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Abstract. The approach for Composite Web Services 

validation has been proposed. It's based on DEVS-

formalism usage, which provides the ability to 

conduct validation by way of simulation. The WS-

BPEL-description has been considered as an input 

data. The Temporal Logic of Actions (TLA) has been 

chosen to check the description. 

The proposed approach provides the ability to 

perform validation with no need to actually deploy the 

Composite Web Service. 

To check the proposed approach the case study has 

been conducted. For this purpose the testing-driven 

and the simulation-driven validations have been 

conducted. The results obtained have shown the 

approach applicability. 
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1 Introduction 

Nowadays the principles of Service-oriented 

architecture (SOA) are ubiquitously considered as a 

key principles in different distributed software 

systems engineering processes. Such principles are 

reusability, composability, loose coupling, etc. 

(Papazoglou et al., 2007). Typical representatives of 

the appropriate systems are the Web Services, the 

Composite Web Services (built on reusability and 

composability principles) in particular. 

Today the engineering process itself is tightly 

coupled with extensive formal methods usage. Good 

example of this are the Amazon Web Services 

(Newcombe et al., 2015). Here the Temporal Logic of 

Actions (TLA) and the appropriate Model Checker 

TLC (TLA Checker) are utilized to check the design 

of the system. The TLA is based on TLA+ formalism 

(Lamport, 2002). Another promising way of TLA 

usage is the C code checking – to prevent possible 

runtime errors (Methni et al., 2014). 

In this paper the Composite Web Service (CWS) 

is considered as a distributed SOA-based software 

system with both – functional and non-functional – 

properties. It's supposed that system functioning is 

based on an orchestration model, where all the 

components of the system (the atomic web services) 

are coordinated (invoked) in a centralized manner 

("Web Services Business Process Execution 

Language Version 2.0", 2007). 

The proposed approach is aimed at the necessity to 

perform the model-based formal verification to 

previously check the consistency of WS-BPEL-

description given. Only after that the simulation-

driven validation has to be conducted. 

To build the simulation model of CWS the DEVS 

formalism (Discrete Event System Specification, by 

Bernard P. Zeigler) has been chosen (Wainer & 

Mosterman, 2010). This formalism provides the 

convenient way to represent the system and its 

components – because of the existence of the 

concepts of atomic and coupled DEVS-models. In 

given paper the concept of atomic DEVS-model is 

used as a structure template for the atomic web 

services models in particular, the concept of coupled 

DEVS-model – as a structure template for CWS-

model. 

One of the key advantages of simulation over the 

testing in SOA-environment is the reduction of risks 

involved (Kaur & Ghumman, 2015). A considerable 

analysis of existing simulation tools with a particular 

accent on the advantages of Java-based ones has 

already been conducted (King & Harrison, 2010). 

The distinctive feature of DEVS-formalism is that 

the appropriate DEVS Suite toolkit provides the 

ability to visualize simulation model architecture and 

the simulation process itself, which is not the case for 

SimJava for instance (Rahman et al., 2015). 

Both aforementioned formalisms – the TLA+ and 

the DEVS-formalism – have been created for a 

completely different purposes. The TLA+ provides 

the ability to rigidly specify the required properties of 

system developed to find out by way of model 

checking, whether the properties meet the 

requirements on a chosen level of abstraction. Unlike 

the TLA+, The DEVS-formalism has been created 

with simulation in mind – to answer the question, 
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whether the system developed is applicable to a given 

usage scenario. If represent the engineering process as 

iterative one, where each iteration is a sequence of 

requirements analysis, design, implementation and 

testing phases (Larman, 2004), the TLA+ formalism 

has to be used during the design phase. If consider the 

testing as a way of validation implementation, the 

forth (testing) phase can be swapped with more 

abstract phase – validation. The validation itself can 

be implemented by way of testing or by way of 

simulation. That means that DEVS-formalism should 

be used during the final (validation) phase. 

