

An approach to the platform independent specification of

a business application

Ivan Luković, Sonja Ristić

University of Novi Sad

Faculty of Technical Sciences

Trg D. Obradovića 6, Novi Sad, Serbia

{ivan, sdristic}@uns.ac.rs

Aleksandar Popović, Pavle Mogin

{University of Montenegro, University of Wellington}

{Faculty of Science, School of Mathematics, Statistics
and Computer Science}

{Džordža Vašingtona bb, Podgorica, MN, NZ}

{aleksandarp@rc.pmf.ac.me,

Pavle.Mogin@mcs.vuw.ac.nz}

Abstract. IIS*Studio is a software tool aimed at
the information system design and generating

executable application prototypes. By means of

IIS*Studio, a modeling is performed at the high

abstraction level, because a designer creates a system

model without specifying any implementation details.

Such a model may be classified as a platform

independent model (PIM) with respect to the model

driven approach to the software development. A goal

of this paper is to present PIM concepts and tools

embedded into IIS*Studio, that are aimed at

specifying business applications. The purpose of such

improvements of IIS*Studio is to provide model-to-

code transformations, i.e. the development of a code

generator for transaction programs and applications

that are executed over a database. In the paper we

present the IIS*Studio concept named business

application, as well as the Business Application

Designer tool, by means of a designer can create PIM

specifications of business applications. We discuss the

expressiveness of new concepts and present Business

Application Designer features. We also outline the

related concepts concerning visual properties of

program forms and functionality of transaction

programs.

Keywords. Software engineering; Model driven
development; Form type; Business application.

1 Introduction

Numerous information system (IS) development
approaches have been formulated in the last few
decades. Nowadays, most of the widely used methods
in IS development may be characterized as model-
driven. One of the particularly prominent phases in a
typical IS development is conceptual modeling which
is expected to produce a representation of a real world
system using selected platform independent concepts.
Platform independent modeling (PIM) of information
systems and generation of application prototypes play

an important role in software development process.
One of its advantages is that it makes the
collaboration between developers and users smoother
since this approach allows the creation of an
environment where end-users can better understand
the system being developed and even contribute by
doing some of the modeling themselves.

Through a number of research projects lasting for
several years, we developed the IIS*Studio
development environment (IIS*Studio DE, current
version 7.1). It is aimed to provide the IS design and
generating executable application prototypes. Our
approach is mainly based on the usage of model
driven software development (MDSD) [6] and DSL
paradigms [14]. The main idea was to provide the
necessary PIM meta-level concepts to IS designers, so
that they can easily model semantics in an application
domain. Afterward, a number of formal methods and
complex algorithms may be utilized to produce
database schema specifications and IS executable
code, without any considerable expert knowledge.

The software development process provided by
IIS*Studio is, in general, evaluative and incremental.
It enables an efficient and continuous development of
an IS, as well as an early delivery of software
prototypes that can be easily upgraded or amended
according to the new or changed users' requirements.
In our approach we strictly differentiate between the
specification of a system and its implementation on a
particular platform. Detailed information about
IIS*Studio may be found in several authors'
references. A case study illustrating main features of
IIS*Studio and the methodological aspects of its
usage is given in [12]. IIS*Studio currently provides
the following functionalities:
- Conceptual modeling of database schemas,

transaction programs, and business applications of
an IS;

- Automated design of relational database
subschemas in the 3rd normal form (3NF);

- Automated integration of subschemas into a unified
database schema in the 3NF;

Central European Conference on Information and Intelligent Systems__Page 449 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

- Automated generation of SQL/DDL code for
various database management systems (DBMSs);

- Conceptual design of common user-interface (UI)
models; and

- Automated generation of executable prototypes of
business applications.

A goal of this paper is to present some research
results concerning PIM concepts and tools embedded
into the IIS*Studio V.7.1 that are aimed at specifying
the structures of business applications. These concepts
and features provide the specifications of: (i) visual
properties of transaction program screen forms; (ii)
functionality of transaction programs; and (iii)
business applications comprising calling structures.

A business application handles the interaction
between an end-user and a database by means of
transaction programs that are executed over a
database. In the paper we present a general structure
of business applications in IIS*Studio, as well as
ways for their formal specification. Besides, we
present a tool of IIS*Studio named Business
Application Designer that provides corresponding
design activities. Business Application Designer
enables a designer to specify a business application
structure in a unified and visually oriented way, i.e. it
provides selecting form types that will participate in
the business application, as well as their mutual
linkage so as to create the appropriate call
specifications.

