
A Simulation-driven Approach for Composite Web

Services Validation

Vadym Shkarupylo

Computer Systems and Networks Dept.

Zaporizhzhya National Technical University

Zhukovsky 64, 69063 Zaporizhzhya, Ukraine

vadshkar@yandex.ua

Abstract. The approach for Composite Web Services

validation has been proposed. It's based on DEVS-

formalism usage, which provides the ability to

conduct validation by way of simulation. The WS-

BPEL-description has been considered as an input

data. The Temporal Logic of Actions (TLA) has been

chosen to check the description.

The proposed approach provides the ability to

perform validation with no need to actually deploy the

Composite Web Service.

To check the proposed approach the case study has

been conducted. For this purpose the testing-driven

and the simulation-driven validations have been

conducted. The results obtained have shown the

approach applicability.

Keywords. Composite Web Service, Simulation,

Validation, WS-BPEL, TLA, DEVS

1 Introduction

Nowadays the principles of Service-oriented

architecture (SOA) are ubiquitously considered as a

key principles in different distributed software

systems engineering processes. Such principles are

reusability, composability, loose coupling, etc.

(Papazoglou et al., 2007). Typical representatives of

the appropriate systems are the Web Services, the

Composite Web Services (built on reusability and

composability principles) in particular.

Today the engineering process itself is tightly

coupled with extensive formal methods usage. Good

example of this are the Amazon Web Services

(Newcombe et al., 2015). Here the Temporal Logic of

Actions (TLA) and the appropriate Model Checker

TLC (TLA Checker) are utilized to check the design

of the system. The TLA is based on TLA+ formalism

(Lamport, 2002). Another promising way of TLA

usage is the C code checking – to prevent possible

runtime errors (Methni et al., 2014).

In this paper the Composite Web Service (CWS)

is considered as a distributed SOA-based software

system with both – functional and non-functional –

properties. It's supposed that system functioning is

based on an orchestration model, where all the

components of the system (the atomic web services)

are coordinated (invoked) in a centralized manner

("Web Services Business Process Execution

Language Version 2.0", 2007).

The proposed approach is aimed at the necessity to

perform the model-based formal verification to

previously check the consistency of WS-BPEL-

description given. Only after that the simulation-

driven validation has to be conducted.

To build the simulation model of CWS the DEVS

formalism (Discrete Event System Specification, by

Bernard P. Zeigler) has been chosen (Wainer &

Mosterman, 2010). This formalism provides the

convenient way to represent the system and its

components – because of the existence of the

concepts of atomic and coupled DEVS-models. In

given paper the concept of atomic DEVS-model is

used as a structure template for the atomic web

services models in particular, the concept of coupled

DEVS-model – as a structure template for CWS-

model.

One of the key advantages of simulation over the

testing in SOA-environment is the reduction of risks

involved (Kaur & Ghumman, 2015). A considerable

analysis of existing simulation tools with a particular

accent on the advantages of Java-based ones has

already been conducted (King & Harrison, 2010).

The distinctive feature of DEVS-formalism is that

the appropriate DEVS Suite toolkit provides the

ability to visualize simulation model architecture and

the simulation process itself, which is not the case for

SimJava for instance (Rahman et al., 2015).

Both aforementioned formalisms – the TLA+ and

the DEVS-formalism – have been created for a

completely different purposes. The TLA+ provides

the ability to rigidly specify the required properties of

system developed to find out by way of model

checking, whether the properties meet the

requirements on a chosen level of abstraction. Unlike

the TLA+, The DEVS-formalism has been created

with simulation in mind – to answer the question,

Central European Conference on Information and Intelligent Systems__Page 227 of 250

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 21-23, 2016

whether the system developed is applicable to a given

usage scenario. If represent the engineering process as

iterative one, where each iteration is a sequence of

requirements analysis, design, implementation and

testing phases (Larman, 2004), the TLA+ formalism

has to be used during the design phase. If consider the

testing as a way of validation implementation, the

forth (testing) phase can be swapped with more

abstract phase – validation. The validation itself can

be implemented by way of testing or by way of

simulation. That means that DEVS-formalism should

be used during the final (validation) phase.

The main contribution of the proposed paper

consists in an attempt to couple TLA+ and DEVS-

formalisms to successfully conduct the validation of

CWS by way of simulation – with no need to actually

perform the time-consuming deployments and

redeployments of CWS and its components. The TLA

here plays the auxiliary role – as a remedy to prevent

the unnecessary DEVS-driven simulations in case of

inconsistencies in given WS-BPEL-description. The

named description here is the representation of certain

CWS functional property. The DEVS-validation

should be conducted as a subsequent step, that has to

be accomplished only in case of successful

verification of synthesized TLA+ specification.

