
NoSQL Databases for Big Data Management

Dražena Gašpar, Mirela Mabi
University of Mostar
Faculty of Economics

Matice Hrvatske bb, Mostar, B&H

{drazena.gaspar, mirela.mabic}@sve-mo.ba

Abstract. NoSQL databases, as a relatively new
approach to data organisation and management,
arose as a response to the enormous growth of data
generated through extensive use of Internet and Web
2.0 applications. Today, the term Big Data is
generally used to describe this data explosion, where
huge amounts of structured and unstructured data are
in question. NoSQL databases show great potential in
working with Big Data, especially in situations where
relational data model does not fit. The aim of this
paper is to present the main features of NoSQL
databases that make them the first choice in Big Data
management.

Keywords. NoSQL, Big Data, CAP theorem.

1 Introduction

Today, development of database technology can be
analysed through three main stages. The first one
stage (1968 – 1971) is related to hierarchical and
network database models. The second stage is related
to relational database model and started in the 1970s
with Edgar Codd paper. Relational databases were a
predominant model more than thirty years (1972-
2005) and even today they are prevailing databases,
especially for ERP (Enterprise Resource Planning)
solutions. The relational databases are founded on a
formal mathematical theory. They ensure the
independence of data presentation (data model) with
regard to physical data storage implementation. In the
gold period of relational databases, almost every
significant database management system (DBMS)
shared a common architecture based on the relational
model, ACID (Atomicity, Consistency, Isolation,
Durability) transactions and SQL language (Harrison,
2015). Relational databases even found a way,
through constant innovations and implementation of
object oriented features, to respond to object oriented
requests, but the era of massive web-scale
applications created pressures on the relational
database that could not be relieved through
incremental innovation (Harrison, 2015).

In the year 2005, Google was definitely the biggest
website in the world, and it was from the very
beginning faced with the request to deal with the
volumes and velocity of data. Almost twenty years
ago, Google was among the first companies that faced
with Big Data problem and had to invent new
hardware and software architectures to store and
process the exponentially growing quantity of
websites it needed to index (Harrison, 2015). The
result of those efforts was Hadoop project which
symbolize the beginning of the third stage in database
development – non-relational databases. Since 2009
non-relational databases have become famous as
NoSQL databases. Actually, NoSQL stands for “not
only SQL” (Cattell, 2011), including all non-
relational databases, regardless of SQL use. NoSQL
databases are distributed, non-relational databases
designed for large-scale data storage and massively-
parallel data process across a large number of
commodity servers (Moniruzzaman & Hossain,
2013).
Since 2012 the term Big Data has become mainstream
and buzz phrase. There are multiple and competing
definitions of Big Data. But, typically, Big Data is
considered to be a collection of huge data in very high
volume, variety and velocity in nature that cannot be
effectively or affordably managed with conventional
data management tools, e.g. classic relational database
management systems or conventional search engines
(Manyika et.al, 2011). But this definition is more
focused on data and it does not reflect the real
motivation behind Big Data issue. The real motivation
for data capturing does not lay in the fact that there is
enough capacity to do that, but in the eternal human
need to find a better solution for research or business
problems, which is basically search for actionable
intelligence (Wu et al., 2016).
Big Data should enable decision makers to make the
right decisions based on predictions through the
analysis of available data. It means that attributes of
Big Data have to be viewed through following three
aspects, i.e. domain knowledge (Wu et al., 2016):
• Data domain (searching for patterns)
• Business intelligence domain (making predictions)
• Statistical domain (making assumptions).

Central European Conference on Information and Intelligent Systems__Page 3 of 250

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 21-23, 2016

Wu et al. (Wu et al., 2016) gave graphical
presentation of Big Data definition (Fig. 1), believing
that it is comprehensive enough to capture all aspects
of Big Data. According to them, the original 3V’s
(volume, variety and velocity) definition gave a
syntactic or logical meaning of Big Data, while their
32V’s definition represents the semantic meaning, e.g.
relationship of data, BI (Business Intelligence), and
statistics. In the heart of this definition is machine
learning, because without the machine (computer), the
mission of learning from Big Data would be
impossible (Wu et al., 2016).