The paper is organized as follows. In Section 2 we
position our approach to business application design.
In Section 3 we briefly describe the form type concept
that is used in the modeling process supported by
IIS*Studio. The concept of a business application, as
well as the related concepts necessary to specify
business application structures, is introduced in
Section 4. The main features and functionalities of the
Business Application Designer tool are presented in
Section 5. The concepts concerning visual properties
of program forms and functionality of transaction
programs are outlined in Section 6. The last section
concludes the paper.

2 Related Work

One of the main motives for developing IIS*Studio is
in the following. IS design methodologies based on
the techniques such as Entity-Relationship (ER)
modeling or general purpose family of languages like
Unified Modeling Language (UML), and even the
relational data model and an appropriate CASE tool,
requires advanced knowledge, skills, and high
perception power. Failing to find an appropriate
number of designers that possess these properties may
lead to a risk of designing poor quality ISs [11].
Besides, these methods and techniques are often
incomprehensible to end-users. The main idea of our
approach was to formalize concepts from a business
domain and keep them well-recognizable by the end-

users. In this way, for example, the form type concept
(explained in Section 3) was “borrowed” from a
business domain as a generalization of a business
document. The business documents may provide an
important input source for database (db) schema
design, since the most widely used data are gathered
or reported in them. The concept of a form type in our
approach mainly corresponds to the concept of a
business component that is the main modeling
concept DeKlarit tool [4] relies on. DeKlarit, like the
IIS*Studio, can generate relational database schema
and SQL commands for various DBMSs. Unlike the
DeKlarit, IIS*Studio further provides specific
concepts and tools for the specification of the
transaction programs and business applications.

Batini et al. in [5] and Choobineh et al. in [7]
used business forms as input data for the process of
database schema design based on generating entity-
relationship (ER) diagrams. Unlike them, IIS*Studio
generates relational database schemas and executes an
efficient transformation of design specifications into
error free SQL specifications of relational database
(db) schemas for different DBMSs ([1], [2] and [3]).
Choobineh and Venkatraman in [8] presented a
methodology and tools for derivation of functional
dependencies from business form. In our approach,
besides the set of functional dependencies F the initial
set of constraints, inferred from a form type, withal
consists of: a set of non-functional dependencies NF,
a set of special functional dependencies Fu, and a set
of null value constraints Nc. The importance of form-
driven approach is emphasized in [10]. Namely,
Kreutzová, Porubän, and Václavík, claim that it is
possible to automatically analyze existing user
interface and search for domain terms in the set of
screen forms.

In contrast to other approaches, by the approach
IIS*Studio relies on, a designer simultaneously
specify both forms and the structure of a database
schema. Namely, by creating form types, a designer
specifies screen or report forms, and an initial set of
attributes and database constraints, at the same time.
Then, created form types are transformed into the
database schema specification, and also they are the
source for the generation of transaction programs. By
means of Oracle Designer, for example, a designer
may create modules that represent specifications of
transaction programs with their screen or report forms
and menus, aimed to execute over a database. The
concept of a module rather corresponds to the form
type concept used in IIS*Studio. But, in order to
specify a module in Oracle Designer, a necessary part
of the database schema must be already completed.
Besides, various segments of a business application
structure are specified separately, at the level of a
module, and there is no any particular tool for
application design.

Genero Studio Business Application Modeling
(GSBAM) [9] enables modeling of business
applications using diagrams describing the

Central European Conference on Information and Intelligent Systems__Page 450 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

functionality of the applications. A designer may
model the components of applications and their
interconnection in a high level business diagram that
is in a great extent similar to our business application
diagram. GSBAM enables prototype generation and
the enhancement of the generated code with
handwritten custom code. Keeping in mind wide rang
of GSBAM features and options, we emphasize the
difference in the development lifecycle between
GSBAM and IIS*Studio. Namely, forms and reports
in GSBAM are specified after the database is
designed. The database design process is not
incorporated in GSBAM. In our approach, by creating
form types, a designer at the same time specifies: (i) a
future database schema, (ii) functional properties of
future transaction programs, (iii) and a look of the
end-user interface.

