

Impact of SOA on Information System Development

Matjaz B. Juric

Faculty of Computer and Information Science
University of Ljubljana

Trzaska cesta 25, 1000 Ljubljana

Abstract. Service Oriented Architecture (SOA) has
been one of the most important topics in enterprise
application development in the last years. SOA has
introduced important changes to the architecture of
business applications. The Service Component
Architecture and the composite application approach
with BPMN, BPEL, ESB, and other important pieces
have made applications loosely-coupled and flexible.
In the paper we give an overview of the SOA, describe
the concepts and SOA building blocks. We elaborate
on the value and impact of SOA on information
system development and outline the reach of SOA
towards information systems, business processes,
governance, and organization.

Keywords. SOA, IS development, BPEL, BPMN,
ESB

1 Introduction

SOA provides technical architecture to develop end-
to-end support for business processes. SOA achieves
this objective by exposing organization’s IT assets as
reusable business services, which can be composed
into processes on one hand and can integrate and
communicate more easily on the other hand.

From the bottom-up perspective, SOA is an
integration architecture. It provides technologies and
approaches for systematic integration of existing
applications and development of new solutions. With
SOA software architects develop a high-level
integration architecture that uses common concepts to
share data, information, and business logic between
applications in a controlled, transactional manner
using a service bus are other supporting technologies,
such as rules engines, registries and repositories, etc.
SOA is based on typed communication with messages
that are based on common schemas. In new
generation of SOA, business events are introduced as
well. They enable an alternative approach to the
realization of one of the most important goals of SOA
– loose coupling. Loose coupling is an approach
where different software services and components
share the lowest denominator of dependencies. This
makes application architecture more robust and
resistant to changes. This will allow applications,

components and services to evolve and change
without or with minimal effects on the other
applications, components and services.

SOA is also an architecture for designing,
automating and optimizing business processes. The
objective of SOA is to provide end-to-end automation
of business processes. Business processes in SOA are
based on composition of services and processes using
programming-in-the-large technologies, most
importantly BPEL and Executable BPMN.

In the rest of this article we will look at business
and IT agility (Section 2), define the SOA (Section 3),
summarize the concepts (Section 4), explain the SOA
building blocks (Section 5), talk about inception
(Section 6) and value of SOA (Section 7). Finally we
will describe the changes in the development
approach (Section 8) and provide a conclusion
(Section 9).

2 Business and IT Alignment

The business system usually evolves with a different
pace to that of the information system. Over time this
has resulted in an important loss of alignment
between the business system and the information
system. This has resulted in applications that do not
fully support business tasks, and which have again
hindered the evolution of business processes. The
consequence has been less flexible and adaptable
organizations with less competitive power on the
market. Only companies where applications can be
quickly and efficiently adapted to changing business
needs can stay competitive on the global market [1].

An IT gap is mainly a consequence of the
inability of application developers to modify and
adapt the applications to business requirements
quickly and efficiently.

The main reason probably hides in the fact that in
the past neither programming languages and
technologies nor architectural design could have
anticipated changes. Existing applications had been
designed to last. They had been developed in a tightly
coupled fashion, which makes changes to specific
parts of applications very difficult. Because of
dependencies such changes usually have several,
often unpredictable, consequences. In addition to the
complexity and size of the modification, an important

Central European Conference on Information and Intelligent Systems__Page 9 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

factor is also the state of the application being
modified. If an application has a well-defined
architecture and has been constructed keeping in mind
future modifications, then it will be easier to modify.
However, each modification to the application makes
its architecture less robust with respect to future
changes. Applications that have been maintained for
several years and have gone through many
modifications usually do not provide robust
architecture anymore (unless they have been
refactored constantly). Modifying them is difficult,
time consuming, and often results in unexpected
errors [2].

We have seen that there are at least three
important forces, which have to be considered:
• Alignment between the business and IT, which is

today seen as one of the most important
priorities.

• Complexity of existing applications and the
overall IT architecture. Modifying them is a
complex, difficult, error-prone, and time-
consuming task.

• Indispensability of existing applications.
Companies rely upon existing applications and
very often their core business operations would
be jeopardized if existing applications fail.
This makes the primary objective of information

systems—to provide timely, complete, and easy to
modify support for business processes—even more
difficult to achieve [3].

3 Service-Oriented Architecture

The alignment of business and IT is very difficult to
achieve using traditional approaches. However, if a
mediation layer between the business and the
information system is introduced, the alignment
between business and IT becomes more realistic—
meet the Service-Oriented Architecture (SOA).