Figure 1. 32V’s Big Data definition
(Wu et al., 2016)

The Google example has shown that key for resolving
Big Data issue lies in developing of an alternative
database technology. The examples of other
companies faced with Big Data problem, like Yahoo,
Amazon, Twitter, additionally confirms that. In this
paper, authors analyse main characteristics of NoSQL
databases to present why they are more suitable for
Big Data management.

2 NoSQL – New Era of Databases

NoSQL databases are answer to challenges related to
a huge quantity, velocity, and variety of data that have
to be managed, searched and stored by modern
database systems. Different concepts and technologies
form a foundation for NoSQL database appearance
and further development (Harrison, 2015):
 Google File System (GFS) - a distributed cluster

file system that allows all of the disks within the
Google data center to be accessed as one massive,
distributed, redundant file system.

 MapReduce - a distributed processing framework
for parallelizing algorithms across large numbers
of potentially unreliable servers and being capable
of dealing with massive datasets.

 BigTable - a non-relational database system that
uses the Google File System for storage.

 Sharding - partitioning the data across multiple
databases based on a key attribute, such as the
customer identifier. The operational costs of
sharding, together with the loss of relational
features, made many seek alternatives to the
RDBMS.

 AJAX (Asynchronous JavaScript and XML) –
programming style that offers far more
interactivity to web sites through direct browser
communication with a backend by transferring
XML messages. XML was soon superseded by
JavaScript Object Notation (JSON), which is a
self-describing format similar to XML but is more
compact and tightly integrated into the JavaScript
language. JSON became the de facto format for
storing, serializing, objects to disk.

Additionally, the environment in which NoSQL
databases have arose and developed is characterized
by cloud deployment, mobile applications, social
networking, and the Internet of Things. The
developers of NoSQL databases have understood
from the very beginning that in this new, distributed
environment, integrity and consistency of data based
on ACID transactions represents a big problem.
Namely, relational databases maintain transaction
control by using properties like atomicity,
consistency, isolation, and durability (ACID) to insure
transactions are reliable. The primary consideration of
ACID approach is ensuring data consistency and
integrity. But, in distributed systems, like NoSQL
databases, can arise conflicts related to availability
that cannot be fully resolve. The result is CAP
theorem, first introduced by Eric Brewer in 2000. The
CAP theorem states that any distributed database
system can have at most two of the following three
desirable properties (McCreary & Kelly, 2014):
 Strong Consistency – enabling a single, up-to-

date, readable version of data to all clients.
Consistency here is concerned with multiple
clients reading the same items from replicated
partitions and getting consistent results.

 High availability – meaning that the distributed
database will always allow database clients to
update items without delay. Internal
communication failures between replicated data
shouldn’t prevent updates.

 Partition tolerance - ability of the system to
keep responding to client requests even if there’s
a communication failure between database
partitions.

The CAP theorem proves that it is not possible to
create a distributed database that is consistent and
available and partition tolerant at the same time.
Figure 2 shows that during the implementation of
NoSQL databases it is necessary to make trade-off
between strong consistency, high availability and
partition tolerance.

Central European Conference on Information and Intelligent Systems__Page 4 of 250

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 21-23, 2016

Figure 2. CAP theorem and NoSQL Database
(Harrison, 2015)

There are three responses on CAP theorem (Simon,
2012):
1. Sacrificing Tolerance – there is no defined

system behaviour in case of a network partition.
Two phase commit is one of the attempts in
resolving this. It supports temporarily partitions,
like node crashes, lost messages and similar, by
waiting until all messages are received.

2. Sacrificing Consistency – partition data can still
be used, but since the nodes cannot communicate
with each other there is no guarantee that the
data is consistent. In that case, optimistic
locking and inconsistency resolving protocols
can be used.

3. Sacrificing Availability - since data can only be
used if its consistency is guaranteed, it implies
pessimistic locking because it is necessary to
lock any updated object until the update has been
propagated to all nodes. If a network partition is
in question, it might take quite long until the
database is in a consistent state again, so system
cannot guarantee high availability anymore.

