

Formalization of a Strategy for the KRK Chess Endgame

Marko Malikovi ć

Faculty of Humanities and Social
Sciences

University of Rijeka

Slavka Krautzeka bb, 51000 Rijeka,
Croatia

marko.malikovic@ffri.hr

Mirko Čubrilo

Faculty of Organization and
Informatics

University of Zagreb

Pavlinska 2, 42000 Varaždin,
Croatia

mirko.cubrilo@foi.hr

Predrag Janičić

Faculty of Mathematics

University of Belgrade

Studentski trg 16, 11000 Belgrade,
Serbia

janicic@matf.bg.ac.rs

Abstract. Chess has always been a challenging
subject for various computer analyses and
methodologies, and they often brought more general
advances in the related computer science fields, such
as search strategies, AI planning, data-mining, etc.
However, interactive theorem proving has hardly
been applied to chess. In this paper we present our
formalization, within the Coq proof assistant, of one
fragment of the chess game - KRK chess ending and
several conjectures relevant for this endgame. We
show that most of the considered notions and
conjectures can be expressed in a simple theory such
as linear arithmetic. In addition, in this paper we
present a formalization of Bratko's strategy for the
KRK endgame. The presented formalization will serve
as a key step towards formal correctness proof for
Bratko's strategy.

Keywords. Interactive theorem proving, Coq,
automated theorem proving, linear arithmetic, chess
endgames, KRK chess endgame

1 Introduction

Over the last years interactive theorem proving has
been successfully used for proving a number of
complex theorems and for building a corpus of
verified mathematical and computer science
knowledge. These efforts lead to a „database of all
important, established mathematical knowledge,
strictly formalized and with all proofs having been
checked automatically“ [1]. Interactive theorem
proving is typically applied in pure mathematics and
computer science, but other reasoning tasks can also
be subject to formal analysis and interactive theorem
proving. Chess, as a prototype of an intellectual game,
is one example of such domain. Chess has always
been a challenging subject of various computer
analyses and methodologies, and they often brought
more general advances in the related computer
science fields, such as search strategies, AI planning,
data-mining, etc. However, interactive theorem
proving has hardly been applied to chess. In this paper

we present our formalization of one fragment of the
chess game (one chess ending) within the Coq proof
assistant. Within the task of formalizing chess, we had
two primary motivations:

- To show that the game of chess can be suitably

described within a relatively simple theory such as
linear arithmetic. Moreover, strategies for chess
endings and their correctness can also be
described, to a large extent, in terms of linear
arithmetic. Such a description of chess and chess
strategies can be used as a basis for formalization
within a proof assistant such as Coq.

- To explore practical potentials of automation
available within a proof assistant such as Coq,
primarily automation related to decidable theories
such as linear arithmetic.

We would like to point out that, as for many other

problems treated by interactive theorem proving,
proving correctness of chess endgames is not safety
critical. Still, it is plausible to have machine verifiable
proofs for such domains as well because:

- machine verifiable proofs often reveal flaws in

known informal proofs;
- machine verifiable proofs provide building blocks

that can be used for other conjectures in the same
domain or even in some other domains;

- machine verifiable proofs are becoming a golden
standard for all mathematical proofs;

- newly constructed proofs and the growing body of
formally proved conjectures help further
development of the technology of interactive
theorem proving.

In formalizing and proving correct an endgame

strategy, there are three stages, each with their own
specifics and challenges:

- formalization of relevant chess rules;
- formalization of the strategy itself;

Central European Conference on Information and Intelligent Systems__Page 29 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

- formalization and proving of the correctness
conjecture.

Within this paper, we will address the first two of

the three stages above.
We are not aware of other formalizations of chess

strategies within a proof assistant. There is a paper on
retrograde chess analysis within Coq but it does not
consider chess strategies [21].

The rest of the paper is organized as following: in
Section 2 we give a brief background information on
interactive theorem proving, Coq, linear arithmetic
and chess endgame strategies. In Section 3, we outline
the considered endgame strategy and present some
analyses of its performance. In Section 4 we present
our formalization of the relevant chess rules, in
Section 5 we present our formalization of the
considered chess endgame strategy and in Section 6
we draw final conclusions and discuss potential
further work.

2 Background

In this section we give a background relevant to the
work presented in this paper. First we briefly discuss
interactive theorem proving and the system Coq, then
linear arithmetic and how it can be automated in Coq,
and finally the chess game and chess endgame
strategies.