The main contribution of the proposed paper 

consists in an attempt to couple TLA+ and DEVS-

formalisms to successfully conduct the validation of 

CWS by way of simulation – with no need to actually 

perform the time-consuming deployments and 

redeployments of CWS and its components. The TLA 

here plays the auxiliary role – as a remedy to prevent 

the unnecessary DEVS-driven simulations in case of 

inconsistencies in given WS-BPEL-description. The 

named description here is the representation of certain 

CWS functional property. The DEVS-validation 

should be conducted as a subsequent step, that has to 

be accomplished only in case of successful 

verification of synthesized TLA+ specification. 

During such validation both – functional and non-

functional – properties of CWS have to be checked. 

To check the practical applicability of the 

proposed approach the results of simulation-driven 

DEVS-based validation are compared with the results 

of testing-driven alternative. For this purpose the 

atomic web services are implemented and deployed 

with JAX-WS technology (Vohra, 2012). Java-based 

implementation makes it possible to represent the 

functional properties of services in atomic DEVS-

model one-to-one. It is essential to notice that non-

functional properties of atomic web services can be 

represented in atomic DEVS-models as it is (for 

instance, when talking about the cost of service usage, 

obtained from certain service provider, or about the 

time costs, connected with functional property 

implementation – the computational process, that can 

be measured directly) or as estimated values – when 

talking about the communicational time costs. 

A completely different approach has been 

proposed earlier – the TLA has been used to check the 

DEVS-models (Cristia, 2007). 

2 Approach Description 

Given the WS-BPEL-description of CWS, which 

consists of two types of activities – the Basic 

Activities and the Structured Activities. There will be 

used only one representative from the Basic Activities 

group, represented with <invoke> tag. Such tags will 

be utilized to form a state variables set of formal 

TLA+ specification to be verified. Each <invoke> tag 

is a representation of the appropriate atomic web 

service to be invoked in accordance with the scenario 

given in WS-BPEL-description. The invocations 

scenarios determine the architecture of CWS. For this 

purpose the <sequence> and <flow> constructs from 

the Structured Activities group have been considered. 

In given paper the WS-BPEL-description will be 

considered as a representation of some functional 

property of CWS. From this description the formal 

TLA+ specification has to be synthesized. In case of 

multiple WS-BPEL-descriptions of certain CWS the 

TLA+ to WS-BPEL artefacts relation has to be "one-

to-many". 

To analytically represent the formal TLA+ 

specification, synthesized from the given WS-BPEL-

description, the Kripke structure on a set of atomic 

prepositions AP  is used (Clarke, Grumberg & Peled, 

2001): 

 

  L,R,s,S 0 ,                        (1) 

 

where S  – finite set of states, Ss0   – initial 

state, 2SR   – set of transitions, AP2S:L   – states 

labelling function. 

The AP  set is formed as follows: 

 

DVAP  ,                        (2) 

 

where  Nn,...,2,1ivV i   – set of state 

variables,  2,1,0D   – set of allowable state 

variables values. Each Vvi   is a representation of 

i -th CWS component – atomic web service, figuring 

in WS-BPEL-description as an <invoke> tag. 

The elements of AP  set should be interpreted as 

following (Shkarupylo, Tomičić & Kasian, 2016): 

   AP0,vi   – the i -th component hasn't yet been 

invoked; 

   AP1,vi   – the i -th component has already 

been invoked and is functioning; 

   AP2,vi  – the i -th component has already 

been invoked and its functioning has been 

finished. 

Generally, in accordance with reusability SOA 

principle, the i -th component can be invoked more 

than once (Fig. 1). 

 

 
 

Figure 1. Atomic web service state chart diagram 
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Generally, some another CWSs can be considered 

as the components too, but for the purpose of 

simplicity only the atomic web services are 

represented in V  set. 

