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Abstract. Vehicle routing problem finds routes to
serve a set of customers. It belongs to the field of
intelligent transport systems and logistics. Significant
savings can be achieved in real-world scenarios. The
mathematical interpretation of the vehicle routing
problem is an NP-hard optimization problem. Due
to the computational complexity, various heuristics
are used to solve the problem within a reasonable
processing time. Previous research had been focused
mostly on static variants, with constant edge weights
represented by expected speed, which results in a too
rough approximation of a dynamic traffic environment.
The proposed research will take into account the time
dependent aspects of the traffic environment. Edge
weights will be time dependent functions acquired
by analysis of historic GPS paths of vehicles. The
proposed method will solve two complex problems:
finding a time dependent shortest path in a graph, and
solving the time dependent vehicle routing problem.

Keywords. Vehicle routing problem, Time dependent
vehicle routing problem, Iterative local search, Time
dependent travel time

1 Introduction
Vehicle routing problem (VRP) needs to find an opti-
mal set of routes for a fleet of vehicles to visit a given
set of customers. The problem was introduced in 1959
to solve a real-world problem of gasoline delivery to
service stations [1]. This problem usually includes a
variant where each customer has a demand defined, and
vehicles are constrained with a limited capacity. This is
the most studied variant and is named the Capacitated
Vehicle Routing Problem (CVRP) [2]. More formally,
a given set of homogeneous vehicles with defined ca-
pacity has to serve a given set of customers so that ev-
ery route starts and finishes at the depot. Each cus-
tomer has to be visited exactly once by a single vehicle.
An important extension of a basic model for real-world
application is the Vehicle Routing Problem With Time
Windows (VRPTW), where earliest and latest possible
arrival time at customers are defined. Service at each

customer can begin only in a specified time window
and lasts for a given service time [4].

With the introduction of time windows prediction
of travel times between customers becomes crucial in
terms of robustness of calculated routes in a real-world
environment. In the VRPTW model, travel time pre-
dictions are based on constant expected traveling speed
for each road link in a calculated route. This means that
travel time from customer i to customer j is the same
regardless of the time of day or the day of the week
when a vehicle leaves customer i. The VRP variant
that tries to give a solution accounting for the dynamic
nature of a traffic network is the Time Dependent Ve-
hicle Routing Problem (TDVRP).

Travel time in urban areas can significantly vary de-
pending on the time of the day. The differences in
travel time can occur, for example, if congestions ap-
pear along the route during rush hours. Most of con-
gestions are caused by daily migrations of workers and
they occur on a regular basis. Thus, it can be beneficial
for an algorithm to take them into account when opti-
mizing solutions. Traffic congestions can be avoided
by selecting alternative routes or by rearranging cus-
tomer sequences in routes. Kok et al. [3] report that
99% of late arrivals to customers can be eliminated if
one accounts for traffic congestions. Moreover, they
report that about 87% of the extra duty time caused by
traffic congestion can be eliminated by smart conges-
tion avoidance strategies.

TDVRP will be modeled as a modified VRPTW
problem. Let G = (V,E) be a connected digraph con-
sisting of a set V of n + 1 nodes that represent cus-
tomers, and a set E of arcs with non-negative weights
dij and with associated travel times, tij . Node 0 repre-
sents the depot, while other nodes represent customers.
Each customer must be serviced exactly once by one
vehicle. Each route starts and ends at the depot. Ser-
vice in each node i starts in a specified time window
(tei , tli ). Service time ts is also defined. If a vehicle
arrives to customer i before opening of the time win-
dow it has to wait until tei to start with service. Each
vehicle v has a capacity Q, and each customer has a
non-negative demand qi. Solution is feasible if each
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Figure 1: Illustration of VRPTW

customer is visited exactly once by one vehicle, if each
vehicle used has enough capacity to service customers
in its route and if vehicles arrive at customers in their
route before tli is closed.

Although scientific literature on the CVRP and
VRPTW is exhaustive, the TDVRP variant received
very little attention [3]. The reason is that the dynamic
VRP is much harder to model and to solve [5].