2.1 Interactive Theorem Proving and Coq

Interactive theorem proving is a process of
development of formal mathematical proofs by
interaction between a computer and a human. In this
interaction, the computer is equipped with a proof
assistant tool (i.e., “an interactive theorem prover”)
that checks and guides steps performed by the human,
by verifying each proof step with respect to the given
underlying logic. The importance of interactive
theorem proving comes from the fact that “traditional
proofs” most often are not proofs at all, because of the
many missing fragments, informal arguments, etc.
Interactive theorem proving uncovered many flaws in
many mathematical proofs. On the other hand, proofs
constructed within proof assistants are verbatim and
detailed, and typically much longer than “traditional
proofs” [3]. When checking proofs, correctness of
proof assistants themselves is also critical. Proof
assistants often have a very small kernel that checks
all derivations, according to de Bruijn criterion [2].
This small core can consist of just tens of lines of
code and can be manually verified.

Interactive theorem proving gets more and more
popular and the body of formalized both classical and
modern mathematical and computer science
knowledge is increasing. There are also significant
theorems proved for the first time thanks to proof
assistants. Some of the most popular modern proof

assistants are Coq, Isabelle, HOL Light, PVS, Mizar,
ACL2, etc [29].

The Coq system [5], [17], [25] is implemented in
Objective Caml and works within the theory of the
calculus of inductive constructions (CIC). This theory
is a typed λ calculus with polymorphism, dependent
types and a primitive notion of inductive types. Coq
also provides a dependently typed functional
programming language. However, since Coq follows
the propositions-as-types, proofs-as-programs Curry-
Howard interpretation, the distinction between
programming and proving is blurred. In Coq, a tactic,
described in the language Ltac [12], is a program
which expresses the sequence of basic logical steps.
Coq has over 150 tactics that assist the user in
developing a formal proof. Proofs in Coq are mainly
built in interactive fashion, but there are various
decision procedures and tactics based on automatic
theorem proving that provide automation. Coq has
been used in a wide range of domains and for proving
a number of complex conjectures - for instance, for
the four colour theorem [14], the fundamental
theorem of algebra [13], for implementing and
proving correct methods for automatically proving
theorems in geometry [19], for proving correctness of
a compiler [20], etc. Coq has been used in formalizing
reasoning tasks not in pure mathematics or computer
science, like solving sudoku problems or solving 2× 2
Rubik’s cube.1

2.2 Linear Arithmetic

Linear arithmetic (or Presburger arithmetic) is a
fragment of Peano arithmetic that uses only addition
(and not multiplication). In linear arithmetic,
multiplication by a constant number is allowed, and
nx is just a shorthand for x+x+…+x where x occurs n
times. For subtraction it holds x � y = 0 if x < y. In
contrast to the whole of arithmetic, linear arithmetic is
decidable [22]. This theory is rather simple, but still
expressible enough for many applications in computer
science [4].

There are several decision procedures for linear
arithmetic [18]. Like decision procedures for other
theories, there are several methods to add decision
procedures for linear arithmetic to Coq [15], [6], [7].
This task usually requires a substantial engineering
efforts and a profound understanding of the internals
of the decision procedure. One of the approaches is to
implement the decision procedure in Ltac or in
Ocaml2, so that for each input instance it produces a
proof term that can be checked by Coq. This approach
is used by the romega tactic, by Crégut [11], [25].
This tactics provides decision procedure for
quantifier-free linear arithmetics over natural
numbers. It generates Coq proof terms from traces
obtained from the Omega test [23].

1 http://www-sop.inria.fr/marelle/Laurent.Thery/me.html
2 Ocaml is the implementation language of Coq.

Central European Conference on Information and Intelligent Systems__Page 30 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

2.3 Chess and Chess Endgame Strategies

We assume that the reader is familiar with the chess
rules, so we do not describe them here. KRK denotes
the chess ending with white player having a king and
a rook, and black player having only a king.