The most of NoSQL databases have to loosen up the
requirements on Consistency to reach better
Availability and Partitioning. The result is approach
known as BASE (Basically Available, Soft-state,
Eventually consistent).
The meaning of this acronym is following (Celko,
2014):
 Basically available - This means the system
guarantees the availability of the data as per the
CAP theorem. But the response can be “failure,”
“unreliable” because the requested data is in an
inconsistent or changing state.
 Soft state - The state of the system could change
over time, so even during times without input there
may be changes going on due to “eventual
consistency,” thus the system is always assumed to
be soft as opposed to hard, where the data is certain.
 Eventual consistency - The system will eventually
become consistent once it stops receiving input,
meaning if no additional updates are made to a data
item, all reads to that item will eventually return the
same value.

 Table 1: ACID and BASE approach comparison

ACID (RDBMS)

BASE (NoSQL)

strong consistency weak consistency (=> allow stale data)
Isolation last write wins
Transaction program managed
robust database simple database
simple code (SQL) complex code
available & consistent available & partition-tolerant
scale-up (limited) scale-out (unlimited)
shared-something (disk, memory, processor) shared-nothing (parallelizable)

Basic availability means that the temporarily
inconsistency is allowed to systems in order to ensure
that transactions are manageable. Soft-state means
that some inaccuracy is temporarily allowed, and data
may change while being used to reduce the amount of
consumed resources. Eventual consistency means
eventually when all service logic is executed; the
system is left in a consistent state.
In the Table 1 is presented comparison of these two
approaches, ACID and BASE (Vanroose & Thillo,
2014).

The BASE approach is far away from ideal solution.
It can be very costly, because once when one give up

ACID guarantees, it is then up to developers to
explicitly code in their applications the logic
necessary to ensure consistency in the presence of
concurrency and faults. The complexity of this task
has sparked a recent backlash against the early
enthusiasm for BASE (Chao et al., 2014). Some
authors stressed that the process of designing
applications that should to resolve concurrency
anomalies in their data can be very apt to errors, time-

Central European Conference on Information and Intelligent Systems__Page 5 of 250

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 21-23, 2016

consuming and probably not worth the performance
gains (Shute et al., 2012).

Unlike relational databases that focus on consistency,
NoSQL databases, founded on BASE approach, focus
on availability. They relax the rules and allow reports
to run even if not all portions of the database are
synchronized. Their mission is to keep the process
moving and deal with broken parts at a later time, so
they are ideal for web storefronts, where filling a
shopping cart and placing an order is the main priority
(McCreary & Kelly, 2014).

3 NoSQL Databases for Big Data
Management

The previously described characteristics of NoSQL
databases, especially their distributed features, qualify
them for Big Data management. Namely, a big data
class problem is any business problem that’s so large
that it can’t be easily managed using a single
processor. This class of problems requires the use of
the more complex environment of distributed
computing.

Figure 3. Classification of Big Data problems (McCreary & Kelly, 2014)

The big data problems can be classified as it is shown
on Fig. 3.

Today, these different types of big data problems
(Fig. 3) are, with more or less success, resolved with
different database architectures. According to that,
NoSQL database can be classified in four basic
categories, each resolving different type of Big Data
problems (Fowler, 2016):

- Key-Value
- Wide Column
- Document
- Graph

The key-value type of NoSQL databases uses a key to
locate a value (traditional data, BLOBs, files, etc.) in
simple, standalone tables, known as hash tables. In
that case, searches are performing against keys, not
values, and they are restricted to exact matches. The
key can be accessed by hashing, indexing, brute-force
scans, or any other appropriate method. This is the
most primitive model for data retrieval short of a pile
of unorganized data (Redmond & Wilson, 2012).
Wide-Column or column-oriented, NoSQL databases
got name by their design where data is stored together
in columns. By contrast, a row-oriented database (like
an RDBMS) keeps information about a row together.

Central European Conference on Information and Intelligent Systems__Page 6 of 250

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 21-23, 2016

In column-oriented databases, adding columns is quite
inexpensive and is done on a row-by-row basis. With
respect to structure, columnar is about midway
between relational and key-value (Redmond &
Wilson, 2012). Wide column databases can be very
useful in situations where exist data whose columns
can change, and need to be retrieved as a group or
aggregate (Fowler, 2016).