3 A Form Type Concept for

Building a PIM

All the designers' specifications of a system model
created by IIS*Studio belong to an IIS*Studio project
[12]. Each project is organized as a tree structure of
application systems, where each application system
may contain an arbitrary number of form types. A
form type is the main modeling concept in IIS*Studio.
Each form type is an abstraction of business
documents, and therefore screens or report forms
utilized by the end-users in the communication with
the IS. On the contrary to the traditional approaches to
the IS design, where database schema design precedes
the specification of screen or report forms of
transaction programs, in IIS*Studio a designer the
first specifies screen or report forms, and indirectly,
creates the initial set of attributes and constraints. The
set of form types is a platform independent view onto
the system from the end-user perspective. IIS*Studio
uses the set of form types to generate the relational
database schema, and its closure graph [12]. In this
way, by creating form types, a designer specifies (i) a
future database schema, (ii) functional properties of
future transaction programs, (iii) and a look of the
end-user interface, at the same time. Furthermore,
IIS*Studio provides the generation of SQL/DDL code
and the generation of a program code of transaction
programs and applications that are executed over a
database. In such a way, two new views onto the
system are obtained, but this time, both of them are
platform specific.

A form type can be designated as menu or
program. If a form type is denoted as menu, it will be
utilized to generate a menu of screen or report forms,
of the future business application. If it is denoted as
program, it will be utilized to generate a transaction
program with its screen or report form. More
information about form type concept may be found in
[12] and [13].

4 A PIM Concept of a Business

Application

In our approach, a business application is a named
structure of interrelated transaction programs aimed to
support business activities at an organization
(business) unit. End-user perception of the future IS
highly depends on the way how business applications
of the IS are structured. We consider as the important
that a tool providing the IS design and generation of
executable application prototypes, also provides
creating business application specifications in the
design phase. The major consequence of a lack of
these specifications in the model is that the code of
transactions programs, generated from such a model,
has to be extended and customized with a handwritten
code, in order to implement the business application
structure. In that case, the resulting code would stay
unsynchronized with the system model at the higher
abstraction level, and one of the basic model-driven
principles would be derogated. Therefore, the design
of business applications is an important task in the IS
modeling process.

A business application is a concept in the
IIS*Studio by means of a designer formally specifies
the IS functionality concerned the calls between
generated transaction programs, i.e. their forms [15].
The scope of a business application is the application
system and each business application belongs to
exactly one application system. The specification of a
business application in IIS*Studio comprises a
structure of the selected form types. Therefore,
specifying form types must precede the design of a
business application. While a form type is a source for
the generation of a sole transaction program code with
its screen or report form, a business application
specification is a source for the generation of a
program code that covers calls between generated
transaction programs, i.e. their forms, and a
synchronization of their behavior.

The first step in specifying the business
application structure is to select necessary form types.
One of the selected form types has to be designated as
a start-point form type. The screen form generated
from the start-point form type is the first one
accessible to end-users, when they initiate the
business application, and by means of they can access
the other (subordinated) forms in the application.

After the selection of form types, it is necessary to
specify their mutual relationships so as to specify the
business application structure. Therefore, a new
concept, named call specification or call for short, is
introduced in [15] at the level of a business
application. A call specification is a pair of the form
types participating in a business application. If (F1, F2)
is a call specification within a business application,
then the screen form generated from the form type F1
has to support calls of the screen form generated from
the form type F2. In this case, F1 is named the calling

Central European Conference on Information and Intelligent Systems__Page 451 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

form type, and F2 is the called form type. Besides,
each call specification in IIS*Studio has the following
properties:
- Passed values, which allows specifying the list of

passing values from the calling to the called form
types;

- Calling mode, which allows specifying the rules for
data selection and transferring data from the calling
to the called form type;

- Calling method, which allows specifying a behavior
of the calling and the called form type; and

- UI positioning, which allows specifying positioning
properties of the UI control item for executing the
call.

The concepts of a call and a business application
structure, defined in this way, enable a designer to
formally specify a significant part of the IS
functionality concerning relationships between
generated transaction programs, i.e. their screen
forms. In the following text we present the properties
of the call specification in more details.