To manage problems related to changing
requirements, developments in technology and
integration of different methods have been proposed
and used over time. A Service-Oriented Architecture
is the latest architectural approach related to the
integration, development, and maintenance of
complex enterprise information systems [4].

SOA is not a radically new architecture, but rather
the evolution of well-known distributed architectures
and integration methods. Integration between
applications has evolved from early days into well-
defined integration methods and principles, often
referred to as Enterprise Application Integration
(EAI). EAI initially focused on the integration of
applications within enterprises (intra-EAI). With the
increasing need for integration between companies
(business-to-business), the focus of EAI has been
extended to inter-EAI.

SOA improves and extends the flexibility of
earlier integration methods (EAI) and distributed
architectures, and focuses on the reusability of

existing applications and systems, efficient
interoperability and application integrations, and the
composition of business processes out of services
(functionalities) provided by applications. An
important objective of SOA is also the ability to apply
changes in the future in a relatively easy and
straightforward way [4].

SOA defines the concepts, architecture, and
process framework, to enable the cost-efficient
development, integration, and maintenance of
information systems by reducing complexity, and
stimulation of integration and reuse. Let us look at the
definition of SOA, as provided by Bernhard Borges,
Kerrie Holley, and Ali Arsanjani:

SOA is the architectural style that supports
loosely coupled services to enable business flexibility
in an interoperable, technology-agnostic manner.
SOA consists of a composite set of business-aligned
services that support a flexible and dynamically re-
configurable end-to-end business processes
realization using interface-based service descriptions.

4 Concepts

SOA is more than just a set of technologies. SOA is
not directly related to any technology, although it is
most often implemented with Web Services. Web
Services are the most appropriate technology for SOA
realization. However, using Web Services is not
adequate to build SOA. We have to use Web Services
according to the concepts that SOA defines [5]. The
most important SOA concepts are:
• Services and service abstraction
• Self-describing, standardized interfaces with

coarse granulation
• Exchange of messages
• Support for synchronous and asynchronous

communication
• Loose coupling
• Reusability
• Service registries and repositories
• Quality of Service
• Composition of services into business processes
Services

Services provide business functionalities, such as
an application for business travel, an application for a
loan, and so on. This differs considerably from
technology-oriented functionalities, such as retrieving
or updating a table in a database. Services in SOA
must provide business value, hide implementation
details, and be autonomous. Services should be
abstract and autonomous. Service consumers are
software entities, which call the service and use its
functionality [2].
Interfaces

Service consumers access the service through its
interface. The interface of a service defines a set of
public operation signatures. The interface is a contract
between the service provider and a service consumer.

Central European Conference on Information and Intelligent Systems__Page 10 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

The interface is separated from the implementation, is
self-describing, and platform independent. Interface
description provides a basis for the implementation of
the service by the service provider and a basis for the
implementation of the service consumers. Each
interface defines a set of operations. In order to define
business services, we need to focus on the correct
granulation of operations, and we should standardize
interfaces. SOA services are best modeled with coarse
granulation [2].
Messages

Operations are defined as a set of messages.
Messages specify the data to be exchanged and
describe it in a platform, and language, independent
way using schemas. Services exchange only data,
which differs considerably from object-oriented and
component approaches, where behavior
(implementation code) can also be exchanged.
Operations should be idempotent (an operation is
idempotent if repeated invocations have the same
effect as one invocation). WSDL is a service
description language that meets SOA criteria [2].
Synchronicity

Service consumers access services through the
service bus. This can be either a transport protocol,
such as SOAP, or an ESB. Service consumers can use
synchronous or asynchronous communication modes
to invoke the operations of services. In synchronous
mode, a service operation returns a response to the
service consumer after the processing is complete.
The service consumer has to wait for the completion.
Usually we use the synchronous mode with operations
in order to complete processing in a short time. In an
asynchronous mode, a service operation does not
return a response to the consumer, although it may
return an acknowledgement so that the consumer
knows that the operation has been invoked
successfully. If a response is needed, usually a
callback from the service to the consumer is used. In
such a scenario, a correlation between messages is
needed [2].
Loose Coupling

Through the self-describing interfaces, coarse
granulation, exchange of data structures, and support
for synchronous and asynchronous communication
modes, a loose coupling of services is achieved.
Loosely coupled services are services that expose
only the necessary dependencies and reduce all kinds
of artificial dependencies. This is particularly
important when services are subject to frequent
changes. Minimal dependencies assure us that there
will be minimal number of changes required to other
services when one service is modified. Such an
approach improves robustness, makes systems more
resilient to change, and promotes the reuse of services
[2].
Reusability

