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Abstract. Chess has always been a challenging 
subject for various computer analyses and 
methodologies, and they often brought more general 
advances in the related computer science fields, such 
as search strategies, AI planning, data-mining, etc. 
However, interactive theorem proving has hardly 
been applied to chess. In this paper we present our 
formalization, within the Coq proof assistant, of one 
fragment of the chess game - KRK chess ending and 
several conjectures relevant for this endgame. We 
show that most of the considered notions and 
conjectures can be expressed in a simple theory such 
as linear arithmetic. In addition, in this paper we 
present a formalization of Bratko's strategy for the 
KRK endgame. The presented formalization will serve 
as a key step towards formal correctness proof for 
Bratko's strategy. 
 
Keywords. Interactive theorem proving, Coq, 
automated theorem proving, linear arithmetic, chess 
endgames, KRK chess endgame 
 

1 Introduction 
 
Over the last years interactive theorem proving has 
been successfully used for proving a number of 
complex theorems and for building a corpus of 
verified mathematical and computer science 
knowledge. These efforts lead to a „database of all 
important, established mathematical knowledge, 
strictly formalized and with all proofs having been 
checked automatically“ [1]. Interactive theorem 
proving is typically applied in pure mathematics and 
computer science, but other reasoning tasks can also 
be subject to formal analysis and interactive theorem 
proving. Chess, as a prototype of an intellectual game, 
is one example of such domain. Chess has always 
been a challenging subject of various computer 
analyses and methodologies, and they often brought 
more general advances in the related computer 
science fields, such as search strategies, AI planning, 
data-mining, etc. However, interactive theorem 
proving has hardly been applied to chess. In this paper 

we present our formalization of one fragment of the 
chess game (one chess ending) within the Coq proof 
assistant. Within the task of formalizing chess, we had 
two primary motivations: 

 
- To show that the game of chess can be suitably 

described within a relatively simple theory such as 
linear arithmetic. Moreover, strategies for chess 
endings and their correctness can also be 
described, to a large extent, in terms of linear 
arithmetic. Such a description of chess and chess 
strategies can be used as a basis for formalization 
within a proof assistant such as Coq. 

- To explore practical potentials of automation 
available within a proof assistant such as Coq, 
primarily automation related to decidable theories 
such as linear arithmetic. 
 
We would like to point out that, as for many other 

problems treated by interactive theorem proving, 
proving correctness of chess endgames is not safety 
critical. Still, it is plausible to have machine verifiable 
proofs for such domains as well because: 

 
- machine verifiable proofs often reveal flaws in 

known informal proofs; 
- machine verifiable proofs provide building blocks 

that can be used for other conjectures in the same 
domain or even in some other domains; 

- machine verifiable proofs are becoming a golden 
standard for all mathematical proofs; 

- newly constructed proofs and the growing body of 
formally proved conjectures help further 
development of the technology of interactive 
theorem proving. 

 
In formalizing and proving correct an endgame 

strategy, there are three stages, each with their own 
specifics and challenges: 

 
- formalization of relevant chess rules; 
- formalization of the strategy itself; 

Central European Conference on Information and Intelligent Systems____________________________________________________________________________________________________Page 29 of 493

 
Varaždin, Croatia
____________________________________________________________________________________________________ 

Faculty of Organization and Informatics
 

September 19-21, 2012



- formalization and proving of the correctness 
conjecture. 

 
Within this paper, we will address the first two of 

the three stages above. 
We are not aware of other formalizations of chess 

strategies within a proof assistant. There is a paper on 
retrograde chess analysis within Coq but it does not 
consider chess strategies [21]. 

The rest of the paper is organized as following: in 
Section 2 we give a brief background information on 
interactive theorem proving, Coq, linear arithmetic 
and chess endgame strategies. In Section 3, we outline 
the considered endgame strategy and present some 
analyses of its performance. In Section 4 we present 
our formalization of the relevant chess rules, in 
Section 5 we present our formalization of the 
considered chess endgame strategy and in Section 6 
we draw final conclusions and discuss potential 
further work. 
 

2 Background 
 
In this section we give a background relevant to the 
work presented in this paper. First we briefly discuss 
interactive theorem proving and the system Coq, then 
linear arithmetic and how it can be automated in Coq, 
and finally the chess game and chess endgame 
strategies. 
 