During such validation both – functional and non-

functional – properties of CWS have to be checked.

To check the practical applicability of the

proposed approach the results of simulation-driven

DEVS-based validation are compared with the results

of testing-driven alternative. For this purpose the

atomic web services are implemented and deployed

with JAX-WS technology (Vohra, 2012). Java-based

implementation makes it possible to represent the

functional properties of services in atomic DEVS-

model one-to-one. It is essential to notice that non-

functional properties of atomic web services can be

represented in atomic DEVS-models as it is (for

instance, when talking about the cost of service usage,

obtained from certain service provider, or about the

time costs, connected with functional property

implementation – the computational process, that can

be measured directly) or as estimated values – when

talking about the communicational time costs.

A completely different approach has been

proposed earlier – the TLA has been used to check the

DEVS-models (Cristia, 2007).

2 Approach Description

Given the WS-BPEL-description of CWS, which

consists of two types of activities – the Basic

Activities and the Structured Activities. There will be

used only one representative from the Basic Activities

group, represented with <invoke> tag. Such tags will

be utilized to form a state variables set of formal

TLA+ specification to be verified. Each <invoke> tag

is a representation of the appropriate atomic web

service to be invoked in accordance with the scenario

given in WS-BPEL-description. The invocations

scenarios determine the architecture of CWS. For this

purpose the <sequence> and <flow> constructs from

the Structured Activities group have been considered.

In given paper the WS-BPEL-description will be

considered as a representation of some functional

property of CWS. From this description the formal

TLA+ specification has to be synthesized. In case of

multiple WS-BPEL-descriptions of certain CWS the

TLA+ to WS-BPEL artefacts relation has to be "one-

to-many".

To analytically represent the formal TLA+

specification, synthesized from the given WS-BPEL-

description, the Kripke structure on a set of atomic

prepositions AP is used (Clarke, Grumberg & Peled,

2001):

 L,R,s,S 0 , (1)

where S – finite set of states, Ss0 – initial

state, 2SR – set of transitions, AP2S:L – states

labelling function.

The AP set is formed as follows:

DVAP , (2)

where Nn,...,2,1ivV i – set of state

variables, 2,1,0D – set of allowable state

variables values. Each Vvi is a representation of

i -th CWS component – atomic web service, figuring

in WS-BPEL-description as an <invoke> tag.

The elements of AP set should be interpreted as

following (Shkarupylo, Tomičić & Kasian, 2016):

 AP0,vi – the i -th component hasn't yet been

invoked;

 AP1,vi – the i -th component has already

been invoked and is functioning;

 AP2,vi – the i -th component has already

been invoked and its functioning has been

finished.

Generally, in accordance with reusability SOA

principle, the i -th component can be invoked more

than once (Fig. 1).

Figure 1. Atomic web service state chart diagram

Central European Conference on Information and Intelligent Systems__Page 228 of 250

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 21-23, 2016

Generally, some another CWSs can be considered

as the components too, but for the purpose of

simplicity only the atomic web services are

represented in V set.

The proposed approach consists of the following

steps:

 Obtain the WS-BPEL-description of CWS;

 Synthesize the formal TLA+ specification – in

conformity with the aforementioned concepts;

 Verify the synthesized TLA+ specification in an

automated manner with TLC model checker to

check the functional property (properties) of CWS

from the consistency viewpoint;

 If the verification has been successful, synthesize

the atomic and coupled DEVS-models from TLA+

specification;

 Conduct the simulation-driven DEVS-validation,

checking both – functional and non-functional –

properties.

The WS-BPEL to TLA+ translation rules are the

following:

 Form a set of state variables of formal

specification from the <invoke> tags, given in

WS-BPEL-description;

 Reproduce the structure of WS-BPEL-description

in TLA+ specification.

There have been distinguished three types of

atomic DEVS-models (Shkarupylo, Kudermetov &

Polska, 2015). All the distinguished types of DEVS-

models have typical structure, but are intended to be

used for a completely different purposes:

 The Generator model – MG – to model (generate)

client requests to the CWS, and to model the

requests (jobs) distribution in particular;

 The Coordinator model – MC – to model the WS-

BPEL-engine – an engine for centralized Atomic

Web Services coordination – in conformity with

WS-BPEL-description;

 The model of i -th component – iMA – which

directly performs the assigned part of calculations.

The aforementioned atomic DEVS-models of

three types and the coupled one discussed further

have to be synthesized directly from the successfully

verified TLA+ specification. For instance, in case of

TLA+ specification with m state variables, where

nm is a number components utilized for certain

functional property implementation, there should be

synthesized exactly 2m atomic DEVS-models: m

of those are the CWS components models; another

couple of models are MG and MC . The total

number of models to be synthesized is 3m – plus

the single resulting coupled DEVS-model.