4.1 Passed Values and Parameter-to-

Value Associations

An important role in the business application design
plays the specification of data passed from a calling to
the called screen form. Very often, it is necessary to
pass data to the called form, in order to reach the full
form functionality. As an example, a form aimed at
browsing courses taken by a student, requires the data
about student's ID and it should be passed during the
call execution. Therefore, we introduce a concept
named parameter and associate it to the form type
specification. In this way, each form type created in
IIS*Studio may contain a set of form type parameters
[15]. They are used for storing data passed during call
executions. All the necessary form type parameters
should be specified prior to the creation of a call
specification, because they are used latter on in the
call specifications, for specifying parameter-to-value
associations, or parameter bindings for short.

Each parameter-to-value association in a call
specifies what would be the passed value from the
calling form type to a parameter of a called form type.
The possible selections for a passed value, i.e. a
parameter-to-value association are:
- a calling form type attribute, if passed value to the

parameter should be a value of the selected attribute,
- a constant value, if passed value to the parameter is

a constant, and
- a calling form type parameter, if passed value to the

parameter should be a value of the selected calling
form type parameter.

4.2 Calling Mode

This call property specifies a behavior of the called
form concerning data retrieval from the database and
passed values from the calling form. Sometimes, the

called form may be restricted to retrieve data from the
database only in the context of values passed from the
calling form. Besides, it is necessary to specify if the
data will be retrieved automatically from the database
on the activation of the called form. Therefore, this
property may have one of the following values:
- Select on open,
- Restricted select, or
- Select on open & Restricted select.

If Select on open is chosen, the data are
automatically retrieved on the activation of the called
form and further data retrievals will be unrestricted
with respect to the passed values. If Restricted select
is chosen, the data are not automatically retrieved.
Instead, they are retrieved only on a user request. In
this case, the data retrieval is always restricted to the
context of passed values. If Select on open &
Restricted select is chosen, that data are automatically
retrieved, and the data retrieval is always restricted to
the context of passed values.

4.3 Calling Method

This call property specifies a behavior of the calling
and the called form type, i.e. a mutual relationship
between UI windows of generated forms. The
property may have one of the following values:
- Modal,
- Non-Modal, and
- Non-Modal & Close calling form.

If Modal is selected, the generated screen forms
are executed in the dialog mode, i.e. a user cannot
access the calling form while the called form is active.
If Non-Modal is selected, an access to the calling
form and the called form are mutually unconstrained,
i.e. a user may access both of them independently. If
Non-Modal & Close calling form is selected, the
calling form is closed, and the focus is set to the
called form.

4.3 UI Positioning

A UI program control item for executing a call should
be generated in a way to provide its convenient and
fast usage by the end-users. It is particularly important
when the call is frequently initiated. The UI
positioning property specifies how and where a UI
program control item for executing a call, or the call
item for short, will be generated. It may have one of
the following values:
- Show as menu item,
- Show as button, or
- Show as menu item & Show as button.

If Show as menu item is selected, the call item will
be generated as a menu item in the calling form menu.
If Show as button is selected, the call item will be
generated as a button in the calling form. If Show as
menu item & Show as button is selected, both a menu
item and a button will be generated in the calling
form.

Central European Conference on Information and Intelligent Systems__Page 452 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

5 Modeling Business Applications in

IIS*Studio

An IS may comprise several business applications of
an arbitrary complexity. Therefore, designers need a
suitable tool that can provide an efficient design of
business applications regardless their complexity.
Business Application Designer is a tool embedded
into IIS*Studio that provides the business application
design. It supports specifying the structures of
business applications in a simple and visually oriented
way. It enables including the available form types into
a business application, and creating the calls between
the selected form types [15] and [16].

In our approach, a business application structure in
Business Application Designer is a graph that is
visually represented in the form of a diagram. Apart
from its useful diagram visualization, a graph
representation of the business application structure is
beneficial due to the utilization of the well known
graph algorithms, particularly the algorithms for the
graph traversal, and for checking the graph
connectivity. In this way, by means of the algorithm
for checking the graph connectivity we perform a
validity test of the business application structure. If
there are any disconnections detected in the graph, i.e.
if there are form types that are isolated, we consider
the business application structure as invalid, since
end-users will not be able to access these forms in the
generated business application.