2.1 Interactive Theorem Proving and Coq 
 
Interactive theorem proving is a process of 
development of formal mathematical proofs by 
interaction between a computer and a human. In this 
interaction, the computer is equipped with a proof 
assistant tool (i.e., “an interactive theorem prover”) 
that checks and guides steps performed by the human, 
by verifying each proof step with respect to the given 
underlying logic. The importance of interactive 
theorem proving comes from the fact that “traditional 
proofs” most often are not proofs at all, because of the 
many missing fragments, informal arguments, etc. 
Interactive theorem proving uncovered many flaws in 
many mathematical proofs. On the other hand, proofs 
constructed within proof assistants are verbatim and 
detailed, and typically much longer than “traditional 
proofs” [3]. When checking proofs, correctness of 
proof assistants themselves is also critical. Proof 
assistants often have a very small kernel that checks 
all derivations, according to de Bruijn criterion [2]. 
This small core can consist of just tens of lines of 
code and can be manually verified. 

Interactive theorem proving gets more and more 
popular and the body of formalized both classical and 
modern mathematical and computer science 
knowledge is increasing. There are also significant 
theorems proved for the first time thanks to proof 
assistants. Some of the most popular modern proof 

assistants are Coq, Isabelle, HOL Light, PVS, Mizar, 
ACL2, etc [29]. 

The Coq system [5], [17], [25] is implemented in 
Objective Caml and works within the theory of the 
calculus of inductive constructions (CIC). This theory 
is a typed λ calculus with polymorphism, dependent 
types and a primitive notion of inductive types. Coq 
also provides a dependently typed functional 
programming language. However, since Coq follows 
the propositions-as-types, proofs-as-programs Curry-
Howard interpretation, the distinction between 
programming and proving is blurred. In Coq, a tactic, 
described in the language Ltac [12], is a program 
which expresses the sequence of basic logical steps. 
Coq has over 150 tactics that assist the user in 
developing a formal proof. Proofs in Coq are mainly 
built in interactive fashion, but there are various 
decision procedures and tactics based on automatic 
theorem proving that provide automation. Coq has 
been used in a wide range of domains and for proving 
a number of complex conjectures - for instance, for 
the four colour theorem [14], the fundamental 
theorem of algebra [13], for implementing and 
proving correct methods for automatically proving 
theorems in geometry [19], for proving correctness of 
a compiler [20], etc. Coq has been used in formalizing 
reasoning tasks not in pure mathematics or computer 
science, like solving sudoku problems or solving 2× 2 
Rubik’s cube.1 
 
2.2 Linear Arithmetic 
 
Linear arithmetic (or Presburger arithmetic) is a 
fragment of Peano arithmetic that uses only addition 
(and not multiplication). In linear arithmetic, 
multiplication by a constant number is allowed, and 
nx is just a shorthand for x+x+…+x where x occurs n 
times. For subtraction it holds x � y = 0 if x < y. In 
contrast to the whole of arithmetic, linear arithmetic is 
decidable [22]. This theory is rather simple, but still 
expressible enough for many applications in computer 
science [4]. 

There are several decision procedures for linear 
arithmetic [18]. Like decision procedures for other 
theories, there are several methods to add decision 
procedures for linear arithmetic to Coq [15], [6], [7]. 
This task usually requires a substantial engineering 
efforts and a profound understanding of the internals 
of the decision procedure. One of the approaches is to 
implement the decision procedure in Ltac or in 
Ocaml2, so that for each input instance it produces a 
proof term that can be checked by Coq. This approach 
is used by the romega tactic, by Crégut [11], [25]. 
This tactics provides decision procedure for 
quantifier-free linear arithmetics over natural 
numbers. It generates Coq proof terms from traces 
obtained from the Omega test [23]. 
                                                 
1 http://www-sop.inria.fr/marelle/Laurent.Thery/me.html 
2 Ocaml is the implementation language of Coq. 
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2.3 Chess and Chess Endgame Strategies 
 
We assume that the reader is familiar with the chess 
rules, so we do not describe them here. KRK denotes 
the chess ending with white player having a king and 
a rook, and black player having only a king. 

Chess endgames (including KRK, as one of the 
simplest) are often studied by exhaustive analysis and 
in the context of tablebases. An endgame tablebase is 
an ordered list of all positions in the endgame with 
interesting values precalculated [10]. First endgame 
tablebases were constructed by Thompson [26], [27]. 
Building a chess tablebase is typically based on 
retrograde analysis: first, all mate positions are listed, 
then all positions that can lead to those positions, etc. 
Building a tablebase does not require deep insights or 
complex algorithms, but can be computationally or 
memory expensive for some endgames. Also, 
tablebases sometimes reveal chess knowledge that is 
not considered by or relevant for typical chess 
players. For instance, tablebases can detect positions 
with optimal strategy leading to mate only after 250 
moves. Such revelations obtained by tablebases may 
be intriguing, but actually they don’t provide much of 
typical chess knowledge and insights: “current state of 
the art of machine-learning programs is that many ad 
hoc recipes are produced. Moreover, they are hardly 
intelligible to human experts. In fact, the database 
itself is a long list of ad hoc recipes” [28]. This 
motivates work on constructing strategies for specific 
endings and automated analysis of tablebases based 
on machine learning and data mining and extraction 
of human understandable knowledge of winning 
strategies [16], [10]. Automatically extracted 
strategies still cannot compete with human 
constructed strategies. 
 