Chess endgames (including KRK, as one of the
simplest) are often studied by exhaustive analysis and
in the context of tablebases. An endgame tablebase is
an ordered list of all positions in the endgame with
interesting values precalculated [10]. First endgame
tablebases were constructed by Thompson [26], [27].
Building a chess tablebase is typically based on
retrograde analysis: first, all mate positions are listed,
then all positions that can lead to those positions, etc.
Building a tablebase does not require deep insights or
complex algorithms, but can be computationally or
memory expensive for some endgames. Also,
tablebases sometimes reveal chess knowledge that is
not considered by or relevant for typical chess
players. For instance, tablebases can detect positions
with optimal strategy leading to mate only after 250
moves. Such revelations obtained by tablebases may
be intriguing, but actually they don’t provide much of
typical chess knowledge and insights: “current state of
the art of machine-learning programs is that many ad
hoc recipes are produced. Moreover, they are hardly
intelligible to human experts. In fact, the database
itself is a long list of ad hoc recipes” [28]. This
motivates work on constructing strategies for specific
endings and automated analysis of tablebases based
on machine learning and data mining and extraction
of human understandable knowledge of winning
strategies [16], [10]. Automatically extracted
strategies still cannot compete with human
constructed strategies.

3 Bratko’s Strategy for KRK

Bratko’s strategy for white for the KRK ending can be
outlined as follows [8], [9]:

1. Look for a way to mate black in two moves;
2. If the above is not possible, then look for a way to

further constrain the area on the chess board to
which the black king is confined by white rook;

3. If the above is not possible, then look for a way to
move the king closer to the black king so as to
help the rook in squeezing the black King;

4. If none of the above pieces of advice 1, 2, 3
works, then look for a way of maintaining the
present achievements in the sense of 2 and 3 (i.e.
make a waiting move);

5. If none of 1, 2, 3 or 4 is attainable then look for a
way of obtaining a position in which the rook
divides the two kings either vertically or
horizontally.

Actually, the strategy has a number of hidden
details [8], [9] and this shows that it is very difficult
to have a simple winning strategy (not to mention an
optimal strategy) even for a simple ending such as
KRK. Some details of the strategy will be given in
Section 5.

Bratko’s strategy is the subject of analysis in this
paper. It is correct, i.e., from any position with white
to move, following Bratko’s strategy white wins. The
correctness can be proved in different ways. Bratko
gave one high-level proof of correctness of his
strategy but that proof is informal [9].

Our goal was to formalize the strategy – make this
first critical step towards formally proving that the
strategy is correct. The formal proof can follow
Bratko’s informal proof, but it is expected that many
missing steps will have to be filled or some flaws
corrected. Note that Bratko’s strategy is not optimal
and we do not address the optimality issue within our
formalization.

4 Formalization of Chess Rules

In order to have suitable machine verifiable
correctness proof for a chess endgame strategy, it is
critical to have a simple and intuitive core that defines
the chess rules and the strategy itself. Namely, once
the proofs are constructed, they are verified by the
proof assistant and are not subject to any doubt. What
could cause some doubt is the formulation of the
central conjecture, which boils down to basic
definitions. Thus, it is essential to have the chess rules
(and also Bratko’s strategy) defined in a simple,
concise, intuitive, and convincing way. In this section
we will discuss some design decisions and will focus
only on the fragment of the game relevant for the
KRK ending. Our design decisions were largely
motivated (apart from the quest for simplicity) by our
aim to automate as much reasoning as possible. We
will show that the chess rules can be simply described
in terms of linear arithmetic over natural numbers3
which would be beneficial since a significant portion
of the proving process can be automated by decision
procedures for linear arithmetic. In the rest of the
material, if not explicitly stated otherwise, it is
assumed that the underlying theory is linear arithmetic
over natural numbers. We will not give the full
formalization in Coq, but only some of its fragments,
for illustration.

Chessboard and positions. There are several options
for describing the chessboard and chess positions,
including the following two natural options:

3 Of course, chess rules and endgame strategy can be described in
terms of even simpler theories, for instance - propositional logic.
However, we find that linear arithmetic better suits that purpose -
within it all conditions can be represented in a compact and
intuitive way.

Central European Conference on Information and Intelligent Systems__Page 31 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

1. represent the chessboard as an 8× 8 array (or as a
list of lists in Coq) with each element containing a
distinguished value for empty field or for a
specific chess piece of specific color (this
approach was used in the earlier work in
retrograde chess analysis [21]);

2. associate each piece (possibly) on the board with a
pair of its coordinates.

The former approach could be more suitable for

the full chess game but the latter turns to be much
more suitable for a restricted variant of the game –
with only three pieces, as in the KRK ending.
Namely, instead of dealing with values of 64 squares
of the chessboard, only six values are considered. In
addition, if one aims at exploiting a decision
procedure for linear arithmetic, in the first approach
he/she would have to get rid of lists in conjectures
before trying to prove them. For the latter approach,
extensions from one chess endgame to another, or to a
full game are possible, but not very elegant (since
variables for each new chess piece have to be
introduced).