A project tree in IIS*Studio for a project Faculty
organization is presented in Fig. 1. Each project tree
contains the Application Systems node enclosing all
the application systems created in the project Faculty
organization. Furthermore, each application system
contains the Business Application node enclosing all
the business applications in the application system. In
Fig. 1 the Faculty organization application system is
presented with its Business Applications node that
encloses all the business applications created within
this application system.

The first step in the creation of a business
application is giving its name that must be unique in
the scope of the application system, and selecting a
start-point form type. The next step is specifying the
business application structure by the Business
Application Designer tool. In Fig. 2 it is presented the
main window of the Business Application Designer
with: (i) a main menu and the toolbar with selected
commands, positioned on the top, (ii) a diagram of a
simplest business application, containing the only one
form type, positioned on the right hand side of the
main pane, and (iii) the Navigator, positioned on the
left hand side of the main pane.

In the step of specifying the business application
structure, a designer may include the available form
types into the structure, or to exclude the previously
selected ones. A designer may select only the form
types that belong to the scoping application system of

a business application. Each application system may
have: (i) its own form types, (ii) the referenced form
types owned by the other application systems, as well
as (iii) the child application systems with its own form
types, as it may be seen in the Navigator in Fig. 2.
The form types of all those categories may be
included into the business application. Whereas a
form type may be included in several different
business applications, it may not be included into the
same business application twice.

After the necessary form types are included into
the business application, a designer may specify calls
between the form types. The arrow symbolizing the
call is always directed from the calling to the called
form type. In Fig. 3 it is presented an example of a
business application diagram. It may be noticed that
the program form type FACULTY calls the menu
form type STUDENT MENU. Consequently, the
application generator will transform the form type
FACULTY into a screen form, the form type
STUDENT MENU into a menu, and embed it into the
main menu of the generated screen form FACULTY. It
may also be noticed that the menu form type
PERSON MENU calls the menu form type LIST OF
PERSONS. The application generator will produce
two menus: PERSON MENU and LIST OF
PERSONS, and it will create an item in PERSON
MENU for calling the LIST OF PERSONS menu.

After specifying the calling and the called form
type of a call, a designer should specify the call
properties (explained in Section 4) in order to
complete the whole specification. In Fig. 4 it is
presented a form that provides specification of
parameter-to-value associations. The form presented
in Fig. 5 provides specification of calling method,
calling mode, and UI positioning.

Figure 1. The IIS*Studio project tree for the Faculty
organization project

Central European Conference on Information and Intelligent Systems__Page 453 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

Figure 2. The IIS*Studio diagram of a business
application with only one form type

Figure 3. A business application diagram

Figure 4. The form for specifying parameter-to-value
associations

During the design of a business application

structure the errors may occur regarding the graph
connectivity. In Fig. 6 is presented an example of an
invalid business application structure, since the form
type PERSON is isolated and cannot be accessed by
an application user.

Figure 5. The form for specifying of calling method,
calling mode, and UI positioning

Figure 6. A diagram of an invalid business application
structure

6 Related PIM Concepts in

IIS*Studio

The main purpose of IIS*Studio is to provide a chain
of necessary model-to-model and model-to-code
transformations, so as to generate fully functional
transaction programs and applications that are
executed over a database. Therefore, apart from
having a support for modeling PIM specifications of
business applications, we consider that it is necessary
to have a support for the PIM specifications of:
- visual properties of transaction program forms,
- functionality of transaction programs, and
- common UI models.

In the rest of the section, we briefly outline each
of the aforementioned specifications. Due to their
complexity, we omit their detailed explanations.

There are several concepts in IIS*Studio, for
which it is possible to specify visual properties having
an influence on the generated program screen forms.
Those are: domain, attribute, component type of a
form type and component type attribute [15]. The
visual properties of the component type attribute, the
attribute and the domain are used to specify the
common characteristics of generated screen items that
are independent of any programming environment. In
this way, a designer may specify a type of each screen

Central European Conference on Information and Intelligent Systems__Page 454 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

item generated from the attribute of a form type. The
allowed item types are: textbox, radio group, check
box, combo box, and list item. For each of them, it is
possible to specify a number of specific properties.
All those properties are organized in a hierarchical
way. The most general level in the three-level
hierarchy is the level of the domain. The second one
is the level of the attribute, whereas the most specific
is the level of the component type attribute. For
example, if a visual property is specified at the
domain level, it will hold in general, for all the
attributes associated to that domain. However, the
property value may be overridden at the attribute
level, for a specific attribute. In that case, such a value
will be used for the specific attribute, i.e. for all
component types containing that attribute. At the third
level, it is possible to override the property value
again. In that case, it will hold only for the attribute
included into the specific component type. The visual
properties of the component type of a form type
mainly concern the information about positioning the
component type window relatively to the other
component type windows, as well as positioning and
laying out of the component type content inside the
window.