3 Bratko’s Strategy for KRK 
 
Bratko’s strategy for white for the KRK ending can be 
outlined as follows [8], [9]: 
 
1. Look for a way to mate black in two moves; 
2. If the above is not possible, then look for a way to 

further constrain the area on the chess board to 
which the black king is confined by white rook; 

3. If the above is not possible, then look for a way to 
move the king closer to the black king so as to 
help the rook in squeezing the black King; 

4. If none of the above pieces of advice 1, 2, 3 
works, then look for a way of maintaining the 
present achievements in the sense of 2 and 3 (i.e. 
make a waiting move); 

5. If none of 1, 2, 3 or 4 is attainable then look for a 
way of obtaining a position in which the rook 
divides the two kings either vertically or 
horizontally. 

 

Actually, the strategy has a number of hidden 
details [8], [9] and this shows that it is very difficult 
to have a simple winning strategy (not to mention an 
optimal strategy) even for a simple ending such as 
KRK. Some details of the strategy will be given in 
Section 5. 

Bratko’s strategy is the subject of analysis in this 
paper. It is correct, i.e., from any position with white 
to move, following Bratko’s strategy white wins. The 
correctness can be proved in different ways. Bratko 
gave one high-level proof of correctness of his 
strategy but that proof is informal [9]. 

Our goal was to formalize the strategy – make this 
first critical step towards formally proving that the 
strategy is correct. The formal proof can follow 
Bratko’s informal proof, but it is expected that many 
missing steps will have to be filled or some flaws 
corrected. Note that Bratko’s strategy is not optimal 
and we do not address the optimality issue within our 
formalization. 
 

4 Formalization of Chess Rules 
 
In order to have suitable machine verifiable 
correctness proof for a chess endgame strategy, it is 
critical to have a simple and intuitive core that defines 
the chess rules and the strategy itself. Namely, once 
the proofs are constructed, they are verified by the 
proof assistant and are not subject to any doubt. What 
could cause some doubt is the formulation of the 
central conjecture, which boils down to basic 
definitions. Thus, it is essential to have the chess rules 
(and also Bratko’s strategy) defined in a simple, 
concise, intuitive, and convincing way. In this section 
we will discuss some design decisions and will focus 
only on the fragment of the game relevant for the 
KRK ending. Our design decisions were largely 
motivated (apart from the quest for simplicity) by our 
aim to automate as much reasoning as possible. We 
will show that the chess rules can be simply described 
in terms of linear arithmetic over natural numbers3 
which would be beneficial since a significant portion 
of the proving process can be automated by decision 
procedures for linear arithmetic. In the rest of the 
material, if not explicitly stated otherwise, it is 
assumed that the underlying theory is linear arithmetic 
over natural numbers. We will not give the full 
formalization in Coq, but only some of its fragments, 
for illustration. 

 
Chessboard and positions. There are several options 
for describing the chessboard and chess positions, 
including the following two natural options: 
 
                                                 
3 Of course, chess rules and endgame strategy can be described in 
terms of even simpler theories, for instance - propositional logic. 
However, we find that linear arithmetic better suits that purpose - 
within it all conditions can be represented in a compact and 
intuitive way. 
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1. represent the chessboard as an 8× 8 array (or as a 
list of lists in Coq) with each element containing a 
distinguished value for empty field or for a 
specific chess piece of specific color (this 
approach was used in the earlier work in 
retrograde chess analysis [21]); 

2. associate each piece (possibly) on the board with a 
pair of its coordinates. 

 
The former approach could be more suitable for 

the full chess game but the latter turns to be much 
more suitable for a restricted variant of the game – 
with only three pieces, as in the KRK ending. 
Namely, instead of dealing with values of 64 squares 
of the chessboard, only six values are considered. In 
addition, if one aims at exploiting a decision 
procedure for linear arithmetic, in the first approach 
he/she would have to get rid of lists in conjectures 
before trying to prove them. For the latter approach, 
extensions from one chess endgame to another, or to a 
full game are possible, but not very elegant (since 
variables for each new chess piece have to be 
introduced). 

In the following text, the second approach for 
representing the chessboard will be assumed. A 
position is defined as a record type which is a 
common type for a bundle of objects: the coordinates 
of the white king (WKx,WKy), the coordinates of the 
white rook (WRx,WRy), the coordinates of the black 
king (BKx,BKy), and the value OnTurn on which 
player is on turn that can be W=1 or B=2. The notion 
of position is represented in Coq as follows: 

 
Record Position := position {WKx : nat; WKy : nat; WRx : nat; WRy : 

nat; BKx : nat; BKy : nat; OnTurn : nat}. 