The proposed approach consists of the following 

steps: 

 Obtain the WS-BPEL-description of CWS; 

 Synthesize the formal TLA+ specification – in 

conformity with the aforementioned concepts; 

 Verify the synthesized TLA+ specification in an 

automated manner with TLC model checker to 

check the functional property (properties) of CWS 

from the consistency viewpoint; 

 If the verification has been successful, synthesize 

the atomic and coupled DEVS-models from TLA+ 

specification; 

 Conduct the simulation-driven DEVS-validation, 

checking both – functional and non-functional – 

properties. 

The WS-BPEL to TLA+ translation rules are the 

following: 

 Form a set of state variables of formal 

specification from the <invoke> tags, given in 

WS-BPEL-description; 

 Reproduce the structure of WS-BPEL-description 

in TLA+ specification. 

There have been distinguished three types of 

atomic DEVS-models (Shkarupylo, Kudermetov & 

Polska, 2015). All the distinguished types of DEVS-

models have typical structure, but are intended to be 

used for a completely different purposes: 

 The Generator model – MG  – to model (generate) 

client requests to the CWS, and to model the 

requests (jobs) distribution in particular; 

 The Coordinator model – MC  – to model the WS-

BPEL-engine – an engine for centralized Atomic 

Web Services coordination – in conformity with 

WS-BPEL-description; 

 The model of i -th component – iMA  – which 

directly performs the assigned part of calculations. 

The aforementioned atomic DEVS-models of 

three types and the coupled one discussed further 

have to be synthesized directly from the successfully 

verified TLA+ specification. For instance, in case of 

TLA+ specification with m  state variables, where 

nm   is a number components utilized for certain 

functional property implementation, there should be 

synthesized exactly 2m  atomic DEVS-models: m  

of those are the CWS components models; another 

couple of models are MG  and MC . The total 

number of models to be synthesized is  3m   – plus 

the single resulting coupled DEVS-model. 

The Generator atomic DEVS-model has the 

following structure: 

 

    ta,,,,ST,job,actMG MGMG
int

MG
extj  ,   (3) 

 

where act  – single input port for model 

activation;  jjob  – set of output ports for client 

requests (represented as messages) generation; 

 "passive","busy"ST   – set of states labels; 

  tse,st,act:MG
ext    – external transition function, 

where ST"passive"st  , e  – time, elapsed since 

last transition, ST"busy"ts  ; stts:MG
int   – 

internal transition function; j
MG jobts:   – output 

function; 
 ,0RST:ta  – time advance function. 

The Coordinator atomic DEVS-model: 

 

  ta,,,,ST,req,IPMC MCMC
int

MC
exti  ,      (4) 

 

where    ij resjobIP   – set of input ports, 

where  jjob  – set of ports for taking client requests; 

 ires  – set of ports for taking iMA  models 

functioning results;  ireq  – set of output ports for 

computational task parts transferring to satisfy j -th 

client request;   tse,st,job: j
MC
ext    – external 

transition function; stts:MC
int   – internal transition 

function; i
MC reqts:   – output function. 

Atomic DEVS-model of i -th atomic web service: 

 

    ta,,,,ST,rs,evMA iii MAMA
int

MA
exti  ,    (5) 

 

where ev  – input activation port – to retrieve the 

appointed part of computational task; rs  – output port 

– to send the result of computation;  321 st,st,stST   

– set of states labels – the DEVS-representation of 

  Dvar   set – a subset of DV  (eq. 2): Vvar ; 

ST"passive"st1   – the representation of 

  AP0,vi  ; ST"busy"st2   – of   AP1,vi  ; 

ST"finalized"st3   – of   AP2,vi  ; 

  tse,st,ev:iMA
ext    – external transition function; 

stts:iMA
int   – internal transition function; 

rsts:iMA   – output function. 

The atomic DEVS-models (eq. 3–5) are grouped 

within the coupled DEVS-model (Fig. 2). 
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Figure 2. The architecture of coupled DEVS-model 

3 Approach Checking 

To check the proposed approach applicability the 

results of simulation-driven validation (based on the 

approach) have been compared to the results of 

testing-driven validation. 

