment in BPEL [13] is described as a

composition of actions (receive, send etc.). There are

also control-flow constructs corresponding to parallel,

sequential and conditional execution, event and

exception handling and compensation. Data

manipulation is done using lexically scoped variables.

BPEL supports the description of the behavior of a

class of services and execution order of a set of

activities. There are two categories of activities in

BPEL. Basic activities correspond to atomic actions

(invoke, receive, reply, wait, assign, etc.). Structured

activities deal with constraints on a set of activities

contained within them (sequence, flow, switch, while,

scope). Control links support the definition of

precedence, synchronization and conditional

dependencies together with notions of join and

transition condition. BPEL also defines events, fault

and compensation handlers.

OASIS Web Services Business Process

Execution Language Version 2.0 specification is

given in [11] and [12]. BPEL is a language for

formally describing business processes and their

interactions; it is a language for business

process orchestration based on web services. A BPEL

process element is an outermost container where you

can declare relationships to external partners, process

data, handlers and the activities to be executed [11].

Typed variables hold the data of the state of a BPEL

business process during runtime. The major building

blocks of BPEL processes are structured and basic

activities.

Central European Conference on Information and Intelligent Systems__Page 457 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

The receive activity is used for receiving

messages from an external partner. It specifies the

partner link, operation of the partners, and a variable

or a set of variables that holds the requested data. One

receive activity can have an associated reply activity

that can reply normal or faulted data. A web service

provided by a partner is called by the invoke activity.

The sequence activity is used to define a collection of

activities which are executed sequentially. The if-else

activity enables to select exactly one branch of the

activity from a set of choices. BPEL also offers three

activities that allow repeated execution: while,

repeatUntil and forEach activity. The flow BPEL

activity is used to execute business logic in parallel.

You can add a link activity when needed. It

introduces a dependency that the target activity of the

link will only be executed if the source activity of the

link has completed. The assign activity is used for

data manipulation and it contains one or more copy

operations. The validate activity and the validate

attribute are used for data validation. BPEL has fault

handlers that can be attached to a scope, a process or

on an invoke activity.

A business process in BPEL can be structured

into a hierarchy of nested scopes. A scope begins with

initialization and finishes successfully or

unsuccessfully (internal or external fault). The process

and each scope may define event handlers for

processing web service request messages arriving in

parallel to the primary activity. The wait activity

enables delayed execution of the business logic, and

exit activity immediately ends all currently running

activities. The empty activity is used when no action

is to be taken.

3 Related work

In this section we present related work about pattern

usage in service oriented architecture and BPEL.

Hohpe [9] concluded that SOA implementation

exposes new and unfamiliar programming models

which require a different way of thinking and also

new guidance and patterns. Zdun, Hentrich, and

Dustdar [23] proposed using patterns and patterns

primitives for modeling process-driven and service-

oriented architectures. Their main contribution is a

modeling concept based on pattern primitives

(precisely specified modeling elements) specified as

extensions of UML2. They used OCL (Object

Constraint Language) to specify constraints and

precise semantics for the pattern primitives. Zdun [24]

showed how to use patterns for design of service-

oriented middleware. He also presented a novel

semantic lookup service concept where each peer

(service) provides its semantic metadata to

federation’s lookup service. Aoyama and Mori [1]

presented design method of aSOA (asynchronous

service-oriented architecture) based on patterns.

Authors proposed model-driven design methodology

for aSOA, created a set of aSOA patterns and

implemented prototype on the Apache Axis.

Chengjun [2] tried to apply pattern oriented software

engineering to web service development and used

identified patterns as the means to express the results

of different development phases.

Patterns for business object model integration in

process-driven and service-oriented architectures are

shown in [7]. When multiple business object models

must be integrated, many data integration issues

might arise, so Hentrich and Zdun [7] present patterns

that address integration issues. Gomma et al. [6]

described the concept of software adaptation patterns

and their use in service oriented architectures. These

patterns define how a set of components of

architecture pattern cooperate to change the software

configuration. Van Lessen, Nitzsche and Leymann

[22] proposed a way to formalize message exchange

pattern (conversational contracts between a service

consumer and service provider) using BPELlight

(extension of BPEL 2.0) through introducing of a new

abstract BPEL profile. An approach based on

mediator patterns to generate executable mediators

and connect partially compatible services is proposed

in [10]. A heuristic technique for identifying protocol

mismatches and selecting appropriate patterns with

their corresponding BPEL templates is presented as

well in the aforementioned work.