 
Although the white can theoretically castle in 

some positions, this information is not maintained 
(and castling is not considered as a legal move). Also, 
information relevant for the „fifty-moves rule“ is not 
maintained.4 

It has to be ensured that in each position, the value 
for each coordinate is between 1 and 8. In linear 
arithmetic over natural numbers, however, it is more 
suitable (and is less computationally demanding) to 
use zero-based representation of rows and columns, 
so constraints for all coordinates in one position 
should be only that they are less than or equal to 7, 
which can be represented in Coq as follows: 

 
Definition ChessboardDimension (P : Position) := WKx P <= 7 /\ 

WKy P <= 7 /\ BKx P <= 7 /\ BKy P <= 7 /\ WRx P <= 7 /\ WRy P <= 7. 

 
Coordinates (WKx,WKy) are always associated to 

some position P (e.g, WKx P) but, for simplicity, in 
the following informal text (not in Coq code, of 
course), we will often skip writing the relevant 
position P. 
                                                 
4 Still, as said, within the correctness proof for Bratko’s strategy it 
is shown that the “fifty-moves rule” is obeyed. 

 
Legal positions. The constraints on legal positions can 
be represented in terms of linear arithmetic. For 
instance, the white king and the white rook cannot be 
on the same square: 
 
Definition NotOnSameSquare (P : Position) := 

WKx P <> WRx P \/ WKy P <> WRy P. 

 
Also, the rule that the two kings cannot be on the 

same or adjacent squares can be expressed as: 
 

Definition NotKingNextKing (P : Position) := WKx P > BKx P + 1 \/ 

BKx P > WKx P + 1 \/ WKy P > BKy P + 1 \/ BKy P > WKy P + 1. 

 
For defining legal positions, a condition that the 

black king is attacked by the white rook: 
 

Definition BlackKingAttacked (P : Position) := 

WRx P = BKx P /\ (WKx P <> WRx P \/ WKx P = WRx P /\ (WKy P <= 

BKy P /\ WKy P <= WRy P \/ BKy P <= WKy P /\ WRy P <= WKy P)) 

\/ 

WRy P = BKy P /\ (WKy P <> WRy P \/ WKy P = WRy P /\ (WKx P <= 

BKx P /\ WKx P <= WRx P \/ BKx P <= WKx P /\ WRx P <= WKx P)). 
 
A position P is legal if all coordinates of all pieces 

are less than or equal to 7, if the white king and the 
white rook are not on the same square, if the two 
kings are not on the same or adjacent squares and if 
the black king is not attacked when the white is on 
turn: 

 
Definition LegalPosition (P : Position) := 

ChessboardDimension P /\ NotOnSameSquare P /\ 

NotKingNextKing P /\ ~(BlackKingAttacked P /\ OnTurn P = W). 

 
However, there are still some subtle issues 

concerning legal positions. Let us consider the 
position on Fig. 1. 

 
 #  #  #  # 
#  #  #  #  
 #  #  # # 
#  #  #  #  
 #  #  #  # 

# #  #  #  #  
È #  #  #  # 
Å  é  #  #  

 
Figure 1. An example of illegal position 

 
According the above definition, this position is 

legal only if the white is not on turn. But, if the black 
is on turn, what was the last move of the white? It can 
be easily checked that there was no legal move of the 
white that could have led to the current position, so 
the given position is impossible. Because of such 
situations (subject to retrograde chess analysis [21]), 
it is difficult to concisely define legal positions. The 
correct definition would be that a position is legal if it 
is reachable from the initial chess position, but such 
definition is practically useless. 
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Nonetheless, the above definition of the legal 
position is sufficient for the purposes of presented 
work because we consider a strategy of white, 
therefore only the initial positions in which the white 
is on turn. 
 
Legal moves. The rules for moving pieces can also be 
simply described in terms of linear arithmetic. They 
are divided into: (i) parts specifying movements rules 
themselves; (ii ) a constraint stating that all other 
pieces remained on their original positions if not 
captured by the moving piece; (iii ) a condition stating 
that the current player is indeed on turn and that 
another player is on turn after the move; (iv) the 
achieved position is legal. As an illustration, we give 
the part (i) specifying movement rules for the white 
king: 
 
Definition MoveWhiteKing (P1 P2 : Position) := 

WKx P2 - WKx P1 <= 1 /\ WKx P1 - WKx P2 <= 1 /\ 

WKy P2 - WKy P1 <= 1 /\ WKy P1 - WKy P2 <= 1 /\ 

(WKx P1 <> WKx P2 \/ WKy P1 <> WKy P2). 
 
and the part (i) specifying that after a move of the 
white king all other pieces remained on their original 
positions: 
 
Definition OtherAfterMoveWhiteKing (P1 P2 : Position) := 

BKx P2 = BKx P1 /\ BKy P2 = BKy P1 /\ 

WRx P2 = WRx P1 /\ WRy P2 = WRy P1. 