The atomic web services have been implemented 

with JAX-WS technology. 

The testing has been conducted as following: 

 The unit testing of atomic web services methods 

has been accomplished; 

 atomic web services have been deployed on a 

GlassFish application server. The testing of 

deployed services has been conducted; 

 The CWS has been deployed and tested. 

As a case study the distributed   value calculation 

has already been considered (Shkarupylo, 2016). 

In this paper the approximation problem solving 

has been contemplated. As an input data the time 

costs of BFS-driven TLC-verification of TLA+ 

specifications have been considered (Shkarupylo, 

Tomičić & Kasian, 2016). The dependence of time 

costs from state variables number has been 

represented with the following polynomial: 

 

  32 xdxcxbaxg  ,             (6) 

 

where x  – the amount of state variables; d,c,b,a  

– coefficients: 866,0a  , 0265,0b  , 00071,0c  , 

510269,1d  . 

Let's consider the CWS, which consists of four 

atomic web services. Let's represent such components 

with  4321 aws,aws,aws,aws  set, where 1aws  

calculates the xb  , 2aws  – 2xc  , 3aws  – 3xd  , 

4aws  – gathers the results from 1aws , 2aws , 3aws  

and calculates the  xg  value. Thus, 1aws , 2aws , 

3aws  can function concurrently, and 4aws  

component has to wait until another three components 

accomplish their calculations. 

The architecture of the appropriate CWS is given 

in the Fig. 3, where the "BPEL-Engine" atomic 

DEVS-model is the Java-implementation of MC  

model (eq. 4). 

 

 
 

Figure 3. The resulting coupled CWS DEVS-

model 

 

In the Fig. 3   – time, elapsed since last transition 

– the DEVS Suite representation of e  (eq. 3). The   

values shown mean that the simulation hasn't yet been 

started. 

To set the non-functional properties of CWS 

components the Pingtest.net service has been used. As 

a result the following sequence of values has been 

formed: 150,100,50,0  ms. There are have been 

distinguished four cases: when components response 

times are equal and are set with values from the 

sequence (Fig. 4). 

 

 
Figure 4. The results obtained 

 

In the Fig. 4 x  – values of CWS components non-

functional properties;  xf1  – real time, spent on 

simulation-driven DEVS-based validation;  xf2  – 

the aggregated values of CWS non-functional 

property, obtained by way of DEVS-simulation; 

 xf3  – real time, spent on alternative testing-driven 

validation – the deployment/redeployment time costs 

haven't been taken into consideration. 

It can be concluded from Fig. 4 that the bigger the 

values of CWS components response times 

Central European Conference on Information and Intelligent Systems____________________________________________________________________________________________________Page 230 of 250 

 
Varaždin, Croatia
____________________________________________________________________________________________________ 

Faculty of Organization and Informatics
 

September 21-23, 2016



(communicational time costs) the more 

advantageously the proposed approach looks. 

The polynomial values (eq. 6), obtained by way of 

DEVS-simulation were equal to the ones, obtained by 

way of testing. Resulting coupled CWS DEVS-model 

adequacy was checked with statistical t- and F-

criterions. 

The results obtained allow to characterize the 

proposed approach as applicable to the practical 

usage. 

4 Conclusion 

In this paper the simulation-driven approach for 

Composite Web Services validation based on DEVS- 

and TLA+ formalisms usage has been proposed. 

The following conclusions have been made: 

1. The proposed approach allows to conduct the 

validation of Composite Web Service with no 

need to deploy/redeploy the system and its 

components, which can potentially reduce the 

corresponding time costs. 

2. The case study has been conducted, which has 

shown the applicability of the proposed approach 

to the practical usage. For this purpose the 

validation has been carried out in two ways – by 

way of simulation and by way of testing. 

3. The bigger the orchestration-driven 

communication time costs the more advantageous 

the proposed approach looks – in comparison with 

testing-driven alternative way of validation. 
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