

Artificial Intelligent Player’s Planning in Massively Multi-

Player On-Line Role-Playing Games

Marko Malikovi ć

Faculty of Humanities and Social Sciences

University of Rijeka

Sveučilišna avenija 4, 51000 Rijeka, Croatia

marko.malikovic@ffri.hr

Markus Schatten

Faculty of Organization and Informatics

University of Zagreb

Pavlinska 2, 42000 Varaždin, Croatia

markus.schatten@foi.hr

Abstract. Massively multi-player on-line role-playing
games (MMORPGs) are relatively new phenomena in
the gaming industry in which a potentially large
number of players play simultaneously. An interesting
problem in such games is to develop artificial players
(bots) that are able to play such games and interact
with other players. In this paper we provide an initial
implementation of such an artificial player in Prolog
based on an automated planning system and a belief-
desire-intention (BDI) agent model. The artificial
player is able to receive tasks (quests) from non-
playing characters (NPCs) and solve them by taking
one action after another according to its internal
planning mechanism.

Keywords. MMORPG, AI player, Planning,
Formalization, Prolog

1 Introduction

Massively multi-player on-line role-playing games
(MMORPGs) allow human players to control the
actions of their protagonist (avatar) in Internet-based
games, in which a very large number of players
interact with one another in a virtual world [10]. A
usual setting is that a protagonist is placed into a
world in which he interacts with various NPCs (non-
player characters) which give out tasks (quests) that
he has to solve to be able to buy better equipment,
learn new skills, or proceed to higher levels.
MMORPGs provide a good foundation for
investigating the design and implementation of large-
scale distributed artificial intelligence (in the form of
NPCs on the one hand, as well as AI players on the
other). Such research can be carried out using agent-
based methods and multi-agent systems (MAS). In
this paper we use Belief-Desire-Intention (BDI) agent
theory [2] for the definition of artificial players. The
BDI model is a software development abstraction that
allows the implementation of intelligent agents that
are able to practically reason about a given domain
(their view of the environment they are situated in),

and autonomously generate plans in order to achieve
their design objectives (usually given to them by their
owners). In essence, BDI consists of:

− Beliefs which represent the knowledge base of
the agent (e.g. its representation of the world);

− Desires which represent the motivations of an
agent (e.g. the goals and objectives an agent
wants to achieve);

− Intentions which represent the deliberative
conclusions of practical reasoning of how to
achieve a desire the agent has committed
themselves to (e.g. plans which represent
sequences of actions).

Usually, a BDI based agent features two important
processes: (1) deliberation about objectives (e.g. what
to try and achieve next), and (2) deliberation about the
means (e.g. how to achieve the goals the agent has
committed to). The second process is deeply
connected to the field of automated planning. It
usually features (1) a (formal) description of
objectives that have to be achieved, (2) a description
of actions that can be done, and (3) a description of
the state of the environment. By using these
descriptions automated planning software tries to
generate a plan that will achieve the stated objectives
by using the available actions on the environment
[11]. For the sake of this paper, in the following
paragraphs we will call artificial participants in the
game AI players.

In this paper, we will present our artificial player's
planning system formalized in SWI Prolog [9]. This
planning system is developed as one of the
components within the ModelMMORPG (Large-
Scale Multi-Agent Modeling of Massively On-Line
Role-Playing Games) project1, and our artificial
players will play a MMORPG game alongside real
(human controlled) players. When we experimented
with various programming options in the early stage
of the project, we concluded that logic programming
with Prolog [1] is the most suitable for the planning
system that we require. As we have already said, our
AI players receive tasks (quests) of various NPC's, so

1 See http://ai.foi.hr/modelmmorpg for details.

Central European Conference on Information and Intelligent Systems__Page 3

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 23-25, 2015

our system, based on our formal description of quests
and on AI player's knowledge and/or communication
with other AI players, generates an action plan that
will lead him to achieve the goal (if that is possible
given the current state of knowledge and state of the
AI player, as well as the state of the environment). In
the ModelMMORPG project we have chosen The
Mana World MMORPG [8] to conduct our research.
The reasons for selection were: (a) it is open source
(GPL licensed) allowing us to modify code and add
additional functionality, (b) it has a supportive
community, (c) it supports a number of interaction
techniques which can be studied (e.g. trade among
players, IRC based chat, organizing teams called
parties, social network functions e.g. friends, enemies,
parties etc.), (d) it is a (more or less) finished game
featuring lots of quests that can be analyzed.