The time dependent VRP was first formulated by
Malandraki [6] using a mixed integer linear program-
ming formulation. Ichoua et al. solved TDVRP with
a parallel Tabu Search algorithm. Fleischmann et
al. developed an algorithm that solves various vari-
ants of basic VRP model, among others, one is TD-
VRP. Hashimoto et al. [7] developed an iterated lo-
cal search (ILS) algorithm. Van Wonsel et al. [5]
solved TDVRP without time windows using the Tabu
search algorithm. An algorithm based on the ant
colonies was presented by Donati et al. [8]. Figliozzi
[9] introduced benchmark instances based on standard
Solomon benchmarks with the addition of coefficients
that modify travel time between nodes in given time in-
tervals. Ehmke et al. [10] modified TSP and VRPTW
algorithms to take into account time dependent travel
times.

This paper is organized as follows. Section 2
presents a method to obtain time dependent travel times
and a time dependent shortest path algorithm is briefly
described. Section 3 presents an iterated local search
algorithm to solve the time dependent vehicle routing
problem. Section 4 describes test instances and gives
results for both benchmarks and the examined real-
world problem. In the same section a brief discussion
of obtained computational results is given. Section 5
concludes the paper.

2 Time dependent travel times

2.1 Speed profiles
When solving real world routing problems, informa-
tion about traffic patterns of various roads is crucial for
accurate results. As the vehicles travel across some
part of the road network the conditions on the road
change. Some changes, such as congestions or sea-
sonal changes, are periodical and predictable, which

Figure 2: An example of a computed cluster with cor-
responding elements.

allows the usage of historical data for predicting fu-
ture travel times. In this work, historical GPS records
of vehicles were used to develop speed profiles for the
road network of Croatia. The method used is similar
to the method provided in [13], with some changes and
improvements.

The GPS data used to create the speed profiles was
collected by around 4000 taxis and delivery vehicles
travelling on the road network of Croatia during a five
year period (from August 2009 to September 2014).
The data was provided by the partner company Mireo
Inc. which also did the map matching of the GPS path,
as well as providing a map of Croatia with a traffic
layer. The data was stored chronologically for each ve-
hicle, so that it was possible to reconstruct the routes
of tracked vehicles. The provided map of Croatia is di-
vided into a network of road-links, where a link is most
commonly a road segment between two intersections,
at most 100 meters long, and is the smallest unit of the
network on which all computations are done. The roads
of Croatia consist of a total of 450, 000 links. For two
way segments both directions belong to a single link
but are processed separately.

To account for the daily changes in traffic patterns
each hour was divided into five minute intervals, with
special handling of the intervals between 22:00 and
5:30. Each day of the week was processed separately
to account for differences between them (especially be-
tween workdays and weekends). Before computing the
profiles, the free-flow speed of each link was computed
as a reference speed. The free-flow speed is defined as
the average speed of passenger cars in conditions of
low traffic flow rates. As no explicit information about
free-flow speeds was available, the free-flow speed for
each link was approximated using night time speeds,
as there are no congestions at night and traffic flows
freely. The night intervals (22:00 - 5:30) were all given
free-flow speeds.

The speeds for the rest of the day were computed
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Figure 3: An example profile showing differences be-
tween weighted and unweighted smoothing.

separately for every interval. The GPS signals were
recorded approximately every 100 meters or every 5
minutes, which produced a relatively sparse dataset.
Even though the speeds recorded by GPS devices are
generally very accurate, due to the sparsity of the
dataset the recorded speeds were unusable and real
speeds had to be extrapolated from the recorded dis-
tance covered and the time difference between two
GPS records. The method used here is the same as
described in [13], but instead of using arithmetic mean
(also called time mean speed) the harmonic mean (also
called space mean speed) was used. The reason for this
is that, during congestions, the standard deviation of
recorded speeds is large, which makes the time mean
speed a poor predictor as it gives equal weight to both
high and low speeds. Space mean speed, on the other
hand, puts more weight on lower speeds and so gives a
more realistic prediction of travel speed.