4 BPEL related patterns

After publishing of the book [5] the interest of

software developers for design patterns was increased.

The design patterns are descriptions of

communicating objects and classes that are

customized to solve a general design problem in a

particular context [5]. A pattern has the four essential

elements: pattern name, problem, solution and

consequences. In this section we will examine

patterns that are useful for BPEL developers. The

most important related pattern types are SOA

patterns, workflow patterns and integration patterns.

4.1 SOA patterns

The most comprehensive review of SOA design

patterns is given in the book [4]. “Each SOA design

pattern provides a design solution in support of

successfully applying service orientation and

establishing a quality service-oriented

architecture.”[14] Erl [3,4] broke down SOA

architectural model into the following types: service

architecture, service composition architecture, service

inventory architecture, service-oriented enterprise

architecture. He defined four basic categories of SOA

patterns: inventory boundary patterns, inventory

structure patterns, service design patterns, service

composition and communication patterns. Inventory

boundary patterns determine the appropriate scope of

a service inventory. Inventory structure patterns are

Central European Conference on Information and Intelligent Systems__Page 458 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

applied to ensure a consistent structure in support of

service orientation. Patterns for service design are

applied at the service architecture level to solve

numerous challenges of service-orientation design

principles. Patterns for service composition and

communication address composition-related design

issues.

We will now mention the most important design

patterns from Erl’s book [4] for BPEL developers

(patterns that are related to BPEL or can be

implemented in BPEL). The first important pattern is

Process Centralization [4]. A problem can arise when

business process logic is distributed across

independent service implementations because it is

hard to extend and evolve. The solution is to deploy

and govern logic representing numerous business

processes from a central location. Middleware

platforms with BPEL support generally provide the

necessary orchestration technologies to apply this

pattern. A pattern Compensating Service Transaction

can also be applied with help of BPEL features. When

there are uncontrolled runtime exceptions in a service

composition, wrapping the composition in an atomic

transaction can negatively affect performance and

scalability. Solution is introducing of compensating

routines to allow runtime exceptions resolve and

reduce resource locking and memory consumption.

Another important pattern from book [4] related to

BPEL is a compound pattern Orchestration. It is

dedicated to the effective maintenance and execution

of parent business process logic through support of

sophisticated and complex service composition logic

that can result in long-running runtime activities. This

compound pattern consists of the application of

Process Abstraction, State Repository, Process

Centralization, and Compensating Service

Transaction patterns. Orchestration engine can

support industrial standards including BPEL.

4.2 Workflow patterns

Russel proposed workflow patterns in his doctoral

thesis [19] and papers written in co-operation with

other authors [15, 16, 17, 18]. Workflow patterns

identify comprehensive workflow functionality and

provide the basis for a comparison of available

workflow management systems.

There are four perspectives of workflow

patterns [19]: control-flow, data, resource and

exception handling perspective. The control-flow

perspective describes the structure of a process model

(implementation of its constituent activities and the

interconnections between them). The data perspective

describes definition and utilization of data elements.

The resource perspective includes the overall

organizational context of process execution. The

exception handling perspective deals with the

specification of exception handling strategies for

expected or unexpected events during execution.

Table 1. List of workflow patterns supported
by BPEL

Perspective

of

workflow
patterns

Direct support Partial support

Control-

flow

Sequence, Parallel Split,

Synchronization,

Exclusive Choice,

Simple Merge, Multi-

Choice, Structured

Synchronizing Merge,

Implicit Termination,

Multiple Instances

without Synchronization,

Deferred Choice,

Cancel Activity, Cancel

Case, Structured Loop,

Persistent Trigger,

Acyclic Synchronizing

Merge, Critical Section,

Interleaved Routing

Interleaved

Parallel, Cancel

Region, Thread

Merge, Thread Split

Data Scope Data, Case Data,

Environment Data, Data

Interaction – Task to

Task, Data Interaction –

Task to Environment –

Push-Oriented, Data

Interaction –

Environment to Task –

Pull-Oriented, Data

Transfer by Value –

Incoming, Data Transfer

by Value – Outgoing,

Data Transfer by

Reference – Unlocked,

Task Precondition –

Data Value, Event-

based Task Trigger,

Data-based Routing

Task Data, Data

Interaction – Case

to Case, Data

Interaction –

Environment to

Task – Push-

Oriented, Data

Interaction – Task

to Environment –

Pull-Oriented, Data

Transfer by

Reference – With

Lock, Task

Precondition –

Data Existence,

Data-based Task

Trigger

BPEL directly supports some workflow patterns

described in [19]. Of the 43 published workflow

patterns from control-flow perspective [17], BPEL

directly support 17 patterns and partially 4. From

catalogue of workflow data patterns [16] BPEL

supports 12 patterns and partially support another 7

ones. These patterns are listed in Table 1. BPEL does

not provide direct support for resources in business

processes based on web services, so BPEL does not

support workflow resource patterns. Some workflow

exception handling patterns can be implemented in

BPEL [18].