Our Prolog-based artificial players will be
connected with The Mana World game using Python
as an intermediate scripting language. Especially the
SPADE (Smart Python Agent Development
Environment) [7] which is a FIPA-ACL [6] compliant
agent development platform that allows for the
implementation of BDI agents and has interfaces to a
number of deductive engines including XSB Prolog,
SWI Prolog, Flora-2, ECLiPSe Prolog, as well as a
SPARQL querying engine.

Currently there are not many studies that deal with
the implementation of artificial players in MMORPG
games. Most studies try to develop countermeasures
to prevent artificial players, e.g. to detect bots based
on their behavior and consequently ban them from the
game. Only few studies use an agent based approach
in MMORPGs, but an artificial planning system is
only implemented in [3]. This study deals with the
area of computer-mediated storytelling, and describes
the "development of an expert case-based character
director system which dynamically generates and
controls a story, which is played out in a multiplayer
networked game world". The system is based on work
described in [4], in which the original implementation
was limited to one player taking control of a hero in a
simple scripted hero/villain story structure, with no AI
story-generation capability. The proposed system
includes a story director system which utilizes the
case based planning paradigm, and facilitates
multiplayer stories. Stories are modeled as cases, and
their planning and scheduling is the primary activity
of the system. This work is story-centered, and the
notion of artificial intelligence for the most part refers
to the story director agent. Modeling of the NPCs is
performed in a layered structure, from low-level
behaviors to higher level targeted goals (low level
such as collision detection, followed by social
simulation, idle behaviors, targeted behaviors,
attitudes). Thus, the cited study does not try to use an
automated planning system to implement an artificial
player, but to make the storyline of the game more
interesting.

The rest of this paper is organized as follows: in
Section 2 we describe our formalization of the state of
the world in The Mana World game, in Section 3 we
describe our formalization of quests in The Mana
World game, in Section 4 we give our plan of dealing
with changes in the environment, and in Section 5 we
draw our conclusions and give an outline of future
research steps.

2 Formalization of the state of the
world

In using the label “the formal state of the world” (in
our case a game, The Mana World system), we mean
the formal description of all the elements (static or
dynamic) that appear in that world. The state of the
world includes various aspects. One aspect determines
what the world looks like, and at the game level that
aspect is realized through graphic elements. This
includes maps that give a visual representation of the
world, as well as various sprites and locations of
beings and other visual things. In Fig. 1 we see a
screenshot of a moment when playing The Mana
World using the ManaPlus client.2

Figure 1. The Mana World

In our Prolog-based system the above mentioned
state of the world is described through a number of
predicate instances.

Very important points on the maps represent the
so-called blocked points. Blocked points are points
where the AI player cannot stand or cross (e.g. walls
and other immovable objects). Using open source
code from The Mana World, we generated a predicate
blocked in our Prolog system where instance
blocked(m,x,y) states that a particular map m has a
blocked point at coordinates (x,y). Another generated
predicate warp(m1,x1,y1,m2,x2,y2) states that a
particular map m1 has a gateway at coordinates (x1,y1)

2 ManaPlus is a free OpenSource 2D MMORPG client for The
Mana World and similar servers.

Central European Conference on Information and Intelligent Systems__Page 4

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 23-25, 2015

that leads to map m2 at coordinates (x2,y2). Of course,
the possibilities for the movement of the AI player are
mainly determined by blocked points and by gateways
from the maps to the maps. Fig. 2 represents one
simplified map in which we generate blocked points
and gateways.