 
A definition of a legal move of the white king 

(involving notions outlined above) is: 
 

Definition LegalMoveWhiteKing (P1 P2 : Position) := 

MoveWhiteKing P1 P2 /\ 

OtherAfterMoveWhiteKing P1 P2 /\ 

OnTurn P1 = W /\ OnTurn P2 = B /\ 

LegalPosition P2. 
 
Note that, following the representation of the 

chessboard, movement rules for both kings have to be 
specified - the related definition LegalMoveBlackKing 
is analogous to the one given above. 

 
Mate, stalemate and draw. Positions that are mate, 

stalemate or draw are defined simply by using the 
introduced definitions. For instance, a position P is 
mate (black is mated) if black is checked and black 
has no legal moves: 

 
Definition Mate (P : Position) := BlackKingAttacked P /\ 

OnTurn P = B /\ forall P’ : Position, ~ LegalMoveBlack P P’. 

 
Stalemate is defined similarly: 
 

Definition Stalemate (P : Position) := ~BlackKingAttacked P /\ 

OnTurn P = B /\ forall P’ : Position, ~LegalMoveBlack P P’. 

 
Draw (that occurs if the white rook has been 

captured) and the terminating position are defined as 
follows: 

 

Definition Draw (P : Position) := OnTurn P = W /\ BKx P = WRx P /\ 

BKy P = WRy P. 

 

Definition GameEnd (P : Position) := 

Mate P \/ Stalemate P \/ Draw P. 

 
The above definition of mate is simple and 

intuitive, but there is one drawback. Within the first 
step of Bratko’s strategy, it is required to check if the 
position is mate-in-two-moves. This check can be 
represented by a definition simulating minimax 
search, i.e., a definition that involves alternation of 
quantifiers. Of course, that is legitimate, but would 
disable automation in proving conjectures involving 
this definition i.e. using a procedure for quantifier-
free fragment of linear arithmetic. That is why we 
derived an explicit definition of mate-in-two-moves – 
step by step, firstly by explicitly defining mate, mate-
in-one-ply, mate-in-two-plies, and mate-in-three-plies 
positions. In order to simplify this task, we used 
symmetries, so mating situations were explicitly 
described one for one edge or one corner. As an 
example, we give definitions of concrete mating 
situations and the explicit definition of mate 
(Symmetric defines eight sorts of symmetries between 
two chess positions): 

 
Definition MateEdgeOneCase (P : Position) := 

BKx P = 0 /\ WKx P = 2 /\ BKy P = WKy P /\ WRx P = 0 /\ WRy P >= 

WKy P + 2 /\ ChessboardDimension P /\ OnTurn P = B. 

 

Definition MateCornerOneCase (P : Position) := 

BKx P = 0 /\ BKy P = 0 /\ WKx P = 2 /\ WKy P = 1 /\ WRx P = 0 /\ 

WRy P = 2 /\ ChessboardDimension P /\ OnTurn P = B. 

 

Definition MateConcrete (P : Position) := exists PS : Position, 

(MateEdgeOneCase PS \/ MateCornerOneCase PS) /\ 

Symmetric P PS. 

 
In the definition stated above, instead of the 

condition LegalPosition P the weaker condition 
ChessboardDimension P is used. It is sufficient for 
our purposes, discussed below. 

The last definition of mate (MateConcrete) is non-
trivial and involves concrete positions and 
symmetries. Hence, because of quest for simplicity 
we don’t want to use it as an alternative for the first, 
implicit definition. Instead, we proved that the explicit 
mate implies the implicit mate (it can be proved that 
the opposite also holds, but that is not required for 
proving the strategy correct): 

 
Lemma MateConcreteIsValid : 

forall P : Position, MateConcrete P -> Mate P. 

 
Moreover, we prove that mate, mate-in-one-ply, 

mate-in-two-plies, and mate-in-three-plies positions 
are related in the expected way: 

 
Lemma 

MateInOnePlyConcreteLeadsToMateConcrete : 

forall P1 : Position, MateInOnePlyConcrete P1 -> exists P2 : 

Position, LegalMoveWhiteRook P1 P2 /\ MateConcrete P2. 
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Lemma 

MateInTwoPliesConcreteLeadsToMateInOnePlyConcrete : 

forall P1 : Position, MateInTwoPliesConcrete P1 -> forall P2 : 

Position, LegalMoveBlack P1 P2 -> MateInOnePlyConcrete P2. 