4.2 Integration patterns

Patterns can be used to solve a variety of integration

problems. The book [8] proposed enterprise

integration patterns which help integration architects

and developers to design and implement integration

solutions more rapidly and reliably. In BPEL we

Central European Conference on Information and Intelligent Systems__Page 459 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

create the service relationships and create containers

for the input and output messages of the services.

Containers are very similar to Datatype Channel

enterprise integration pattern for the WSDL message

types. Datatype Channel [8] is used to enable an

application to send a data item such that the receiver

will know how to process it. Separate Datatype

Channel is used for each data type, so that all data on

a particular channel is of the same type.

Container can also be considered as an extended

version of the Shared Database pattern. Shared

Database [8] answers to the question how to integrate

multiple applications so they can work together and

exchange information. A solution is using of a central

data store that all of the applications share. BPEL is

also an implementation of Process Manager pattern

because it manages and correlates the flow of

messages between services. Process Manager [8] tries

to solve a problem of routing a message through

multiple processing steps when the required steps may

not be known at design-time and may not be

sequential. Process Manager is a central processing

unit which maintains the state of the sequence and

determines the next processing step based on

intermediate results. BPEL is a standardized

intermediate language between the process modeling

tools and the Process Manager Engine.

Microsoft published another book about

integration patterns [21]. Process Integration is a

pattern from this book which is connected to BPEL (it

describes process models). It solves the problem of

execution coordination of a business function that

spans multiple applications. A solution is definition of

a business process model that describes the individual

steps of the complex business function. Separate

process manager component must be created. This

component interprets concurrent instances of the

business model and interacts with the existing

applications to perform the process steps.

5 Conclusion

In this paper we analyze BPEL related patterns and

conclude that the most important sets of patterns are

SOA patterns, workflow patterns and integration

patterns. We analyze the aforementioned sets of

patterns, sorted out and briefly describe patterns used

for web service composition and patterns that can be

implemented in BPEL.

Related SOA patterns propose how to deploy

and govern logic representing numerous business

processes from a central location, introduce

compensating routines to allow runtime exceptions

resolving and reduce resource locking and memory

consumption, and provide the effective maintenance

and execution of parent business process logic

through support of sophisticated and complex service

composition logic. BPEL directly supports 45 and

partially supports 11 patterns of the 218 identified

workflow patterns (control-flow, data and exception

handling perspective). Workflow resource patterns are

not supported in BPEL, because BPEL does not

provide direct support for resources in business

processes based on web services. Related integration

patterns enable an application to exchange

information, answer to the question how to integrate

multiple applications so they can work together,

manage and correlate the flow of messages between

services, and solve the problem of execution

coordination. Patterns mentioned in this work are very

useful for BPEL developers because they provide

proven solutions to web service composition

problems. This is ongoing research and we plan to

analyze other types of useful patterns for BPEL

developers in our future work.

References

[1] Aoyama M, Mori A: A Unified Design Method

of Asynchronous Service-Oriented

Architecture Based on the Models and
Patterns of Asynchronous Message Exchanges,

Proceedings of the 2008 IEEE International

Conference on Web Services (ICWS '08),

Washington DC, USA, 2008, pp. 537-544.

[2] Chengjun W: Applying Pattern Oriented

Software Engineering to Web Service
Development, Proceedings of the 2008

International Seminar on Future Information

Technology and Management Engineering

(FITME '08), Washington DC, USA, 2008, pp.

214-217.

[3] Erl T: Introducing SOA Design Patterns,

http://soa.sys-con.com/node/645271,

Accessed:15
th

 September 2011.

[4] Erl T: SOA Design Patterns, Prentice Hall –

Pearson Education, Boston, USA, 2009.

[5] Gamma E, Helm R, Johnson R, Vlissides J:

Design Patterns – Elements of Reusable
Object-Oriented Software. Addison-Wesley

Professional, Boston, USA, 1995.