The method in short is the following: for each link
in a vehicle route an entry point and an exit point are
determined. The entry point is the first record which
appears on the given link, and the exit point is the first
point in the same route appearing on the next link in the
route. The speed is then determined using the elapsed
time and distance between the entry and exit points.
This method includes the time needed to traverse the
intersection, where most of the speed drops on a link
appear. By using only data which appears on a sin-
gle link one would discard such important information.
Finally, the computed speed is added to the intervals
between the link entry and exit time and, once all the
records are processed, the space mean speed of each
interval is computed and stored as a relative slowdown
coefficient with regard to the free-flow speed. If there
is insufficient data, the intervals and days are combined
as in [13].

Next, the resulting data are smoothed with a
weighted smoothing spline. Weights were added when
speed drops were higher than 25%, relative to the inten-

sity of the drop, in order to counter the tendency of the
smoothing spline to pull data points towards the regres-
sion line, giving optimistic travel speed predictions as a
result. The comparison of raw, smoothed and weighted
profiles is shown in figure 3.

Finally, the resulting 680, 000 profiles were clus-
tered into 3, 230 clusters using k-means to reduce stor-
age space. One cluster showing both morning and
evening congestions is shown in figure 2.

2.2 Shortest Path Problem

When solving a real world problem, Euclidean dis-
tances are a poor approximation of actual distances be-
tween customers, as there are rarely direct routes from
one customer to another. Instead, the road network is
represented by a digraph G(V,E), with the set of nodes
V corresponding to intersections and set of edges E
representing the roads between them.

In the time-independent case, the edges of the graph
are given constant weights Wuv , which correspond to
some cost of travelling from customer u to customer
v. Although widely used, the time independent Short-
est Path Problem (SPP) is unable to account for daily
changes in travel times and speeds, as the cost of trav-
elling between two customers is always constant.

On the other hand, in the time-dependent case the
constant weights are replaced by functions Wuv : R→
R≥0 as described in [14]. The functions depend on
time as a parameter, allowing for precise approxima-
tions of traffic conditions dependent on the time of day.
This model allows the SPP algorithm to account for
congestions and dynamically choose the best path ac-
cording to the time dependent shortest path criteria. In
this work, when solving the standard benchmarks the
travel time is used as a criterion, but when solving the
real-world problem both distance and travel time are
used to find optimal routes.

The algorithm most commonly used for finding the
shortest path in a graph is the well known Dijkstra algo-
rithm [15], or one of its numerous modifications. The
modifications deal mostly with preprocessing to make
the search space as small as possible while not sacrific-
ing precision [14].

Finally, in order to use real parameters to compute
route lengths and durations, the distances and travel
times were precomputed and stored as matrices. Each
interval was assigned two matrices, one for distance
and one for travel times. Night time intervals all used
the same matrices as it was expected that there are
no significant changes in traffic behaviour during the
night, while the rest of the intervals each had a separate
distance and time matrix computed. Once the matrices
are computed and loaded, in order to retrieve distances
and travel times for a pair of customers one also has to
supply the interval during which the trip begins. The
procedure then is simply to retrieve the matrix corre-
sponding to the given interval and the element of the
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matrix corresponding to the given customer indices.

3 Iterative local search algorithm
Iterative local search iteratively builds a sequence of
solutions generated by the embedded heuristic, leading
to far better solutions than if one were to use repeated
random trials of that heuristic [11]. A VRPTW variant
of the ILS algorithm was modified to solve TDVRP.
ILS was chosen as it is simple, easy to implement, ro-
bust and highly effective. Pseudo code of the algorithm
is given with (algorithm 1).