In the following text, the second approach for
representing the chessboard will be assumed. A
position is defined as a record type which is a
common type for a bundle of objects: the coordinates
of the white king (WKx,WKy), the coordinates of the
white rook (WRx,WRy), the coordinates of the black
king (BKx,BKy), and the value OnTurn on which
player is on turn that can be W=1 or B=2. The notion
of position is represented in Coq as follows:

Record Position := position {WKx : nat; WKy : nat; WRx : nat; WRy :

nat; BKx : nat; BKy : nat; OnTurn : nat}.

Although the white can theoretically castle in

some positions, this information is not maintained
(and castling is not considered as a legal move). Also,
information relevant for the „fifty-moves rule“ is not
maintained.4

It has to be ensured that in each position, the value
for each coordinate is between 1 and 8. In linear
arithmetic over natural numbers, however, it is more
suitable (and is less computationally demanding) to
use zero-based representation of rows and columns,
so constraints for all coordinates in one position
should be only that they are less than or equal to 7,
which can be represented in Coq as follows:

Definition ChessboardDimension (P : Position) := WKx P <= 7 /\

WKy P <= 7 /\ BKx P <= 7 /\ BKy P <= 7 /\ WRx P <= 7 /\ WRy P <= 7.

Coordinates (WKx,WKy) are always associated to

some position P (e.g, WKx P) but, for simplicity, in
the following informal text (not in Coq code, of
course), we will often skip writing the relevant
position P.

4 Still, as said, within the correctness proof for Bratko’s strategy it
is shown that the “fifty-moves rule” is obeyed.

Legal positions. The constraints on legal positions can
be represented in terms of linear arithmetic. For
instance, the white king and the white rook cannot be
on the same square:

Definition NotOnSameSquare (P : Position) :=

WKx P <> WRx P \/ WKy P <> WRy P.

Also, the rule that the two kings cannot be on the

same or adjacent squares can be expressed as:

Definition NotKingNextKing (P : Position) := WKx P > BKx P + 1 \/

BKx P > WKx P + 1 \/ WKy P > BKy P + 1 \/ BKy P > WKy P + 1.

For defining legal positions, a condition that the

black king is attacked by the white rook:

Definition BlackKingAttacked (P : Position) :=

WRx P = BKx P /\ (WKx P <> WRx P \/ WKx P = WRx P /\ (WKy P <=

BKy P /\ WKy P <= WRy P \/ BKy P <= WKy P /\ WRy P <= WKy P))

\/

WRy P = BKy P /\ (WKy P <> WRy P \/ WKy P = WRy P /\ (WKx P <=

BKx P /\ WKx P <= WRx P \/ BKx P <= WKx P /\ WRx P <= WKx P)).

A position P is legal if all coordinates of all pieces

are less than or equal to 7, if the white king and the
white rook are not on the same square, if the two
kings are not on the same or adjacent squares and if
the black king is not attacked when the white is on
turn:

Definition LegalPosition (P : Position) :=

ChessboardDimension P /\ NotOnSameSquare P /\

NotKingNextKing P /\ ~(BlackKingAttacked P /\ OnTurn P = W).

However, there are still some subtle issues

concerning legal positions. Let us consider the
position on Fig. 1.

 # # # #

 # # # #

 # # # #

È # # # #
Å é # #

Figure 1. An example of illegal position

According the above definition, this position is

legal only if the white is not on turn. But, if the black
is on turn, what was the last move of the white? It can
be easily checked that there was no legal move of the
white that could have led to the current position, so
the given position is impossible. Because of such
situations (subject to retrograde chess analysis [21]),
it is difficult to concisely define legal positions. The
correct definition would be that a position is legal if it
is reachable from the initial chess position, but such
definition is practically useless.

Central European Conference on Information and Intelligent Systems__Page 32 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

Nonetheless, the above definition of the legal
position is sufficient for the purposes of presented
work because we consider a strategy of white,
therefore only the initial positions in which the white
is on turn.