[6] Gomaa H, Hashimoto K, Kim M, Malek S,

Menasce D A: Software Adaptation Patterns

for Service-Oriented Architectures,

Proceedings of the 2010 ACM Symposium on

Applied Computing (SAC '10), New York, USA,

2010, pp. 462-469.

[7] Hentrich C, Zdun U: Patterns for Business

Object Model Integration in Process-Driven
and Service-Oriented Architectures,

Proceedings of the 2006 conference on Pattern

Central European Conference on Information and Intelligent Systems__Page 460 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

languages of programs (PLoP '06), New York,

USA, 2006, pp. 1-14.

[8] Hohpe G, Woolf B: Enterprise integration

patterns – Designing, Building and Deploying
Messaging Solutions, Addison-Wesley

Professional , Boston, USA, 2003.

[9] Hohpe G: SOA Patterns – New Insights or

Recycled Knowledge,
http://eaipatterns.com/docs/SoaPa

tterns.pdf, Accessed: 22
th

 September 2011.

[10] Li X, Fan Y, Madnick S, Sheng Q Z: A pattern-

based approach to protocol mediation for web
services composition, Information and Software

Technology, 2010, 52(3), pp. 304-323.

[11] OASIS: OASIS Web Services Business Process

Execution Language Version 2.0 Primer,
http://docs.oasis-

open.org/wsbpel/2.0/Primer/wsbpel

-v2.0-Primer.pdf, Accessed: 24
th

October 2011.

[12] OASIS: OASIS Web Services Business Process

Execution Language Version 2.0,
http://docs.oasis-

open.org/wsbpel/2.0/wsbpel-

v2.0.pdf, Accessed: 24
th

 October 2011.

[13] Ouyang C, Verbeek E, van der Aalst, W M P,

Breutel S, Dumas M, ter Hofstede A H M:

Formal semantics and analysis of control flow
in WS-BPEL, Science of Computer

Programming, 2007, 67(2-3), pp. 162-198.

[14] Papazoglou M P, van den Heuvel W: Service

oriented architectures: approaches,
technologies and research issues, The VLDB

Journal, 2007, 16 (3), pp. 389-415.

[15] Russel N, van der Aalst W M P, ter Hofstede A

H M, Edmond D: Workflow Resource Patterns:

Identification, Representation and Tool
Support, Proceedings of the 17th Conference on

Advanced Information Systems Engineering,

Portugal, 2005, pp. 216-232.

[16] Russel N, ter Hofstede A H M, Edmond D, van

der Aalst W M P. Workflow Data Patterns:

Identification, Representation and Tool
Support, Proceedings of the 24th International

Conference on Conceptual Modeling; Berlin,

Germany, 2005, pp. 353-368.

[17] Russel N, ter Hofstede A H M, van der Aalst W

M P, Mulyar N: Workflow Control-Flow

Patterns: A Revised View,
http://www.workflowpatterns.com/d

ocumentation/documents/BPM-06-

22.pdf, Accessed: 28
th

 January 2011.

[18] Russel N, van der Aalst W M P, ter Hofstede A H

M: Workflow Exception Patterns, Proceedings

of the 18th International Conference on

Advanced Information Systems Engineering

(CAiSE 06), 2006, pp. 288-302.

[19] Russel N: Foundations of Process-Aware

Information Systems - PhD Thesis, Brisbane,

Queensland University of Technology, 2007.

[20] Schumacher M, Fernandez-Buglioni E,

Hybertson D, Buschmann F, Sommerlad P:

Security Patterns – Integrating Security and
Systems Engineering, John Wiley & Sons ,

Chichester, 2006.

[21] Trowbridge D, Roxburgh U, Hohpe G,

Manolescu D, Nadhan, E G: Integration

patterns, Microsoft Corporation, 2004.

[22] Van Lessen T, Nitzsche J, Leymann F:

Formalising Message Exchange Patterns using
BPELlight, IEEE International Conference on

Services Computing (SCC ’08), Honolulu, SAD,

2008, pp. 353-360.

[23] Zdun U, Hentrich C, Dustdar S: Modeling

Process-Driven and Service-Oriented

Architectures Using Patterns and Pattern
Primitives, ACM Transactions on the Web

(TWEB), 2007,1(3), pp. 1-40.

[24] Zdun U: Pattern-Based Design of a Service-

Oriented Middleware for Remote Object
Federations, ACM Transactions on Internet

Technology, 2008, 8(3), pp. 1-38.

Central European Conference on Information and Intelligent Systems__Page 461 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