Document-oriented NoSQL databases were designed
to store and manage documents. The documents are
encoded in a standard data exchange formats (XML,
JSON – JavaScript Object Notation, BSON – Binary
JSON). Document is similar to a hash, with a unique
ID field and values that may be any of a variety of
types, including more hashes. Documents can contain
nested structures, and so they exhibit a high degree of
flexibility, allowing for variable domains. Different
document databases take different approaches on
indexing, ad hoc querying, replication, consistency,
and other design decision (Redmond & Wilson,
2012).

Graph NoSQL databases excel at dealing with highly
interconnected data. They are focused on relationship,
instead on data. A graph database consists of nodes
and relationships between nodes. Both nodes and
relationships can have properties—key-value pairs—
that store data. The real strength of graph databases is
traversing through the nodes by following
relationships (Redmond & Wilson, 2012).
Figure 4 shows how these categories of NoSQL
databases respond for Big Data problems presented on
Fig. 3. It is visible (Fig. 4) that when high availability
is in question, that the most of NoSQL databases
resolve that problem, while when ACID transactions
are in question, only key-value databases, which are
the closest to relational databases, can compete. Wide
column databases are more suitable for event-log
problems, while document databases are the best in
document management, and graph databases in graph
management. Many of the key NoSQL database types
are optimized to satisfy one or more of the Big Data
challenges (Fig. 4).

Figure 4: NoSQL databases and Big Data problems

Resolving the Big Data issues is a very challenging
task. In order to address the scalability requirements
of Big Data, parallel shared-nothing architectures of
commodity machines, often consisting of thousands
of nodes, have been lately established as the de facto

solution. Databases implementing the shared-nothing
model often refer to themselves as massively parallel
processing (MPP) databases. Figure 5 illustrates the
shared-nothing database architecture (Harrison,
2015).

Central European Conference on Information and Intelligent Systems__Page 7 of 250

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 21-23, 2016

Figure 5. Shared-nothing database architecture (Harrison, 2015)

IT industry developed various systems to support Big
Data like MapReduce (Pritchett, 2008), Pregel (Redis,
2016), Spark (Bailis & Ghodsi, 2013) and similar.
The most of NoSQL databases adopted MapReduce
(Dean & Ghemawat, 2008) to allow transformation of
Big Data over locally distributed nodes instead of
transferring large amount of data between nodes. The
main functions of MapReduce are map and reduce.
The map operation is applied to data on each node
and processes the data independently from and in
parallel to map operations on the other nodes. The
each map operation has as result a collection of
lightweight key-value pairs. The reduce operation
uses the results of map operation as input and
processes them based on keys in parallel. The final
values are returned to the user (Ameri, 2016). Since
MapReduce allows more data locality and minimizes
volume and frequency of data transfer, it is a core
component of many Big Data solutions in ensuring
system scalability.
Pregel (Redis, 2016) is a specialized model for
iterative graph applications. In Pregel, a program runs
as a series of coordinated supersteps. With each
superstep, each vertex in the graph runs a user
function that can update state associated with the
vertex, change the graph topology, and send messages
to other vertices for use in the next superstep. This
model can express many graph algorithms, including
shortest paths, bipartite matching, and PageRank.
Spark (Bailis & Ghodsi, 2013) is a fast in-memory
data processing system that achieves high

performance for applications through caching data in
memory (or disk) for data sharing across computation
stages. It is achieved with the resilient distributed
dataset (RDD) in-memory storage abstraction for
computing data, which is a read-only, partitioned
collection of records (Datastax, 2016).
The main advantages of NoSQL databases can be
summarized as (McCreary & Kelly, 2014):
 Loading test data can be done with drag-and-

drop tools before ER modelling is complete.
 Modular architecture allows components to be

exchanged.
 Linear scaling takes place as new processing

nodes are added to the cluster.
 Lower operational costs are obtained by

autosharding.
 Integrated search functions provide high-quality

ranked search results.
 There’s no need for an object-relational mapping

layer. It’s easy to store high-variability data.
To be fair, it is necessary to claim that the NoSQL
databases suffer from the following weaknesses
(Harrison, 2015):
 There are a wide variety of specialized database

solutions which exactly fit for an application’s
requirements.