Legal moves. The rules for moving pieces can also be
simply described in terms of linear arithmetic. They
are divided into: (i) parts specifying movements rules
themselves; (ii) a constraint stating that all other
pieces remained on their original positions if not
captured by the moving piece; (iii) a condition stating
that the current player is indeed on turn and that
another player is on turn after the move; (iv) the
achieved position is legal. As an illustration, we give
the part (i) specifying movement rules for the white
king:

Definition MoveWhiteKing (P1 P2 : Position) :=

WKx P2 - WKx P1 <= 1 /\ WKx P1 - WKx P2 <= 1 /\

WKy P2 - WKy P1 <= 1 /\ WKy P1 - WKy P2 <= 1 /\

(WKx P1 <> WKx P2 \/ WKy P1 <> WKy P2).

and the part (i) specifying that after a move of the
white king all other pieces remained on their original
positions:

Definition OtherAfterMoveWhiteKing (P1 P2 : Position) :=

BKx P2 = BKx P1 /\ BKy P2 = BKy P1 /\

WRx P2 = WRx P1 /\ WRy P2 = WRy P1.

A definition of a legal move of the white king

(involving notions outlined above) is:

Definition LegalMoveWhiteKing (P1 P2 : Position) :=

MoveWhiteKing P1 P2 /\

OtherAfterMoveWhiteKing P1 P2 /\

OnTurn P1 = W /\ OnTurn P2 = B /\

LegalPosition P2.

Note that, following the representation of the

chessboard, movement rules for both kings have to be
specified - the related definition LegalMoveBlackKing
is analogous to the one given above.

Mate, stalemate and draw. Positions that are mate,

stalemate or draw are defined simply by using the
introduced definitions. For instance, a position P is
mate (black is mated) if black is checked and black
has no legal moves:

Definition Mate (P : Position) := BlackKingAttacked P /\

OnTurn P = B /\ forall P’ : Position, ~ LegalMoveBlack P P’.

Stalemate is defined similarly:

Definition Stalemate (P : Position) := ~BlackKingAttacked P /\

OnTurn P = B /\ forall P’ : Position, ~LegalMoveBlack P P’.

Draw (that occurs if the white rook has been

captured) and the terminating position are defined as
follows:

Definition Draw (P : Position) := OnTurn P = W /\ BKx P = WRx P /\

BKy P = WRy P.

Definition GameEnd (P : Position) :=

Mate P \/ Stalemate P \/ Draw P.

The above definition of mate is simple and

intuitive, but there is one drawback. Within the first
step of Bratko’s strategy, it is required to check if the
position is mate-in-two-moves. This check can be
represented by a definition simulating minimax
search, i.e., a definition that involves alternation of
quantifiers. Of course, that is legitimate, but would
disable automation in proving conjectures involving
this definition i.e. using a procedure for quantifier-
free fragment of linear arithmetic. That is why we
derived an explicit definition of mate-in-two-moves –
step by step, firstly by explicitly defining mate, mate-
in-one-ply, mate-in-two-plies, and mate-in-three-plies
positions. In order to simplify this task, we used
symmetries, so mating situations were explicitly
described one for one edge or one corner. As an
example, we give definitions of concrete mating
situations and the explicit definition of mate
(Symmetric defines eight sorts of symmetries between
two chess positions):

Definition MateEdgeOneCase (P : Position) :=

BKx P = 0 /\ WKx P = 2 /\ BKy P = WKy P /\ WRx P = 0 /\ WRy P >=

WKy P + 2 /\ ChessboardDimension P /\ OnTurn P = B.

Definition MateCornerOneCase (P : Position) :=

BKx P = 0 /\ BKy P = 0 /\ WKx P = 2 /\ WKy P = 1 /\ WRx P = 0 /\

WRy P = 2 /\ ChessboardDimension P /\ OnTurn P = B.

Definition MateConcrete (P : Position) := exists PS : Position,

(MateEdgeOneCase PS \/ MateCornerOneCase PS) /\

Symmetric P PS.

In the definition stated above, instead of the

condition LegalPosition P the weaker condition
ChessboardDimension P is used. It is sufficient for
our purposes, discussed below.

The last definition of mate (MateConcrete) is non-
trivial and involves concrete positions and
symmetries. Hence, because of quest for simplicity
we don’t want to use it as an alternative for the first,
implicit definition. Instead, we proved that the explicit
mate implies the implicit mate (it can be proved that
the opposite also holds, but that is not required for
proving the strategy correct):

Lemma MateConcreteIsValid :

forall P : Position, MateConcrete P -> Mate P.

Moreover, we prove that mate, mate-in-one-ply,

mate-in-two-plies, and mate-in-three-plies positions
are related in the expected way:

Lemma

MateInOnePlyConcreteLeadsToMateConcrete :

forall P1 : Position, MateInOnePlyConcrete P1 -> exists P2 :

Position, LegalMoveWhiteRook P1 P2 /\ MateConcrete P2.