 

Lemma 

MateInThreePliesConcreteLeadsToMateInTwoPliesConcrete : 

forall P1 : Position, MateInThreePliesConcrete P1 -> exists P2 : 

Position, LegalMoveWhite P1 P2 /\ MateInTwoPliesConcrete P2. 
 
A simple consequence of the lemmas above is that 

in mate-in-one-ply or mate-in-three-plies position the 
white can mate. 
 

5 Formalization of Bratko’s KRK 
Strategy 
 
Formalization of Bratko’s strategy for KRK poses 
new challenges for formalization within linear 
arithmetic. For instance, the strategy extensively uses 
the notion of “room”, i.e., the area of the chessboard 
in which the black king is and that is guarded by the 
white rook (see Fig. 2). 

 
 #  #  #  # 
#  é  #  #  
 #  #  # # 
#  #  Å  #  
 # È#  #  # 

# #  #  #  #  
 #  #  #  # 
#  #  #  #  

 
Figure 2. Room area 

 
The area is rectangular and its area equals m · n, 

where m and n are lengths of its sides. In some steps 
of the strategy, the rook has to move in such a way 
that this area decreases but this cannot be expressed in 
terms of linear arithmetic (because of multiplication). 
However, a simple insight still enables using linear 
arithmetic: if the rook moves, only one of m and n 
changes, and since the formula (implicitly universally 
quantified): 

 

( )uzyxuzyxuyzx +<+⇔⋅<⋅⇒=∨=  

 
is valid in linear arithmetic, it is sufficient, in this 
case, to consider the area as m + n, not as m · n. 

The formalization of Bratko’s strategy includes 
details hidden in the strategy overview given in 
Section 3. For example, Room and the condition that 
white has to reduce this Room is defined as follows: 

 
Definition Room (P : Position) := 

match (WRx P - BKx P) + (BKx P - WRx P) with 

| 0 => 15 

| _ => match (WRy P - BKy P) + (BKy P - WRy P) with 

| 0 => 15 

| _ => match BKx P - WRx P with 

| 0 => match BKy P - WRy P with 

| 0 => WRx P + WRy P 

| _ => WRx P + (7 - WRy P) 

end 

| _ => match BKy P - WRy P with 

| 0 => (7 - WRx P) + WRy P 

| _ => (7 - WRx P) + (7 - WRy P) 

end 

end 

end 

end. 

 

Definition NewRoomSmaller (P1 P2 : Position) := 

Room P1 > Room P2. 
 
We don’t explain other components of the strategy 

in detail, but most of them should be easily 
understandable from the explanations given in the 
previous text: 
 
Definition MateIn2 (P1 : Position) := 

MateInOnePlyConcrete P1 \/ MateInThreePliesConcrete P1. 

 

Definition SqueezeCond (P1 : Position) := 

~MateIn2 P1 /\ (exists P2 : Position, LegalMoveWhiteRook P1 P2 

= SqueezeMove P1 P2 /\ (forall P3 : Position, LegalMoveBlack P2 

P3 /\ NewRoomSmaller P1 P3 /\ NotWhiteRookExposed P2 /\ 

WhiteRookDivides P2 /\ ~Stalemate P2)). 

 

Definition ApproachCond (P1 : Position) := 

~MateIn2 P1 /\ ~SqueezeCond P1 /\ (exists P2 : Position, 

LegalMoveWhiteKing P1 P2 = ApproachMove P1 P2 /\ (KingDiag 

P1 P2 \/ ~KingDiag P1 P2 /\ KingNotDiag P1 P2) /\ 

ApproachCriticalSquare P1 P2 /\ NotWhiteRookExposed P2 /\ 

(WhiteRookDivides P2 \/ LPattern P2) /\ (RoomGt3 P2 \/ 

~WhiteKingEdge P2)). 

 

Definition KeepRoomCond (P1 : Position) := 

~MateIn2 P1 /\ ~SqueezeCond P1 /\ ~ApproachCond P1 /\ 

(exists P2 : Position, LegalMoveWhiteKing P1 P2 = 

KeepRoomMove P1 P2 /\ (KingDiag P1 P2 \/ ~KingDiag P1 P2 /\ 

KingNotDiag P1 P2) /\ NotWhiteRookExposed P2 /\ 

WhiteRookDivides P2 /\ WhiteKingAndRookNotDiverging P1 P2 

/\ (RoomGt3 P2 \/ ~ WhiteKingEdge P2)). 