The Generator atomic DEVS-model has the

following structure:

 ta,,,,ST,job,actMG MGMG
int

MG
extj , (3)

where act – single input port for model

activation; jjob – set of output ports for client

requests (represented as messages) generation;

 "passive","busy"ST – set of states labels;

 tse,st,act:MG
ext – external transition function,

where ST"passive"st , e – time, elapsed since

last transition, ST"busy"ts ; stts:MG
int –

internal transition function; j
MG jobts: – output

function;
 ,0RST:ta – time advance function.

The Coordinator atomic DEVS-model:

 ta,,,,ST,req,IPMC MCMC
int

MC
exti , (4)

where ij resjobIP – set of input ports,

where jjob – set of ports for taking client requests;

 ires – set of ports for taking iMA models

functioning results; ireq – set of output ports for

computational task parts transferring to satisfy j -th

client request; tse,st,job: j
MC
ext – external

transition function; stts:MC
int – internal transition

function; i
MC reqts: – output function.

Atomic DEVS-model of i -th atomic web service:

 ta,,,,ST,rs,evMA iii MAMA
int

MA
exti , (5)

where ev – input activation port – to retrieve the

appointed part of computational task; rs – output port

– to send the result of computation; 321 st,st,stST

– set of states labels – the DEVS-representation of

 Dvar set – a subset of DV (eq. 2): Vvar ;

ST"passive"st1 – the representation of

 AP0,vi ; ST"busy"st2 – of AP1,vi ;

ST"finalized"st3 – of AP2,vi ;

 tse,st,ev:iMA
ext – external transition function;

stts:iMA
int – internal transition function;

rsts:iMA – output function.

The atomic DEVS-models (eq. 3–5) are grouped

within the coupled DEVS-model (Fig. 2).

Central European Conference on Information and Intelligent Systems__Page 229 of 250

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 21-23, 2016

Figure 2. The architecture of coupled DEVS-model

3 Approach Checking

To check the proposed approach applicability the

results of simulation-driven validation (based on the

approach) have been compared to the results of

testing-driven validation.

The atomic web services have been implemented

with JAX-WS technology.

The testing has been conducted as following:

 The unit testing of atomic web services methods

has been accomplished;

 atomic web services have been deployed on a

GlassFish application server. The testing of

deployed services has been conducted;

 The CWS has been deployed and tested.

As a case study the distributed value calculation

has already been considered (Shkarupylo, 2016).

In this paper the approximation problem solving

has been contemplated. As an input data the time

costs of BFS-driven TLC-verification of TLA+

specifications have been considered (Shkarupylo,

Tomičić & Kasian, 2016). The dependence of time

costs from state variables number has been

represented with the following polynomial:

 32 xdxcxbaxg , (6)

where x – the amount of state variables; d,c,b,a

– coefficients: 866,0a , 0265,0b , 00071,0c ,

510269,1d .

Let's consider the CWS, which consists of four

atomic web services. Let's represent such components

with 4321 aws,aws,aws,aws set, where 1aws

calculates the xb , 2aws – 2xc , 3aws – 3xd ,

4aws – gathers the results from 1aws , 2aws , 3aws

and calculates the xg value. Thus, 1aws , 2aws ,

3aws can function concurrently, and 4aws

component has to wait until another three components

accomplish their calculations.

The architecture of the appropriate CWS is given

in the Fig. 3, where the "BPEL-Engine" atomic

DEVS-model is the Java-implementation of MC

model (eq. 4).

Figure 3. The resulting coupled CWS DEVS-

model

In the Fig. 3 – time, elapsed since last transition

– the DEVS Suite representation of e (eq. 3). The

values shown mean that the simulation hasn't yet been

started.

To set the non-functional properties of CWS

components the Pingtest.net service has been used. As

a result the following sequence of values has been

formed: 150,100,50,0 ms. There are have been

distinguished four cases: when components response

times are equal and are set with values from the

sequence (Fig. 4).

Figure 4. The results obtained

In the Fig. 4 x – values of CWS components non-

functional properties; xf1 – real time, spent on

simulation-driven DEVS-based validation; xf2 –

the aggregated values of CWS non-functional

property, obtained by way of DEVS-simulation;

 xf3 – real time, spent on alternative testing-driven

validation – the deployment/redeployment time costs

haven't been taken into consideration.

It can be concluded from Fig. 4 that the bigger the

values of CWS components response times

Central European Conference on Information and Intelligent Systems__Page 230 of 250

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 21-23, 2016

(communicational time costs) the more

advantageously the proposed approach looks.