SOA is about the consolidation of functionalities.
Therefore, the common goal is to have a single
service for each business functionality. In other

words, we should not allow having more than one
service with equal or similar functionalities. To
achieve this it is essential to reuse services in different
contexts. Reuse is not easy to achieve. First, we have
to develop services that are general enough to be
useful in different scenarios. Second, developers
should first look at existing services, before
developing a new one. If an existing service fulfills
the need, they should reuse it. Reuse is fostered by
registries and repositories [6].
Registries and repositories

To simplify and automate searching for the
appropriate service, services are maintained in service
registries, which act as directory listings. Service
providers publish services in registries; service
consumers look up the services in the registries.
Lookup can be done by name, service functionality,
or business process properties. UDDI is an example of
a service registry. Service registries can improve
reuse. In addition to registries, repositories are
becoming important for storing artifacts, such as
WSDL interfaces, XML schemas, and so on.
Registries and repositories play an important role in
SOA governance [6].
Quality of Service

Services usually have associated Quality of
Service attributes. Such attributes include security,
reliable messaging, transaction, correlation,
management, policy, and other requirements. The
infrastructure must provide support for these
attributes. Quality of Service attributes are often
important in large information systems. In Web
Services, Quality of Service attributes are covered by
WS-* specifications, such as WS-Security, WS-
Addressing, WS-Coordination, and so on. Quality of
Service is also provided by the ESB [7].
Composition of services into business
processes

The final, and probably the most important, SOA
concept is the composition of services into business
processes. Services are composed in a particular order
and follow a set of rules to provide support for
business processes. The composition of services
allows us to provide support for business processes in
a flexible and relatively easy way. It also enables us to
modify business processes quickly and therefore
provide support to changed requirements faster and
with less effort. For composition, we will use a
dedicated language, BPEL, and an engine on which
business process definitions will be executed. Only
when we reach the level of service composition can
we realize all the benefits of SOA [8].

5 SOA Building Blocks

Let us now have a closer look at the SOA building
blocks that enable us to realize the above-mentioned
concepts [9, 13]:

Central European Conference on Information and Intelligent Systems__Page 11 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

Service Component Architecture (SCA) defines a
programming model for composite SOA applications.
SCA is based on the idea of service composition
(orchestration). SCA provides a model for the
composition of services and for the creation of service
components, including the reuse of existing
applications within SCA composites.
BPEL: This is for business process automation with
service composition.
Services: This is for achieving modular and flexible
architecture. For service development, Web Services
technology is usually used.
Enterprise Service Bus (ESB): It provides a means
for services and processes to communicate, and
enables management and control over the
communication. ESB is the backbone of SOA.
Registries and repositories: They are central
directories of services and useful for locating and
reusing services, as well as SOA governance.
Human task support: Business processes often
involve human interaction. SOA supports human
interactions in different ways, such as WS-
HumanTask and BPEL4People. Human task support
is related to Identity Management.
Process monitoring or Business Activity
Monitoring (BAM): It allows the monitoring of the
execution of processes, such as total execution time,
average execution time, execution time of certain
activities, and so on. It also allows us to monitor the
Key Performance Indicators (KPIs), which is
particularly interesting for management, as it allows
them to understand better how the business operations
perform.
Business Rules Management Systems (BRMS) or
Rule Engine: This is a central place for managing
business rules. With BRMS we can put business rules
into a central location instead of hard coding them.
Adapters: They provide easy access not only to
external systems, such as ERP, CRM, SCM, but also
DBMS systems.
A very important aspect of SOA is SOA governance.
SOA is a complex architecture, which has to be
governed in order to be consistent. SOA governance
is a set of activities related to control over services
and processes in SOA. Typical activities are related to
managing service portfolios and lifecycles, ensuring
service consistency, and monitoring service
performance.

6 Inception

SOA is a long-term project and it is very important
that it is seen as such. In other words, SOA is the
long-term development of the overall IT architecture.
Because SOA is a long time project it has to be
managed like that [10]. To be successful we have to
start deliberately and plan the project carefully:

First, we have to set the objectives. We have to
identify the goals of SOA. It is important that we
articulate the objectives very precisely. Just saying

that we would like to improve the efficiency of
business processes is not adequate. We have to
identify which processes we would like to improve,
why, when, and how much. Only when we will have a
deep understanding of this, we will be able to move
forward.

Then we have to identify the risks. There are
many risks involved with the SOA project, starting
with the organizational aspects, selection of
processes, technology-related risks, etc.