 

Definition DivideIn2Cond (P1 : Position) := 

~MateIn2 P1 /\ ~SqueezeCond P1 /\ ~ApproachCond P1 /\ 

~KeepRoomCond P1 /\ (exists P2 : Position, LegalMoveWhite P1 

P2 = DivideIn2Move P1 P2 /\ (forall P3 : Position, 

LegalMoveBlack P2 P3 /\ (exists P4 : Position, LegalMoveWhite 

P3 P4 /\ WhiteRookDivides P4 /\ NotWhiteRookExposed P4))). 

 

Definition DivideIn3Cond (P1 : Position) := 

~MateIn2 P1 /\ ~SqueezeCond P1 /\ ~ApproachCond P1 /\ 

~KeepRoomCond P1 /\ ~DivideIn2Cond P1 /\ (exists P2 : 

Position, LegalMoveWhite P1 P2 = DivideIn2Move P1 P2 /\ 

(forall P3 : Position, LegalMoveBlack P2 P3 /\ (exists P4 : 

Position, LegalMoveWhite P3 P4 /\ (forall P5 : Position, 

LegalMoveBlack P4 P5 /\ (exists P6 : Position, LegalMoveWhite 

P5 P6 /\ WhiteRookDivides P6 /\ NotWhiteRookExposed P6))))). 

 

Definition Strategy (P1 P2 : Position) := 

MateIn2 P1 \/ 

SqueezeMove P1 P2 \/ 

ApproachMove P1 P2 \/ 

KeepRoomMove P1 P2 \/ 

DivideIn2Move P1 P2 \/ 

DivideIn3Move P1 P2. 
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6 Conclusions and Future Work 
 
In this paper we presented our formalization in Coq of 
the KRK chess endgame and Bratko’s strategy for the 
white player for this endgame. We showed that, with 
some observations, the most of the considered notions 
and conjectures can be expressed in a simple theory of 
linear arithmetic and it appears that the whole of the 
chess game can also be suitably represented in this 
theory. Concerning the strategy itself, our 
formalization led to some simplifications and revealed 
some important details neglected or omitted in the 
original presentation. For instance, we proved that the 
notion of “room” can be expressed with addition 
instead of multiplication and we detected that 
Bratko’s PROLOG implementation is incorrect for 
some positions. Our formalization is, to our 
knowledge, the first non-trivial formalized chess 
knowledge. 

For our future work, in order to prove correctness 
of Bratko’s strategy, we plan to use various sorts of 
automation and to explore the limits of automation for 
linear arithmetic within Coq. We are also planning to 
formally (within a proof assistant) analyze other chess 
endgames, but also other sorts of chess problems. 

 

References 
 
[1] Anonymous: The qed manifesto, In Proceedings 

of the 12th International Conference on 
Automated Deduction – CADE-12, volume 814 
of Lecture Notes in Computer Science, Springer, 
1994, pp. 238-251. 

[2] Barendregt, H., Barendsen, E.: Autarkic 
computations in formal proofs, Journal of 
Automated Reasoning, Vol. 28, No. 3, 2002, pp. 
321-336. 

[3] Barendregt, H., Wiedijk, F.: The challenge of 
computer mathematics, Philosophical 
Transactions of the Royal Society, Vol. 363, No. 
1835, 2005, pp. 2351-2375. 

[4] Barrett, C., Sebastiani, R., Seshia, S. A., Tinelli, 
C.: Satisfiability Modulo Theories, volume 185 
of Frontiers in Artificial Intelligence and 
Applications, chapter 26, IOS Press, 2009, pp. 
825-885. 

[5] Bertot, Y. Castéran, P.: Interactive Theorem 
Proving and Program Development, Springer-
Verlag, 2004. 

[6] Besson, F.: Fast reflexive arithmetic tactics the 
linear case and beyond, In Types for Proofs and 
Programs, International Workshop, TYPES 2006, 

volume 4502 of Lecture Notes in Computer 
Science, Springer, 2006, pp. 48-62. 

[7] Boutin, S.: Using reflection to build efficient and 
certified decision procedures, In Abadi, M., Ito, 
T. (editors), Proceedings of TACS’97, volume 
1281 of Lecture Notes in Computer Science. 
Springer-Verlag, 1997. 

[8] Bratko, I.: PROLOG Programming for Artificial 
Intelligence, Addison-Wesley, 1990. 

[9] Bratko, I.: Proving correctness of strategies in the 
AL1 assertional language, Information 
Processing Letters, Vol. 7, No. 5, 1978, pp. 223-
230. 

[10] Breda, G.: Krk chess endgame database 
knowledge extraction and compression, Master’s 
thesis, Technische Universität Darmstadt, 2006. 