The polynomial values (eq. 6), obtained by way of

DEVS-simulation were equal to the ones, obtained by

way of testing. Resulting coupled CWS DEVS-model

adequacy was checked with statistical t- and F-

criterions.

The results obtained allow to characterize the

proposed approach as applicable to the practical

usage.

4 Conclusion

In this paper the simulation-driven approach for

Composite Web Services validation based on DEVS-

and TLA+ formalisms usage has been proposed.

The following conclusions have been made:

1. The proposed approach allows to conduct the

validation of Composite Web Service with no

need to deploy/redeploy the system and its

components, which can potentially reduce the

corresponding time costs.

2. The case study has been conducted, which has

shown the applicability of the proposed approach

to the practical usage. For this purpose the

validation has been carried out in two ways – by

way of simulation and by way of testing.

3. The bigger the orchestration-driven

communication time costs the more advantageous

the proposed approach looks – in comparison with

testing-driven alternative way of validation.

References

Clarke, E. M., Grumberg, O., & Peled, D. (2001).

Model Checking. Cambridge: The MIT Press.

Cristia, M. (2007) A TLA+ Encoding of DEVS

Models. Proceedings of International Modeling

and Simulation Multiconference (pp. 17–22).

Buenos Aires, Argentina.

Kaur, R., & Ghumman, N. S. (2015). A Survey and

Comparison of Various Cloud Simulators

Available for Cloud Environment. International

Journal of Advanced Research in Computer and

Communication Engineering, 4(5), 605–608.

doi:10.17148/IJARCCE.2015.45129

King, D. H., & Harrison, H. S. (2010). Discrete-Event

Simulation in Java – a Practitioner's Experience,

Proceedings of the 2010 Conference on Grand

Challenges in Modeling & Simulation (GCMS

2010) (pp. 436–441). Ottawa, Ontario, Canada.

Lamport, L. (2002). Specifying Systems: The TLA+

Language and Tools for Hardware and Software

Engineers. Boston: Addison-Wesley.

Larman, C. (2004). Applying UML and Patterns: An

Introduction to Object-Oriented Analysis and

Design and Iterative Development. New Jersey:

Prentice Hall.

Methni, A., Lemerre, M., Hedia, B. B., Haddad, S., &

Barkaoui, K. (2014). Specifying and Verifying

Concurrent C Programs with TLA+.

Communications in Computer and Information

Science, 476, 206–222. doi:10.1007/978-3-319-

17581-2_14

Newcombe, C., Rath, T., Zhang, F., Munteanu, B.,

Brooker, M., & Deardeuff, M. (2015). How

Amazon Web Services Uses Formal Methods.

Communications of the ACM, 58(4), 66–73.

doi:10.1145/2699417

Papazoglou, M. P., Traverso, P., Dustdar, S., &

Leymann, F. (2007). Service-Oriented Computing:

State of the Art and Research Challenges. IEEE

Computer, 40(11), 64–71.

Rahman, U., Hakeem, O., Raheem, M., Bilal, K.,

Khan, S. U., & Yang, L. T. (2015). Nutshell:

Cloud Simulation and Current Trends,

Proceedings of 2015 IEEE International

Conference on Smart City/SocialCom/SustainCom

(SmartCity) (pp. 77–86). IEEE.

doi:10.1109/SmartCity.2015.51

Shkarupylo V. V., Kudermetov, R. K., &

Polska, O. V. (2015). DEVS-oriented technique

for composite web services validity checking.

Radio Electronics, Computer Science, Control, 4,

79–86. doi:10.15588/1607-3274-2015-4-12

Shkarupylo V. V. (2016). A technique of DEVS-

driven validation, Proceedings of 13th

International Conference on Modern Problems of

Radio Engineering, Telecommunications and

Computer Science (TCSET 2016) (pp. 495–497).

Lviv, Ukraine: IEEE.

doi:10.1109/TCSET.2016.7452097

Shkarupylo V. V., Tomičić, I., & Kasian, K. M.

(2016). The investigation of TLC model checker

properties. Journal of Information and

Organizational Sciences, 40(1), 145–152.

Vohra, D. (2012). Java 7 JAX-WS Web Services: A

practical, focused mini book for creating Web

Services in Java 7. Birmingham-Mumbai: Packt

Publishing.

Wainer, G. A., & Mosterman, P. J. (2010). Discrete-

Event Modeling and Simulation: Theory and

Applications. New York: CRC Press.

Web Services Business Process Execution Language

Version 2.0. (2007). Retrieved from

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-

v2.0-OS.pdf

Central European Conference on Information and Intelligent Systems__Page 231 of 250

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 21-23, 2016

http://dx.doi.org/10.1109/SmartCity.2015.51
http://dx.doi.org/10.1109/TCSET.2016.7452097