Algorithm 1 Iterative local search
1: s← InitialSolution()
2: s← LocalSearch(s)
3: s′ ← s
4: while not Terminate do
5: s′ ← Perturbate(s)
6: s′′ ← LocalSearch(s′)
7: if f(s′′) < f(s) then
8: s← s′′

9: end if
10: end while

ILS first generates an initial solution (line 1), which
is then improved by a local search procedure (line 2).
The algorithm then iteratively tries to escape from local
optima by perturbing (line 5) and improving (line 6) the
current solution until the termination criteria are met
(line 4). If the found solution is better according to the
acceptance criteria (line 7), the current solution is set
as a best solution found so far.

3.1 Initial solution
The initial solution is calculated by a Solomon I1
VRPTW algorithm [12], modified to take into account
the variable travel times occurring in TDVRP. A route
is first initialized by a seed customer, after which un-
routed customers are added to the route until no possi-
ble insertions are found. If not all customers are visited
and there are no feasible insertions into existing routes,
a new vehicle is initialized. This procedure is repeated
until all customers are visited.

3.2 Local search
For a local search procedure, the most important part is
selecting move mechanisms which explore neighbor-
ing solutions. These moves are often called the lo-
cal search operators. For this algorithm, we have se-
lected one operator that tries to improve a single route
and three operators which change two routes. Since
our goal was to implement a fast ILS algorithm, we
selected simple operators. The relocate operator tries
to change order of the customers in a single route to
obtain a better solution. Since we tried to solve the

real-world problem with narrow time windows, we de-
cided not to implement the 2-opt operator. Of the op-
erators which try to improve the solution by changing
two routes, we selected the Relocate, Exchange and 2-
opt* operators. For more details on local search pro-
cedures we refer to the survey of Bräysy and Gendrau
[4].

The operators were modified to work in a time-
dependent environment. When a route is changed, the
modified operators check its feasibility, from the po-
sition of the changed customer along all subsequent
customers by evaluating their new arrival times. This
modification of operators is required as a change in the
arrival time of a customer affects all subsequent cus-
tomers due to time-dependent travel times.

The acceptance strategy for the operators is best ac-
cept, which searches all possible feasible moves and
selects the best one.

3.3 Perturbation

After the local search gets stuck in a local optimum, a
perturbation procedure tries to find unexplored neigh-
borhoods so that a further local search can potentially
find an overall better solution. The implemented per-
turbation is essentially a random move in a neighbor-
hood. A number of randomized Relocate and Ex-
change moves which accept worse solutions (while still
retaining feasibility) are used to escape current local
optima.

3.4 Acceptance criterion

The acceptance strategy can help guide local search to
find solutions that have some desired properties. As
mentioned in the introduction, VRPTW has two objec-
tives: first to minimize the number of routes, and sec-
ond to minimize total distance. When running the ILS
algorithm we use two acceptance criteria: in the first
half of the running time we try to minimize total time
spent on the road, while in the second half we min-
imize the total distance. The assumption is that if we
minimize the total time needed for delivery to be made,
there will be more free space in a route to squeeze
in customers from other routes. That way, the Relo-
cate operator can empty routes containing a small num-
ber of customers. Although this is a simple approach
and not a state-of-the-art route minimization technique,
some routes are nevertheless reduced.

4 Results

All computational test were conducted on a worksta-
tion with Intel Xeon E5-1607v3 processor and 8GB of
random access memory, running a 64−bit Microsoft’s
Windows 7 operating system. The algorithm was im-
plemented in C++ programing language and compiled

Central European Conference on Information and Intelligent Systems____________________________________________________________________________________________________Page 196

 
Varaždin, Croatia
____________________________________________________________________________________________________ 

Faculty of Organization and Informatics
 

September 23-25, 2015



Figure 4: Real-world problem displayed on digital map

with Visual C++ 11.0 compiler. The graphical user in-
terface was developed as a Windows form using .NET
4.5 framework.

The main idea of the work was applying the ILS al-
gorithm to a real-world problem using speed profiles
computed from historical GPS data. To benchmark our
algorithm we also applied it to the Solomon benchmark
problems with time-dependent travel times, provided in
[9].