 ████
 ████ ███████████
 ██████ ████████████
 ████████ ████████████
 ███ ██ ████████████████
 ███ ████ ██ ███████████████████
 █ █ ████ ███ █ ██████████████████████
 ██o ████ ██ o██████████████████████ ███
 ████ ██ █████████████████████ ████
 ███ ███ ██████████████████████████
 ███ ████ ██████████████████████████████████████
 ████ ██
 ████████ ██████████ ██
 ████████ ██ ██ ███ █ ██████████████████████████████ ███████████████
 ████████ ████ █████ █ ██
 ████████ █████████████ ██ ██
 ████████ ████████████ ████ ██████████ ███████████ ████████████████ █████
 ████████ █████████████████ ██████████████ ██████ ███████████████ ██████████████
 ████████ ████ █████ ████ ██ █████████████ ████ ███████████████ ████████████████████████
 ████████ █████ ███ █████████ ████████████ ██ ███████████████████████████████████
 █ ██████ █████████████ ███ ██ ███████ █ █ █ ████████████████████████████████
 ████████ █████████████████████ ██ ██████████████████████████████
 ████ ███ █ ████████████████ ████ ███████████████████████████
 ████████ ███████████████████████ ███████████████████████████
 █ ██████ ███████████ ███████████ ███ ██████████████████████████
 ████████ █████ ███ ███ ███ ██ ██ ██████ ██ █████████████████████████
 ████████ ████████████ ██ █████████████ ████████████████████████
 ████████ █████████████████████ ████ ███████ ███ ███████████████████████
 █████████ ██ █████████ ███████ ██████ o███████ ████ ████████████████████
 █████████ ███████████████████ ███████ ████████████████ ███████████████████
 ██████ ███████ ███ ██ ███ ███████ ███████████████ ████████████████
 ███████ ██ ████ ███████ ███████ ███████████████████
 ██████ █████████████████████████████ █████ ████████████
 ██████ o█████████████████████████████ █████ ███████████████████████████████████████ █
 ██████ o██████████████████████████ ██ ████████████████████ ███ ████████ ███████
 ██████ ██████████████████████████ ██ ██████ █████████ ██ ██ ██ ██ ███████████
 o██████ ██ ████ ███████ ███████████████████ █████ █████████ █████ ██ ████ ██████ █
 ██████ █ ██████ ██ ██ ███ ██████████████████████████████████ █████ ██ ███████████
 █████████ ████████████████ ██ ██████████████████████████████████ o█████ ██ █████ █████
 █████████ ███████████████████ █████████████████████████████ ████ █████ ██ ███████████
 ████████ ██████████████████ ███ █████████ ███████████████████ █████████████████████
 █ █████████████ ███ ████ █████ ██
 ███████████████ ███ ██ ███████ ██
 ██████████████ ███ ██████████ ███████████ ████████████████████████████████████
 █████████████ █████████████ ███ █████ ███ ████████████ █████████████████████████████
 ██████████ ██ █████ ██ ███ ███ █ ███████████████████ ███████████████████
 █ █ ███ ██ ██ ████████ ██ ███ ██████ ████████████ █████████████████████
 ██ ██ ██████████████ ███ ███ █████████ ████████████████ ████████████
 ██ █████████████████ ███ ██ ██████████ ██ ████████████████ █████████
 ██ █ █████ ██████ ██ ███ ███ █████ █████████ ███████████████████████
 █ ███████ ███ ██████ ███ ███ ███████████████████ ███████████████
 ██ ██████████ █████ ██ ███ ███████████████████████████ ██
 ███████ █ ██ ███ ██ ███ █████████████ ████████ █
 ████ ███ ████ ██ ███ ██ ████████████████
 █████████████ ██ ████ ███████ ██ ██
 ██ █████████████████
 ███ ██ ████████████
 ███████████████
 ██████████████
 ██████████████
 █ █████ ████
 ██████████
 ███
 ███
 ███
 ███
 ███████
 █████████
 ███████████
 █████████████
 ███████████████ ███████████████ ████ ████████
 ███ ███ ██ ███████████
 ███ ███ ███ ██████████
 ███ ███ █████ █████████████
 ███ ███ ██████████████ ██████
 ███ ███ █████████████████████████
 ███ ███ ██████████████████████████
 ███ ███ █ █ ██ ███████████████████
 ███ ███ ███ ██████████████████████
 ██ █ ███ ███ ███████████ ██████████████
 █ ██ ███ ███ ██████████████████████████o
 ███ ███ ███ ███ █ ███ ████████████████████o
 ███ ███ ███ ██████████████████████████ ███ █████████████ ████████████████████████o
 ███ ███ ███ ██████████████████████████ ███ ████████████████████████████████████o
 ███ ███ ██ ██████████████████████████ ███ ███████████████████████ ████████████o
 ███ ███ ████████████████████████████████ █████████████████████████████ ████████████
 ██ ██ ███ ████████████
 ███ █████ ███
 ██
 ██ █████████
 ███ █████████
 █████████████████ ███████ ███ █████████ █████████ █████████
 ██████████████████ ███████████ █████████ ████████ █████████
 ████████████████ ████████████ █████ ████ o███████████████████
 █████████████████ ███████████ █████████ ███████████████████
 ██████ █████████ ███████████ █████ ███ █████ ████████████
 ████ █████████ █████ █████ █████████ ██████ ████████████
 █ █ ██████ ███████████ █████████ █████ ████████████
 ███ ██████████████████████████