Next, we have to take the necessary
organizational steps and at the same time educate the
SOA team members. Here it is very important, that
we understand that SOA introduces many changes to
all aspects of application development. Team
members have to understand these changes. They also
have to understand the new technologies and
languages.

Next, we have to select the appropriate SOA
platform. Major vendors today offer SOA platforms,
which differ in several important aspects. Careful
selection is therefore necessary, and we have to
include specific aspects of the environment, existing
systems, and existing knowledge into account to make
a good decision.

A SOA project is usually started with a pilot
project, which should be done with the help of
external SOA experts. Within SOA pilot, several
aspects can be addresses. The most important is
probably that our team gets used to the round-trip
development of business process modeling and their
transition to executable BPEL processes. In other
words, the SOA team has to feel comfortable with the
composition approach to the development.

7 Value of SOA

SOA introduces important benefits: IT departments
are under constant pressure of changes. SOA makes
continuous changes easier and reduces the negative
effects of changes [11].

Duplicated data through different databases and
systems is quite common in existing systems. SOA
fosters consolidation of data and introduces master
data management solutions that are based on SOA
concepts, services and loose coupling.

In existing applications, we are usually faced with
duplicated functionalities. SOA fosters consolidation
of such duplicated functionalities. Using services, we
can expose composed functionalities.

When talking about business processes,
companies often have variants of business processes
that differ only in details. SOA enables support for
such variants with common base process and their
modification.

With the diversity of devices, it becomes more
and more important to enable access to applications
and data through different channels (PCs, palmtops,
cell phones, voice, etc.). SOA enables access to
processes through different channels [14].

Central European Conference on Information and Intelligent Systems__Page 12 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

IT departments often do not develop everything
in-house. In the past (with existing approaches), it has
been often quite difficult to separate the roles between
the external partners (outsourcing partners) and in-
house development. Too often, it has happened that
the outsourcing partner has gained control over the
application it has developed; and that the IT
department (and the company as a whole) has become
dependent on that partner. SOA enables easier
separation of responsibilities, where services can be
outsources, while their composition into business
processes stays in-house. This way IT departments
retain the control and the most valuable know-how a
company has – the know-how about business
processes.

Finally, SOA enables the development of service
networks, which enable the development of virtual
value chains, not only within the company, but also
between the companies. This can open completely
new possibilities in how IT can be used to optimize
the business.

8 Changes in the Development
Approach

SOA has also learned from the experiences of existing
software development methods. Those have been
based on requirements specification and have
foreseen the analysis, design, implementation, testing,
deployment and maybe some other phases. However
the core assumption of majority of them has been, that
the requirements have to be specified as precise as
possible. Changing the requirements has always been
seen as something that is not wishful [3, 12].

The fact today however is that changes are
imminent. To be successful the software development
approach has to consider this. SOA has considered
change from the start. Therefore, it has introduced
some important changes to the development approach.
Instead of the classic approach, as shown on Figure 1,
SOA introduces a modified approach, shown on
Figure 2.

Analysis →

Design →

Implementation →

Testing

Figure 1. Classic approach to IS development

We can see that the phases are quite different.
Instead of the analysis, the SOA approach foresees
modeling, which refers to business process modeling.
This way, the development is better aligned to the
actual needs of the business. The traditional analysis
has been based on requirements specification and a lot

has been said and written how it is very difficult to
specify the requirements. This is the first advantage of
the SOA approach.

Modeling →

Composition →

Testing →

Monitoring

Figure 2. SOA approach to IS development

The second phase in the SOA approach is
composition. Composition refers to the way business
processes are developed. Instead of traditional
implementation in a programming language such as
Java or C#, SOA approach foresees that we will
develop business processes so that we will reuse
services and compose (orchestrate) them into
processes. This approach works best when we already
have a portfolio of services. We get such services
from existing applications, where we expose business
logic as services; or we buy services or outsource
their development of external companies; or we
develop services in-house.

In all three scenarios, we have to follow certain
guidelines. The most important one is that we develop
services, which are reusable. Reusable services are
very important for SOA, because they represent “big”
building blocks, which contain business logic.
Developing applications (processes) with such
existing building blocks is much faster compared to
traditional approach in Java or C# (even if we have
some libraries available). Therefore, the SOA
approach to development is sometimes called
programming-in-the-large.

The third phase of SOA development approach is
testing. Testing SOA applications refers to testing the
process and the related services. However, we reuse
services. And reusable services have already been
tested! Therefore, the effort required for testing is
reduced as well [4].