4.1 Real-world problem

For a test on a real-world problem data was acquired
from a national postal service for a delivery to a large
customer in the area of the capital city of the Croatia.
Figure 4 shows the problem on the digital map, where
customers are represented as circles in black color and
the depot as a red square. Routes were recorded with
GPS loggers, so that a precise comparison can be made.
The problem has 225 customers served by 16 vehicles.
Delivery occurs in the morning, and each customer has
a time window and a service time defined. Customers
on average have time windows opened for 66 minutes.
Customer demand q is expressed as a quantity of large
postal bags to be delivered. Delivery is made by a ho-
mogeneous fleet of vehicles with defined capacity Q.

Analysis of GPS tracks recorded by vehicles driv-
ing the actual routes used in practice showed that the
total route length was 240 kilometers. The minimum
number of vehicles was computed by taking capacity
constraints into account, giving a lower bound of 12
vehicles in order to feasibly solve the problem. The
algorithm described in section 3 was set for 110 it-
erations. Matrices were calculated for each 5 minute
interval in a day, a total of 198 matrices during day-
time (5:30-22:00) and one matrix representing night.
Average runtime of the described ILS algorithm was
198.3 seconds, while the calculation of 199 matrices
lasted approximately 30 hours. After the end of the first
phase of the algorithm, a solution with 12 vehicles was
obtained for all of the 30 runs, resulting in a 25% de-
crease in used vehicle number compared to the number
actually used. In the second phase, the minimization of
the total length occurs. In the best solution found, ve-

hicles travel total of 219 kilometers, the average total
was 228, and worst was 238. Even the worst solution
is better than routes used in practice (240 kilometers).
Figure 5 shows the best solution found. The depot is
shown as a blue circle, and customers are shown as
a black circles where the diameter depends on a cus-
tomers demand q. For better visibility of routes in the
solution, the digital map is not shown, but routes are
drawn on real road links.

4.2 Standard benchmarks

The described ILS algorithm was tested on the bench-
marks provided in [9] in order to assess its general us-
ability. The benchmarks attempt to simulate real world
conditions by changing vehicle speeds depending on
the time a vehicle starts travelling from one customer to
another. The base for the instances are the well known
Solomon benchmarks [12] with modified travel times.
The time window of the depot is split into five time
intervals, and each interval is given a coefficient de-
scribing the speed at the corresponding interval. Due
to the relatively tight constraints on time windows in
the Solomon benchmarks, to keep the problem feasi-
ble speeds are always increased by multiplying them
by some coefficient. By setting all coefficients to 1, the
original Solomon benchmarks can be obtained.

The author of [9] provided several sets of in-
stances, all attempting to simulate various con-
ditions in an urban network. There are four
sets of different coefficients added to time in-
tervals [0, 0.2tl0), [0.2tl0 , 0.4tl0), [0.4tl0 , 0.6tl0),
[0.6tl0 , 0.8tl0), [0.8tl0 , l0], where tl0 corresponds to the
closing time of the depot.

For example, one of the variants called TD1d has
coefficients [1.00, 1.00, 1.05, 1.60, 1.60] respectively,
modelling the case when congestions start early in the
morning and subside towards the end of the work-
day, or put simply, when the morning speeds are low
and later speeds are high. The variants TD2d and
TD3d cover situations where the speed rise is more pro-
nounced by using higher speed coefficients. Other vari-
ants cover different situations, as explained in much de-
tail in [9].

Each instance was run for 110 iterations for a total
of eight times. The averaged results of running ILS
on the described benchmarks are shown in tables 1 -
4. The average execution time for all instances was
26 seconds, where the problem types C1, R1 and RC1
performed much faster (17 seconds on average) than
the C2, R2 and RC2 (43 seconds on average), due to
fact that the operators work with much larger routes
when solving the latter instances.