Central European Conference on Information and Intelligent Systems__Page 33 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

Lemma

MateInTwoPliesConcreteLeadsToMateInOnePlyConcrete :

forall P1 : Position, MateInTwoPliesConcrete P1 -> forall P2 :

Position, LegalMoveBlack P1 P2 -> MateInOnePlyConcrete P2.

Lemma

MateInThreePliesConcreteLeadsToMateInTwoPliesConcrete :

forall P1 : Position, MateInThreePliesConcrete P1 -> exists P2 :

Position, LegalMoveWhite P1 P2 /\ MateInTwoPliesConcrete P2.

A simple consequence of the lemmas above is that

in mate-in-one-ply or mate-in-three-plies position the
white can mate.

5 Formalization of Bratko’s KRK
Strategy

Formalization of Bratko’s strategy for KRK poses
new challenges for formalization within linear
arithmetic. For instance, the strategy extensively uses
the notion of “room”, i.e., the area of the chessboard
in which the black king is and that is guarded by the
white rook (see Fig. 2).

 # # # #
é # #
 # # # #
Å #
 # È# # #

 # # # #

Figure 2. Room area

The area is rectangular and its area equals m · n,

where m and n are lengths of its sides. In some steps
of the strategy, the rook has to move in such a way
that this area decreases but this cannot be expressed in
terms of linear arithmetic (because of multiplication).
However, a simple insight still enables using linear
arithmetic: if the rook moves, only one of m and n
changes, and since the formula (implicitly universally
quantified):

()uzyxuzyxuyzx +<+⇔⋅<⋅⇒=∨=

is valid in linear arithmetic, it is sufficient, in this
case, to consider the area as m + n, not as m · n.

The formalization of Bratko’s strategy includes
details hidden in the strategy overview given in
Section 3. For example, Room and the condition that
white has to reduce this Room is defined as follows:

Definition Room (P : Position) :=

match (WRx P - BKx P) + (BKx P - WRx P) with

| 0 => 15

| _ => match (WRy P - BKy P) + (BKy P - WRy P) with

| 0 => 15

| _ => match BKx P - WRx P with

| 0 => match BKy P - WRy P with

| 0 => WRx P + WRy P

| _ => WRx P + (7 - WRy P)

end

| _ => match BKy P - WRy P with

| 0 => (7 - WRx P) + WRy P

| _ => (7 - WRx P) + (7 - WRy P)

end

end

end

end.

Definition NewRoomSmaller (P1 P2 : Position) :=

Room P1 > Room P2.

We don’t explain other components of the strategy

in detail, but most of them should be easily
understandable from the explanations given in the
previous text:

Definition MateIn2 (P1 : Position) :=

MateInOnePlyConcrete P1 \/ MateInThreePliesConcrete P1.

Definition SqueezeCond (P1 : Position) :=

~MateIn2 P1 /\ (exists P2 : Position, LegalMoveWhiteRook P1 P2

= SqueezeMove P1 P2 /\ (forall P3 : Position, LegalMoveBlack P2

P3 /\ NewRoomSmaller P1 P3 /\ NotWhiteRookExposed P2 /\

WhiteRookDivides P2 /\ ~Stalemate P2)).

Definition ApproachCond (P1 : Position) :=

~MateIn2 P1 /\ ~SqueezeCond P1 /\ (exists P2 : Position,

LegalMoveWhiteKing P1 P2 = ApproachMove P1 P2 /\ (KingDiag

P1 P2 \/ ~KingDiag P1 P2 /\ KingNotDiag P1 P2) /\

ApproachCriticalSquare P1 P2 /\ NotWhiteRookExposed P2 /\

(WhiteRookDivides P2 \/ LPattern P2) /\ (RoomGt3 P2 \/

~WhiteKingEdge P2)).

Definition KeepRoomCond (P1 : Position) :=

~MateIn2 P1 /\ ~SqueezeCond P1 /\ ~ApproachCond P1 /\

(exists P2 : Position, LegalMoveWhiteKing P1 P2 =

KeepRoomMove P1 P2 /\ (KingDiag P1 P2 \/ ~KingDiag P1 P2 /\

KingNotDiag P1 P2) /\ NotWhiteRookExposed P2 /\

WhiteRookDivides P2 /\ WhiteKingAndRookNotDiverging P1 P2

/\ (RoomGt3 P2 \/ ~ WhiteKingEdge P2)).