[11] Crégut, P.: Une procédure de décision réflexive 
pour un fragment de l’arithmétique de 
presburger, In Informal proceedings of the 15th 
Journées Francophones des Langages Applicatifs, 
Charente-Maritime, 2004. 

[12] Delahaye, D.: A Tactic Language for the System 
Coq, In Parigot, M., Voronkov, A. (editors), 
Logic for Programming and Automated 
Reasoning, volume 1955, Springer, 2000, pp. 85-
95. 

[13] Geuvers, H. et. al.: The “Fundamental Theorem 
of Algebra” Project, available at 
http://www.cs.ru.nl/~freek/fta/, 
Accessed: 27th April 2008. 

[14] Gonthier, G.: Formal Proof–The Four-Color 
Theorem, Notices of the American Mathematical 
Society, Vol. 55, No. 11, 2008, pp. 1382–1393. 

[15] Grégoire, B., Mahboubi, A.: Proving equalities in 
a commutative ring done right in coq, In Hurd, J., 
Melham, T. F. (editors), Theorem Proving in 
Higher Order Logics, TPHOLs 2005, volume 
3603 of Lecture Notes in Computer Science, 
Springer, 2005, pp. 98-113. 

[16] Guid, M., Mozina, M., Sadikov, A., Bratko, I.: 
Deriving concepts and strategies from chess 
tablebases, In Advances in Computer Games, 
ACG 2009, volume 6048 of Lecture Notes in 
Computer Science, Springer, 2010, pp. 195-207. 

[17] Huet, G., Kahn, G., Paulin-Mohring, C.: The Coq 
Proof Assistant - A Tutorial, available at 
http://coq.inria.fr/distrib/current/f

Central European Conference on Information and Intelligent Systems____________________________________________________________________________________________________Page 35 of 493

 
Varaždin, Croatia
____________________________________________________________________________________________________ 

Faculty of Organization and Informatics
 

September 19-21, 2012



iles/Tutorial.pdf, Accessed: 26th December 
2011. 

[18] Janičić, P., Green, I., Bundy, A.: A comparison of 
decision procedures in Presburger arithmetic, In 
Tošić, R., Budimac, Z. (editors), Proceedings of 
the VIII Conference on Logic and Computer 
Science (LIRA ‘97), Novi Sad, Yugoslavia, 
September 1-4, University of Novi Sad, 1997. 
Also available from Edinburgh as DAI Research 
Paper No. 872, pp. 91-101. 

[19] Janičić, P., Narboux, J., Quaresma, P.: The area 
method: a recapitulation, Journal of Automated 
Reasoning, 2012. To appear. 

[20] Leroy, X.: Formal certification of a compiler 
back-end, or: programming a compiler with a 
proof assistant, In 33rd symposium Principles of 
Programming Languages, ACM Press, 2006, pp. 
42-54. 

[21] Maliković, M., Čubrilo, M.: What were the last 
moves?, International Review on Computers and 
Software, Vol. 5, No. 1, 2010, pp. 59-70. 

[22] Presburger, M.: Über die Vollständigkeit eines 
gewissen Systems der Arithmetik ganzer Zahlen, 
in welchem die Addition als einzige Operation 
hervortritt, In Sprawozdanie z I Kongresu 
metematyków slowiańskich, Warszawa, 1929, 
pp. 92-101. 

[23] Pugh, W.: The omega test: a fast and practical 
integer programming algorithm for dependence 
analysis, In ACM/IEEE conference on 
Supercomputing, 1991, pp. 4-13. 

[24] Stansifer, R.: Presburger’s Article on Integer 
Arithmetic: Remarks and Translation, Technical 
Report TR 84-639, Department of Computer 
Science, Cornell University, September 1984. 

[25] The Coq development team: The Coq proof 
assistant reference manual, Version 8.3, TypiCal 
Project, 2012. 

[26] Thompson, K.: Retrograde analysis of certain 
endgames, International Computer Chess 
Association Journal, Vol. 9, No. 3, 1986, pp. 131-
139. 

[27] Thompson, K.: 6-piece endgames, International 
Computer Chess Association Journal, Vol. 19, 
No. 4, 1996, pp. 215-226. 

[28] van den Herik, H. J., Uiterwijk, J. W. H. M., van 
Rijswijck, J.: Games solved: Now and in the 

future, Artificial Intelligence, Vol. 134, No. 1-2, 
2002, pp. 277-311. 

[29] Wiedijk, F. (editor): The Seventeen Provers of 
the World, volume 3600 of Lecture Notes in 
Computer Science, Springer, 2006. 

Central European Conference on Information and Intelligent Systems____________________________________________________________________________________________________Page 36 of 493

 
Varaždin, Croatia
____________________________________________________________________________________________________ 

Faculty of Organization and Informatics
 

September 19-21, 2012