In total, the algorithm in [9] was better when reduc-
ing the number of vehicles (12.12% on average). How-
ever, as was shown in subsection 4.1, the main focus
was distance and travel time reduction as the vehicle
limit of the real-world problem is easily reached. The
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Table 1: Results for standard TDVRP benchmarks set A
R1 R2 C1 C2 RC1 RC2

No. Tr. time No. Tr. time No. Tr. time No. Tr. time No. Tr. time No. Tr. time
TD1
Figliozzi 11.67 1080 2.82 990 10.00 729 3.00 563 11.38 1164 3.25 1177
ILS 13.22 1046.08 3.64 819.98 10.00 732.91 3.08 540.50 12.44 1154.45 4.25 929.10
∆[%] 13.28 −3.14 29.08 −17.17 0.00 0.54 2.67 −4.00 9.31 −0.82 30.77 −21.06

TD2
Figliozzi 10.75 897 2.55 861 10.00 644 3.00 495 10.50 989 2.88 993
ILS 11.33 767.859 3.18 593.01 10.01 624.20 3.14 440.53 11.11 846.05 3.69 697.11
∆[%] 5.40 −14.40 24.71 −31.13 0.10 −3.07 4.67 −11.00 5.81 −14.45 28.13 −29.80

TD3
Figliozzi 9.92 793 2.27 774 10.00 608 3.00 485 10.00 860 2.75 867
ILS 10.91 670.36 3.18 508.35 10.04 576.329 3.34 406.96 10.76 724.26 3.25 618.93
∆[%] 9.98 −15.47 40.09 −34.32 0.40 −5.21 11.33 −16.09 7.60 −15.78 18.18 −28.61

Table 2: Results for standard TDVRP benchmarks set B
R1 R2 C1 C2 RC1 RC2

No. Tr. time No. Tr. time No. Tr. time No. Tr. time No. Tr. time No. Tr. time
TD1
Figliozzi 12.42 1064 3.00 1027 10.00 732 3.00 545 12.13 1180 3.38 1200
ILS 13.11 1053.58 3.55 782.27 10.00 760.88 3.02 502.25 12.73 1233.36 4.19 933.78
∆[%] 5.56 −0.98 18.33 −23.83 0.00 3.95 0.67 −7.84 4.95 4.52 23.96 −22.19

TD2
Figliozzi 11.50 905 2.73 893 10.00 650 3.00 467 11.25 1010 3.25 1053
ILS 12.74 921.05 3.36 661.72 10.00 689.62 3.05 438.55 12.5 1070.07 4.00 803.08
∆[%] 10.78 1.77 23.08 −25.90 0.00 6.10 1.67 −6.09 11.11 5.95 23.08 −23.73

TD3
Figliozzi 11.42 808 2.73 831 10.00 584 3.00 446 11.00 916 3.00 981
ILS 12.71 843.61 3.27 587.36 10.01 651.70 3.19 407.09 12.33 985.04 3.88 736.81
∆[%] 11.30 4.41 19.78 −29.32 0.10 11.59 6.33 −8.72 12.09 7.54 29.33 −24.89

Table 3: Results for standard TDVRP benchmarks set C
R1 R2 C1 C2 RC1 RC2

No. Tr. time No. Tr. time No. Tr. time No. Tr. time No. Tr. time No. Tr. time
TD1
Figliozzi 11.67 1066 2.73 1003 10.00 697 3.00 573 11.50 1186 3.25 1147
ILS 12.08 968.37 3.27 733.37 10.00 743.29 3.18 507.35 11.81 1120.01 4.00 861.41
∆[%] 3.51 −9.16 19.78 −26.88 0.00 6.64 6.00 −11.46 2.70 −5.56 23.08 −24.90

TD2
Figliozzi 10.83 881 2.55 843 10.00 618 3.00 483 10.75 1012 2.75 1027
ILS 11.32 810.34 3.18 611.26 10.25 674.08 3.23 444.68 11.63 936.51 3.36 761.86
∆[%] 4.52 −8.02 24.71 −27.49 2.50 9.07 7.67 −7.93 8.19 −7.46 22.18 −25.82