Definition DivideIn2Cond (P1 : Position) :=

~MateIn2 P1 /\ ~SqueezeCond P1 /\ ~ApproachCond P1 /\

~KeepRoomCond P1 /\ (exists P2 : Position, LegalMoveWhite P1

P2 = DivideIn2Move P1 P2 /\ (forall P3 : Position,

LegalMoveBlack P2 P3 /\ (exists P4 : Position, LegalMoveWhite

P3 P4 /\ WhiteRookDivides P4 /\ NotWhiteRookExposed P4))).

Definition DivideIn3Cond (P1 : Position) :=

~MateIn2 P1 /\ ~SqueezeCond P1 /\ ~ApproachCond P1 /\

~KeepRoomCond P1 /\ ~DivideIn2Cond P1 /\ (exists P2 :

Position, LegalMoveWhite P1 P2 = DivideIn2Move P1 P2 /\

(forall P3 : Position, LegalMoveBlack P2 P3 /\ (exists P4 :

Position, LegalMoveWhite P3 P4 /\ (forall P5 : Position,

LegalMoveBlack P4 P5 /\ (exists P6 : Position, LegalMoveWhite

P5 P6 /\ WhiteRookDivides P6 /\ NotWhiteRookExposed P6))))).

Definition Strategy (P1 P2 : Position) :=

MateIn2 P1 \/

SqueezeMove P1 P2 \/

ApproachMove P1 P2 \/

KeepRoomMove P1 P2 \/

DivideIn2Move P1 P2 \/

DivideIn3Move P1 P2.

Central European Conference on Information and Intelligent Systems__Page 34 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

6 Conclusions and Future Work

In this paper we presented our formalization in Coq of
the KRK chess endgame and Bratko’s strategy for the
white player for this endgame. We showed that, with
some observations, the most of the considered notions
and conjectures can be expressed in a simple theory of
linear arithmetic and it appears that the whole of the
chess game can also be suitably represented in this
theory. Concerning the strategy itself, our
formalization led to some simplifications and revealed
some important details neglected or omitted in the
original presentation. For instance, we proved that the
notion of “room” can be expressed with addition
instead of multiplication and we detected that
Bratko’s PROLOG implementation is incorrect for
some positions. Our formalization is, to our
knowledge, the first non-trivial formalized chess
knowledge.

For our future work, in order to prove correctness
of Bratko’s strategy, we plan to use various sorts of
automation and to explore the limits of automation for
linear arithmetic within Coq. We are also planning to
formally (within a proof assistant) analyze other chess
endgames, but also other sorts of chess problems.

References

[1] Anonymous: The qed manifesto, In Proceedings

of the 12th International Conference on
Automated Deduction – CADE-12, volume 814
of Lecture Notes in Computer Science, Springer,
1994, pp. 238-251.

[2] Barendregt, H., Barendsen, E.: Autarkic
computations in formal proofs, Journal of
Automated Reasoning, Vol. 28, No. 3, 2002, pp.
321-336.

[3] Barendregt, H., Wiedijk, F.: The challenge of
computer mathematics, Philosophical
Transactions of the Royal Society, Vol. 363, No.
1835, 2005, pp. 2351-2375.

[4] Barrett, C., Sebastiani, R., Seshia, S. A., Tinelli,
C.: Satisfiability Modulo Theories, volume 185
of Frontiers in Artificial Intelligence and
Applications, chapter 26, IOS Press, 2009, pp.
825-885.

[5] Bertot, Y. Castéran, P.: Interactive Theorem
Proving and Program Development, Springer-
Verlag, 2004.

[6] Besson, F.: Fast reflexive arithmetic tactics the
linear case and beyond, In Types for Proofs and
Programs, International Workshop, TYPES 2006,

volume 4502 of Lecture Notes in Computer
Science, Springer, 2006, pp. 48-62.

[7] Boutin, S.: Using reflection to build efficient and
certified decision procedures, In Abadi, M., Ito,
T. (editors), Proceedings of TACS’97, volume
1281 of Lecture Notes in Computer Science.
Springer-Verlag, 1997.

[8] Bratko, I.: PROLOG Programming for Artificial
Intelligence, Addison-Wesley, 1990.

[9] Bratko, I.: Proving correctness of strategies in the
AL1 assertional language, Information
Processing Letters, Vol. 7, No. 5, 1978, pp. 223-
230.