Currently, IIS*Studio provides PIM specifications
of transaction program functionality in a great extent.
We differentiate between "standard" and
"nonstandard" data operations of a transaction
program. Standard operations are data retrieve, insert,
update and delete. They are specified declaratively for
each component type of a form type, as it is presented
in [12]. Nonstandard operations are specified in a
procedural way, by using the program unit concepts:
package, function and event. We have developed and
embedded into IIS*Studio a Function Logic Editor
that provides creating the formal and platform
independent specifications of functions. Using the
editor, a designer can specify both declarative,
procedural and exception parts of a function in a fully
structured and visually oriented way. The resulting
specifications are stored in the IIS*Studio repository.
Based on these specifications IIS*Studio currently
provides: (i) coupling of program unit specifications
with form types and their component types and
attributes; (ii) model-to-model transformations of
program unit specifications into a domain specific and
platform independent language; and (iii) model-to-
code transformations of specifications expressed by
the selected domain specific language into the
executable program code.

We believe that a lot of visual properties of
transaction programs and common logic of a UI may
be defined at the level of a project as a whole, or at
least at the level of an application system. Therefore,
we have developed a model and a tool named
IIS*UIModeler for specifying various Common UI
Models. A Common UI Model is a set of platform
independent templates that may be applied in the
process of generating executable application

prototypes provided by IIS*Studio. By these
templates, a designer specifies visual and logic
properties of a common UI model that each generated
application must satisfy. IIS*UIModeler [17] provides
a list of predefined templates, as well as creating the
new templates in two ways: (i) by the inheritance of
existing ones, or (ii) from scratch. In this way, it is
possible to specify a number of details about UI logic,
layout and visual properties concerning windows,
forms, blocks and items for browsing, inserting,
updating, and deleting data.

7 Conclusions

We present in the paper a methodological approach to
the specification of business applications. The
approach requires introducing deliberate concepts and
developing a tool by means of a designer can specify
the business applications in a unified and visually
oriented way. The concepts and the Business
Application Designer tool that we have developed are
embedded into the IIS*Studio tool. In this way, it is
provided the design of a database schema, transaction
programs, their screen or report forms, and finally the
business applications, in an integrated way. By this,
we cover the software modeling process in a great
extent. Modeling of a system by IIS*Studio is
performed at a high level of abstraction, but with a
usage of the concepts that are domain specific for IS
development. Such software specifications can be
used as a sound basis for the generation of DDL
database schema specifications and fully executable
application prototypes. In contrast to our approach
and the IIS*Studio tool, the general purpose modeling
tools that are based on the UML language family,
provide software design for a wider class of systems,
which is an advantage. However, if we consider the
usage of such tools in the system modeling, it may be
harder to express some specific properties or system
characteristics in a particular application domain. As a
consequence, such a software model is harder to
transform into the fully executable program code in a
particular program environment.

A business application specification together with
the specifications of selected UI templates is a source
for the generation of a program code that covers calls
between generated transaction programs, i.e. their
forms, and a synchronization of their behavior. A case
study illustrating main features of IIS*Studio
application prototype generation is given in [17],
alongside with the methodological aspects of its
usage.

Among all, our current or future research efforts
comprise also the following:
- Further improvements of IIS*Studio that will enable

a designer to generate complex transaction program
functionalities concerning not only "standard" data
operations (retrieve, insert, update and delete)
expressed by the designed form types,

Central European Conference on Information and Intelligent Systems__Page 455 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

- Introducing new concepts and tools in IIS*Studio
that will provide business process modeling, as well
as system architecture modeling, and

- Investigating a possible usage of category theory: i)
in order to improve the performance of generated
code, on the one hand [18], and ii) as a common
language and tool for software engineering task
instrumentation on the other hand [19].