 A return of the navigational model, e.g. of the
situation that existed in pre-relational systems, in
which logical and physical representations of
data are tightly coupled in an unacceptable way.

Central European Conference on Information and Intelligent Systems__Page 8 of 250

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 21-23, 2016

One of the great successes of the relational
model was the separation of logical
representation from physical implementation.

 The inability in most non-relational systems to
perform a multi-object transaction, and the
possibility of inconsistency and unpredictability
in even single-object transactions, can lead to a
variety of undesirable outcomes that were
mostly solved by the ACID transaction and
multi-version consistency control (MVCC)
patterns. Phantom reads, lost updates, and
nondeterministic behaviours can all occur in
systems in which the consistency model is
relaxed.

 Unsuited to business intelligence. The document
store won’t work with existing reporting and
OLAP tools. Data in these systems is relatively
isolated from normal business intelligence (BI)
practices. The absence of a complete SQL layer
that can access these systems isolates them from
the broader enterprise.

There are several studies on different concurrency and
consistency models for NoSQL databases (Padhye &
Tripathi, 2012; Lin et al., 2014). As some of those
models are hard to implement and the demand for
ACID transaction for many applications exists, there
is a trend to include transactions on distributed new
databases (Neo4j , 2016; Oracle, 2016).
The Beckman 2014 report on database research
recommended attention to five research areas (Abadi
et al., 2016):
• Scalable big/fast data infrastructures.
• Coping with diversity in the data management
landscape.
• End-to-end processing and understanding of data.
• Cloud services.
• Managing the diverse roles of people in the data life
cycle.

4 Conclusion

The main driving forces behind the third database
generation development are Web 2.0 applications,
social networks, Big Data, cloud computing and
Internet of Things. Modern database are continuously
challenged to meet the needs of applications that
demand an unparalleled level of scale, availability,
and throughput.
Beside all their limitations, NoSQL databases proved
that they can be valuable solutions for different Big
Data problems. Big Data players like Google,
Amazon, Facebook, Twitter, etc., were first faced
with the limitations of relational databases in solving
their request, and they have become pioneers in
developing and implementing different NOSQL
databases. But, it is important to stress out that
leading RDBMS vendors (like Oracle) very carefully
monitor everything that happens in NoSQL world,

and in their systems implement some of the
fundamental features of NoSQL databases (JSON
interface, shared-nothing sharded distribution, graph
compute engine, Hadoop support end, etc.). The next
years will show future development of database
technology going in the direction of further
divergence or convergence towards some unified or
hybrid database model.

References

Abadi, D., Agrawal, R., Ailamaki, A., Balazinska, M.,
Bernstein, P.A., Carey, M..J., Chaudhuri, S.,
Dean, J., Doan, A., Franklin, M.J., Gehrke, J.,
Haas, L.M., Halevy, A.Y., Hellerstein, J.M.,
Ioannidis, Y.E., Jagadish, H.V., Kossmann, D.,
Madden, S., Mehrotra, S., Milo, T., Naughton,
J.F., Ramakrishnan, R., Markl,V., Olston, C.,Ooi,
B.C., Ré, C., Suciu, D., Stonebraker, M., Walter,
T., Widom, J.(2016). The Beckman Report on
Database Research. Communications of the ACM.
Vol. 59 No. 2, Pages 92-99. Retreived from:
http://cacm.acm.org/magazines/2016/2/197411-

 the-beckman-report- on-database-research/fulltext.

Ameri, P. (2016). Database Techniques For Big Data.
 In book ed. Buyya,R., Calheiros, R.N., Dastjerdi,

A.V. Big Data Principles and Paradigms. Elsevier
Inc., USA.

Bailis P, Ghodsi A. (2013) Eventual consistency
today: limitations, extensions, and beyond.
Communications of the ACM, May, pp.55–63.

Cattell, R. (2011). Scalable SQL and NoSQL data
stores. ACM SIGMOD Record, 39(4), 12-27.

Celko, J. (2014). Joe Celko's complete guide to
NoSQL : what every SQL professional needs to
know about nonrelational databases. Elsevier Inc.,
Kindle edition.