[10] Breda, G.: Krk chess endgame database
knowledge extraction and compression, Master’s
thesis, Technische Universität Darmstadt, 2006.

[11] Crégut, P.: Une procédure de décision réflexive
pour un fragment de l’arithmétique de
presburger, In Informal proceedings of the 15th
Journées Francophones des Langages Applicatifs,
Charente-Maritime, 2004.

[12] Delahaye, D.: A Tactic Language for the System
Coq, In Parigot, M., Voronkov, A. (editors),
Logic for Programming and Automated
Reasoning, volume 1955, Springer, 2000, pp. 85-
95.

[13] Geuvers, H. et. al.: The “Fundamental Theorem
of Algebra” Project, available at
http://www.cs.ru.nl/~freek/fta/,
Accessed: 27th April 2008.

[14] Gonthier, G.: Formal Proof–The Four-Color
Theorem, Notices of the American Mathematical
Society, Vol. 55, No. 11, 2008, pp. 1382–1393.

[15] Grégoire, B., Mahboubi, A.: Proving equalities in
a commutative ring done right in coq, In Hurd, J.,
Melham, T. F. (editors), Theorem Proving in
Higher Order Logics, TPHOLs 2005, volume
3603 of Lecture Notes in Computer Science,
Springer, 2005, pp. 98-113.

[16] Guid, M., Mozina, M., Sadikov, A., Bratko, I.:
Deriving concepts and strategies from chess
tablebases, In Advances in Computer Games,
ACG 2009, volume 6048 of Lecture Notes in
Computer Science, Springer, 2010, pp. 195-207.

[17] Huet, G., Kahn, G., Paulin-Mohring, C.: The Coq
Proof Assistant - A Tutorial, available at
http://coq.inria.fr/distrib/current/f

Central European Conference on Information and Intelligent Systems__Page 35 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

iles/Tutorial.pdf, Accessed: 26th December
2011.

[18] Janičić, P., Green, I., Bundy, A.: A comparison of
decision procedures in Presburger arithmetic, In
Tošić, R., Budimac, Z. (editors), Proceedings of
the VIII Conference on Logic and Computer
Science (LIRA ‘97), Novi Sad, Yugoslavia,
September 1-4, University of Novi Sad, 1997.
Also available from Edinburgh as DAI Research
Paper No. 872, pp. 91-101.

[19] Janičić, P., Narboux, J., Quaresma, P.: The area
method: a recapitulation, Journal of Automated
Reasoning, 2012. To appear.

[20] Leroy, X.: Formal certification of a compiler
back-end, or: programming a compiler with a
proof assistant, In 33rd symposium Principles of
Programming Languages, ACM Press, 2006, pp.
42-54.

[21] Maliković, M., Čubrilo, M.: What were the last
moves?, International Review on Computers and
Software, Vol. 5, No. 1, 2010, pp. 59-70.

[22] Presburger, M.: Über die Vollständigkeit eines
gewissen Systems der Arithmetik ganzer Zahlen,
in welchem die Addition als einzige Operation
hervortritt, In Sprawozdanie z I Kongresu
metematyków slowiańskich, Warszawa, 1929,
pp. 92-101.

[23] Pugh, W.: The omega test: a fast and practical
integer programming algorithm for dependence
analysis, In ACM/IEEE conference on
Supercomputing, 1991, pp. 4-13.

[24] Stansifer, R.: Presburger’s Article on Integer
Arithmetic: Remarks and Translation, Technical
Report TR 84-639, Department of Computer
Science, Cornell University, September 1984.

[25] The Coq development team: The Coq proof
assistant reference manual, Version 8.3, TypiCal
Project, 2012.

[26] Thompson, K.: Retrograde analysis of certain
endgames, International Computer Chess
Association Journal, Vol. 9, No. 3, 1986, pp. 131-
139.

[27] Thompson, K.: 6-piece endgames, International
Computer Chess Association Journal, Vol. 19,
No. 4, 1996, pp. 215-226.

[28] van den Herik, H. J., Uiterwijk, J. W. H. M., van
Rijswijck, J.: Games solved: Now and in the

future, Artificial Intelligence, Vol. 134, No. 1-2,
2002, pp. 277-311.

[29] Wiedijk, F. (editor): The Seventeen Provers of
the World, volume 3600 of Lecture Notes in
Computer Science, Springer, 2006.

Central European Conference on Information and Intelligent Systems__Page 36 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