8 Acknowledgments

Research presented in this paper was supported by
Ministry of Science and Technological Development
of Republic of Serbia, Grant III-44010, Title:
Intelligent Systems for Software Product Development

and Business Support based on Models.

References

[1] Aleksić, S.; Luković, I.; Mogin, P.; Govedarica,

M. A Generator of SQL Schema Specifications,
Computer Science and Information Systems
(ComSIS), Vol. 4, No. 2, 77-96, 2007.

[2] Aleksić, S.; Luković, I. Generating SQL
Specifications of a Database Schema for
Different DBMSs, Info M-Journal of Information
Technology and Multimedia Systems, No. 23, 36-
43, 2007.

[3] Aleksić, S.; Ristić, S.; Luković, I. An Approach
to Generating Server Implementation of the
Inverse Referential Integrity Constraints, In
Proceedings of The 5

th
 International Conference

on Information Technologies, Jordan, CD, 2011.

[4] ARTech. DeKlaritTM, http://www.deklarit.com/,
downloaded: May, 2010.

[5] Batini, C.; Demo, B.; Di Leva, A. A methodology
for conceptual design of office data bases,
Information Systems 9(3/4), 251–263, 1984.

[6] Bézivin, J. In search of a basic principle for
model driven engineering. UPGRADE - The
European Journal for the Informatics

Professional, 5(2), 21-24, 2004.

[7] Choobineh, J.; Mannino, M.V.; Tseng, V.P. A
form-based approach for database analysis and
design, Communications of the ACM 35 (2), 108–
120, 1992.

[8] Choobineh, J.; Venkatraman, S.S. A
methodology and tools for derivation of
functional dependencies from business form,
Information Systems 17 (3), 1992, pp. 269–282.

[9] Genero, Introduction to Genero Studio Business
Application Modeling, http://www.4js.com;
downloaded: April 27th 2011.

[10] Kreutzová, M.; Porubän, J.; Václavík, P. First
Step for GUI Domain Analysis : Formalization,
Journal of Computer Science and Control

Systems. Vol. 4, no. 1, 65-70, 2011.

[11] Kosar, T.; Oliveira, N.; Mernik, M.; Varanda
Pereira, M. J., Črepinšek, M., da Cruz, D.,
Henriques, P. R. Comparing general-purpose and
domain-specific languages: An empirical study.
Computer Science and Information Systems, 7(2),
247-264, 2010.

[12] Luković, I.; Mogin, P.; Pavićević, J.; Ristić, S.
An approach to developing complex database
schemas using form types. Software: Practice
and Experience, 37(15), 1621-1656, 2007.

[13] Luković I.; Ristić S.; Mogin P.; Pavicević J.
Database Schema Integration Process – A
Methodology and Aspects of Its Applying, Novi
Sad Journal of Mathematics, Serbia, ISSN: 1450-
5444, Vol. 36, No. 1, 115-150, 2006.

[14] Mernik, M.; Heering, J., & Sloane, M. A. When
and how to develop domain-specific languages.
ACM Computing Surveys, 37(4), 316-344, 2005.

[15] Popović A, A Specification of Visual Attributes
and Structures of Business Applications in the

IIS*Case Tool, M.Sc. (Mr) Thesis, University of
Novi Sad, Faculty of Technical Sciences, 2008.

[16] Popović A.; Luković I.; Ristić S. A Specification
of the Structures of Business Applications in the
IIS*Case Tool, Info M – Journal of Information
Technology and Multimedia Systems, Belgrade,
Serbia, ISSN: 1451-4397, No. 25, 17-24, 2008.

[17] Ristic S.; Aleksic S.; Lukovic I.; Banovic J.
Form-Driven Application Generation: A Case
Study, In Proceedings of the XI International
Conference on Informatics, Roznava, Slovakia,
115 – 120, 2011.

[18] Slodičák V. Some useful structures for
categorical approach for program behavior,
Journal of Information and Organizational

Sciences, Vol. 35, No. 1, 99-109, 2011.

[19] Szabó, C.; Slodičák, V. Software Engineering
Tasks Instrumentation by Category Theory,
SAMI 2011, Proceedings of the 9th IEEE
International Symposium on Applied Machine

Intelligence and Informatics, Smolenice,
Slovakia, 195-199, 2011.

Central European Conference on Information and Intelligent Systems__Page 456 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