Finally, we come to the monitoring phase. This
phase refers to run-time monitoring of the process
performance and includes: Monitoring of business
activities – BAM, which provides valuable
information about the performance and efficiency of
business processes and can serve to identify future
optimization points. Monitoring of QoA aspects of
processes and services, such as response time,
security, availability, etc. This is often related with the
definition of SLA (Service Level Agreement) for
processes and services.

These four phases are done iteratively and
incremental. If organized accordingly, we can deliver
working processes in 3 to 4 months periods [4].

The above-described changes to the development
approach considerably reduce the overall complexity

Central European Conference on Information and Intelligent Systems__Page 13 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

of the development. To some estimation, SOA
reduces the complexity by approximately 50%. This
is very important because the increased complexity of
application systems has been an important source of
the problems related to the too-long response times,
needed for application modifications.

8 Conclusion

We have seen that SOA provides the technology
platform for implementation of business processes –
for the development of application, which provide
end-to-end support for business processes. SOA is an
architecture, which has introduced several important
new concepts in the application development. One of
the most important concepts is the composition of
services into business processes. With this SOA has
provided an architecture, which is flexible enough to
accommodate business needs related to agility,
adaptability, and to all other aspects related to the
optimization of operations and improvement of
business process efficiency.

We have to look at the SOA from three different
perspectives: from business perspective, from
technical perspective, and from organizational
perspective. Only if we address SOA from all these
three points of view, we can minimize the risks and
maximize the benefits of SOA inception. The benefits
are related to improved flexibility, better alignment of
IT and business, faster and simplified application
development with reduced complexity, and most
importantly, end-to-end automation of business
processes and reducing the semantic gap between
business and IT. Risks are related to various
organizational, technology, and business issues.

References

[1] A. Poduval, Markus Zirn, Matjaz B. Juric, Todd

Biske, Jerry Thomas, Do more with SOA
Integration, PACKT Publishing, 2011

[2] Matjaz B. Juric, Swami Chandrasekaran, WS-
BPEL 2.0 for SOA Composite Applications with
IBM WebSphere 7, PACKT Publishing, 2010

[3] H. Gaur, M. Zirn, M. B. Juric, Oracle Fusion
Middleware Patterns, PACKT Publishing, 2010

[4] Matjaz B. Juric, Frank Jennings, Poornachandra
Sarang, Ramesh Loganathan, SOA Approach to
Integration, PACKT Publishing, 2007

[5] Matjaz B. Juric, Kapil Pant, Business Process
Driven SOA using BPMN and BPEL, PACKT
Publishing, 2008

[6] Matjaz B. Juric, A. Poduval, D. Todd, H. Gaur, J.
Bolie, J. Thomas, K. Geminiuc, L. Pravin, M.
Zirn, M. Cardella, P. Ramachandran, S. Carey, S.
Blanvalet, T. H. Nguyen, Y. Coene, BPEL
Cookbook: Best Practices for SOA-based
integration and composite applications
development, PACKT Publishing, 2006

[7] Matjaz B. Juric, Benny Mathew, Poornachandra
Sarang, Business Process Execution Language
for Web Services 2nd Edition, PACKT
Publishing, 2006

[8] Matjaz B. Juric, B. Brumen, I. Rozman, WSDL
and UDDI Extensions for Version Support in
Web Services, Journal of Systems and Software,
doi:10.1016/j.jss.2009.03.001, 2009.

[9] Matjaz B. Juric, I. Rozman, WS-BPEL
Extensions for Versioning, Information and
Software Technology, Volume 51, Issue 8,
(2009) 1261-1274.

[10] Matjaz B. Juric. WSDL and BPEL extensions for
event driven architecture. Inf. softw. technol..
[Print ed.], 2010, vol. 52, iss. 10, 1023-1043, doi:
10.1016/j.infsof.2010.04.005.

[11] FRECE, Aleš, JURIČ, Matjaž B. Modeling
functional requirements for configurable content-
and context-aware dynamic service selection in
business process models. J. vis. lang. comput.,
Aug. 2012, vol. 23, no. 4, 223-247.

[12] KRIŽEVNIK, Marcel, JURIČ, Matjaž B. Data-
bound variables for WS-BPEL executable
processes. Comput. syst. struct., Dec. 2012, vol.
38, no. 4, 279-299.

[13] T. Erl, Service-Oriented Architecture (SOA):
Concepts, Technology, and Design, Prentice
Hall, 2005.

[14] T. Erl, SOA Principles of Service Design,
Prentice Hall, 2007.

Central European Conference on Information and Intelligent Systems__Page 14 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