TD3
Figliozzi 10.17 801 2.36 760 10.00 565 3.00 451 10.13 904 2.75 886
ILS 10.77 715.99 3 544.67 10.35 633.88 3.30 409.21 11.27 823.40 3.38 665.28
∆[%] 5.90 −10.61 27.12 −28.33 3.50 12.19 10.00 −9.27 11.25 −8.92 22.91 −24.91

Table 4: Results for standard TDVRP benchmarks set D
R1 R2 C1 C2 RC1 RC2

No. Tr. time No. Tr. time No. Tr. time No. Tr. time No. Tr. time No. Tr. time
TD1
Figliozzi 12.25 1114 3.00 1045 10.00 731 3.00 552 12.00 1192 3.38 1192
ILS 13.17 1037.41 3.73 799.91 10.00 727.26 3.02 501.35 12.75 1168.04 4.13 922.62
∆[%] 7.51 −6.88 24.33 −23.45 0.00 −0.51 0.67 −9.18 6.25 −2.01 22.19 −22.60

TD2
Figliozzi 11.58 943 2.73 915 10.00 652 3.00 494 11.25 1035 3.25 1053
ILS 12.78 915.19 3.53 710.31 10.00 657.75 3.02 437.03 12.19 1015.00 4.29 804.44
∆[%] 10.36 −2.95 29.30 −22.37 0.00 0.88 0.67 −11.53 8.36 −1.93 32.00 −23.60

TD3
Figliozzi 11.08 871 2.64 864 10.00 612 3.00 461 10.75 964 3.25 975
ILS 12.66 843.89 3.49 655.64 10.03 617.83 3.00 402.32 12.08 927.04 4.00 741.01
∆[%] 14.26 −3.11 32.20 −24.12 0.30 0.95 0.00 −12.73 12.37 −3.83 23.08 −24.00
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Figure 5: Best solution for tested real world problem

algorithms show similar ability to reduce travel times.
When both algorithms reach the same number of vehi-
cles (less than 2% difference), the average difference
in travel times is 1.7%. The best results of our algo-
rithm are achieved for the C2 type problems, where we
reached 10% less total travel time compared with [9],
but with only 4.36% higher number of vehicles.

5 Conclusion
The TDVRP is a modification of VRPTW which at-
tempts to better approximate travel times between cus-
tomers. In this paper we present speed profile, as a
way to model dynamic properties of a real-world traf-
fic network and incorporate them in the calculation of
travel times in TDVRP. There were 680, 000 speed pro-
files calculated and grouped by k-means algorithm into
3, 230 speed profiles used by a modified, time depen-
dent Dijkstra algorithm.

The time dependent Solomon I1 heuristic was im-
plemented as a starting point for the time dependent
ILS algorithm. The time-dependent ILS works in two
phases. First, an attempt is made to reduce the number
of vehicles needed by reducing the total travel time of
the solution. In the second phase, total distance is min-
imized. We approach the TDVRP in two ways. Only
one set of standard benchmarks is currently available
for the TDVRP and they define coefficients that mod-
ify travel time. For a real-world problem presented in
subsection 4.1 we have used another approach, more
suitable for the given problem. First, in the preprocess-
ing phase, we calculated 199 distance and travel time
matrices for every 5 minute interval during daytime.
When distance or travel time is needed for some pair
of the customers, ILS algorithm looks up those matri-
ces.

Results for standard benchmarks are also given.

Since the proposed ILS algorithm has only a basic
route reduction ability, it uses 12.12% more vehicles
compared to the algorithm published by Figliozzi. On
the other hand, travel time is lower by 11.03%. We
find that the ILS algorithm is suitable for the presented
real-world problem, since the lower bound with regard
to capacity is 12 vehicles which was obtained for every
one of the 30 runs. That result is 25% lower compared
to the actual number of vehicles used for the delivery.
Total distance calculated is 219 kilometers, compared
to 240 measured in practice.

For future work, adding specialized method to min-
imize the number of vehicles is planed. Possibility to
reduce search space and consequently reduce prepro-
cessing time of matrices will also be considered.
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