Figure 2. A simplified map with blocked points and

gateways

Blocked points are shown in gray shading whilst

the gateways from and to the map are represented as
black dots. Among some locations the AI player
knows to move "independently" (i.e. at the game
level). In some other cases, we have to introduce
heuristic solutions obtained by observation. For
example, in Fig. 2 in the area marked by an arrow, the
AI can come only from some other map but he does
not know how to do it independently.

Another important aspect of the state of the world
includes the attributes of beings and movable things
that exist in the world. So, in addition to predicates
that we have already described, there are groups of
predicates that describe:

1. Positions of movable objects on maps (human

players, AI players, a variety of items, NPCs,
monsters/mobs, etc.)
- Positions of such objects are stored in the

predicate location(t,o,m,x,y) whose five
parameters are: t (type of the object), o (name
of the object), m (map where the object is
located) and x and y (coordinates of the object
on map m);

- Instances of predicates location and blocked
contain all the movable and motionless objects
on the maps which provides us with a
description of fields that are free and that the
AI players can move upon;

2. Attributes of AI players (game level, weapons,
clothes, shield, various collected items, money,
etc.)
- Attributes of AI players are stored in the

predicate ownership(a,att,m) whose three
parameters are: a (name of AI player), att
(attribute) and m (value of attribute's measure);

3. Attributes of monsters or mobs (in most cases
equivalent to the attributes of AI players);

4. Attributes of various game-related items
including, but not limited to, weapons, shield,
clothing, etc.

3 Planning system implementation

In order to allow our AI players to reason about and
plan the execution of quests, we need to provide a
formalization of these quests. Here, we give a
description of this formalization that will lead us to
the implementation of the planning system.

3.1 Description of quests

Quests given out by NPCs can include simple
missions like collecting or buying certain items,
searching for and attacking various beings, walking to
certain locations or talking to several NPCs, but also
more complicated things like solving puzzles or
winning a boss fight. Some quests have requirements
like previously completing another quest, or being at a
certain level or above it (the level can be either
required or just recommended). Also, some quests
have costs like items or money.

Each quest will reward the player with something.
The rewards can be experience points (EXP), money,
items, equipment, daily points, boss points, skills,
magic spells or something else. EXP rewards will
grant the total amount, meaning they don't get cut off
when reaching a new level, so an AI player might also
raise more than a single level while completing a
quest. Asides from those characteristics listed earlier,
each quest has a starting location and redoables (e.g. a
player can repeat that quest multiple times).

As we will see, the above mentioned quest's
characteristics will be of special importance in our
formalization of quests. In this paper, the quest
Vincent from the set of the so-called Newbie Quests
will serve as an example of our formalization. All
quests from the set Newbie Quests must be performed
in a precisely defined order, and the quest Vincent is
just one of them.

The starting location of quest Vincent is in Candor
Island (see Fig. 2) and given out by NPC Vincent.
The required level for performing this quest is 1 but
the recommended level is 20. This quest is not
redoable, thus an AI player can perform it only once.
Prerequisites of this quest are several other Newbie
Quests (concretely quests Bernard, Mikhail and

Central European Conference on Information and Intelligent Systems__Page 5

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 23-25, 2015

Sarah). Once it is completed, the AI player receives a
reward of 1000 gold points (GPs), but performing this
quest will cost the AI player 10 items (in this case
Bug Legs which have already been, or have to be,
collected).

Figure 2. Candor Island

To perform this quest, the AI player has to follow

these instructions: From the Candor Island port, go
east from Valon until you reach a beach and you can
see Vincent. Talk to Vincent, and he will ask you to
collect 10 Bug Legs for his action figure. Go and
collect 10 Bug Legs. Talk to Vincent one last time and
give him the 10 Bug Legs you collected to complete
the quest.