Chao, X., Chunzhi, S., Kapritsos, M., Wang, Y.,
Yaghmazadeh, N., Alvisi, L., Mahajan, P. (2014).
Salt: Combining ACID and BASE in a Distributed
Database. Proceedings of the 11th USENIX
Symposium on Operating Systems Design and
Implementation. October 6–8, Broomfield, CO.

Datastax (2016) CQL for Cassandra 2.1/DataStax
CQL 3.1.x Documentation. Cassandra. Retreived
from: https://docs.datastax.com/en/cql/3.1/cql/
cql_reference/cqlReferenceTOC.html

Dean, J., Ghemawat, S. (2008). MapReduce:
Simplified data processing on large clusters.
Commun ACM.January, pp.107–13.

Fowler, A. (2016). The State of NoSQL 2016: A quick
guide to the NoSQL landscape. Kindle Edition.

Harrison, G. (2015). Next Generation Databases:
NoSQL, NewSQL, and Big Data. Apress. Kindle
Edition

Central European Conference on Information and Intelligent Systems__Page 9 of 250

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 21-23, 2016

Lin N, Dongming L, Yongqi H. (2014).
Optimization method of concurrency scheduling
of graphical database transaction. In: 2014
international conference on computer science and
electronic technology (ICCSET 2014). pp. 22–6.

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs,
R., Roxburgh, C., & Byers, A. H. (2011). Big
data: The next frontier for innovation,
competition, and productivity. McKinsey Global
Institute. Retrieved from: file:///C:/Users/user/

 Downloads/MGI_big_data_full_report.pdf

McCreary, D. & Kelly, A. (2014). Making Sense of
NoSQL. Kindle Edition.

Moniruzzaman, A. B. M. & Hossain, S.A. (2013).
Nosql database: New era of databases for big data
analytics-classification, characteristics and
comparison. International Journal of Database
Theory and Application. Vol. 6. No. 4.

Neo4j (2016) Neo4j Graph Database. Retrieved from:
http://neo4j.com

Oracle (2016) Oracle Berkeley DB. Retrieved
from:http://www.oracle.com/technetwork/database
/database-technologies/berkeleydb/overview/
index.html

Padhye V, Tripathi A. (2012) Scalable transaction
management with snapshot isolation on cloud data
management systems. In: Proceedings of IEEE
5th International conference on cloud computing.
24-29 June.

Pritchett, D. (2008) BASE: An acid alternative.
Queue. Volume 6 Issue 3, May/June, Pages 48-55.

Redis. (2016) Redis. Available from: http://redis.io/

Redmond, E. & Wilson, J.R. (2012). Seven
Databases in Seven Weeks: A Guide to Modern
Databases and the NoSQL Movement. Pragmatic
Bookshelf. Kindle Edition.

Shute, J., Oancea, M., Ellner, S., Handy, B., Rollins,
E., Samwel, B., Vingralek, R., Whipkey, C.,
Chen, X., Jegerlehner, B., Littleeld, K., Tong,P.
(2012). F1- The Fault-Tolerant Distributed
RDBMS Supporting Google’s Ad Business. In
Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data.
pages 777–778.ACM.

Simon, S. (2012). Brewer’s CAP Theorem: Report to
Brewer’s original presentation of his CAP
Theorem at the Symposium on Principles of
Distributed Computing (PODC) 2000. CS341
Distributed Information Systems University of
Basel, HS2012

Vanroose, P., Thillo, K.V. (2014). ACID or BASE? -
the case of NoSQL, GSE DB2 Belgium Joint User
Group Meeting IBM. Brussels, 12 June,“What’s
next?”. Retreived from:

http://www.abis.be/resources/presentations/
gsebedb220140612nosql.pdf

Wu, C., Buyya, R., Ramamohanarao, K. (2016). BDA
= ML + CC. In book ed. Buyya,R., Calheiros,
R.N., Dastjerdi, A.V. Big Data Principles and
Paradigms. Elsevier Inc. USA.

Central European Conference on Information and Intelligent Systems__Page 10 of 250

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 21-23, 2016