3.2 Formalization of quests

In this Section, we show a detailed formalization of
quests using SWI Prolog based on the example quest
Vincent. All quests can be deconstructed into basic
actions. These basic actions can be of various kinds:
walking towards a certain location, attacking a certain
monster, taking an item, talking to a player or NPC,
buying something (weapons, clothing), etc. Thus, a
possible formalization of quest Vincent which we
have chosen to use is mainly a set of basic actions
lined up in the required order and looks like the
following:

do_quest(NPC,A,vincent) :-
 location(npc,vincent,M,XVT,YVT),
 ownership(A,level,La), La>=1,
 done_quest(A,bernard),
 done_quest(A,mikhail),
 done_quest(A,sarah),
 waiting_quest(NPC,A,vincent),
 \+ done_quest(A,vincent),
 ownership(A,money,Ma),

 retract(ownership(A,money,Ma)),
 NewMa is Ma+1000,

 assert(ownership(A,money,NewMa)),
 walk_to_location(A,M,XVT,YVT),
 assert(plan(talk(A,vincent,'Hi Vincent!'))),
 assert(plan(talk(vincent,A,'Give me 10 Bug
Legs for my action figure!'))),
 ownership(A,bug_legs,BL),
 (BL>=10
 ->
 NewBL is BL-10,
 assert(ownership(A,bug_legs,NewBL)),
 retract(ownership(A,bug_legs,BL));
 collect_items(A,bug_legs,10),

 assert(ownership(A,bug_legs,0)),
 retract(ownership(A,bug_legs,BL))),
 walk_to_location(A,M,XVT,YVT),
 assert(plan(talk(A,vincent,'I collected 10 Bug
Legs. I give it to you!'))),
 retract(waiting_quest(NPC,A,vincent))
 ->
 assert(done_quest(A,vincent));
 assert(failed_quest(NPC,A,vincent)).

The parameters of the rule do_quest(NPC,A,Q)

state that AI player A got instructions for the quest Q
from a non-player character named NPC.

Also, we describe and show the formalization of
certain basic actions which are used in quest Vincent.
The Prolog specification of action
walk_to_location(A,M,X,Y) which means "AI player A
on map M walk to location (X,Y)" called by
do_quest(NPC,A,vincent) is implemented in our
system and tells the AI player which way to go.
However, we note that the rule walk_to_location is
used only in some cases, because (as we have already
said) AI players are (at the game level) usually able to
move independently. Therefore, the specification of
this rule will not be shown here.

As we can see, apart from the recursive action
walk_to_location, from quest Vincent the recursive
action collect_items(A,Item,N) by which the AI player
A collects N items of some kind Item is called as well.
If the AI player already has some items of the kind
Item then he will collect just as much as he needs to
N. In general, it can happen that the AI player (for
other reasons) collected some things earlier that he
needs to solve the current quest. Additional important
information for this (and some other) quests is that
some items are dropped in certain percentages by
some mobs. In the case of the Bug Legs which need
to be collected in order to solve the quest Vincent,
they have been dropped by: Maggot (4%), Cave
Maggot (4%), Scorpion (7%), Bat (4%), Angry
Scorpion (7%), Spiky Mushroom (0,5%), Fire Goblin
(8%), Ice Goblin (8%), Sea Slime (5%), Red Scorpion
(5%), Giant Maggot (7,5%), and Black Scorpion
(8%). This tells us which mobs the AI player should
catch (kill) in order to collect enough items of a
certain kind (in this case Bug Legs). Therefore, in the
formalization of the state of the world we also have
information about which items are (in a certain
percentage) dropped by which mobs. For example, the
following instances of predicates say which mobs
dropped bug legs in what percentage:

Central European Conference on Information and Intelligent Systems__Page 6

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 23-25, 2015

dropped(bug_legs,maggot,4).
dropped(bug_legs,cave_maggot,4).
dropped(bug_legs,scorpion,7).
dropped(bug_legs,bat,4).
dropped(bug_legs,angry_scorpion,7).
dropped(bug_legs,spiky_mushroom,0.5).
dropped(bug_legs,fire_goblin,8).
dropped(bug_legs,ice_goblin,8).
dropped(bug_legs,sea_slime,5).
dropped(bug_legs,red_scorpion,5).
dropped(bug_legs,giant_maggot,7.5).
dropped(bug_legs,black_scorpion,8).

Based on these predicates, we can formalize a

generic action collect_items in such a way that it
allows the AI player to collect the concrete item he
needs, depending on the mobs that drop them:

collect_items(A,Item,N) :-
 (ownership(A,Item,I),
 I<N,
 dropped(Item,Mob,P),
 location(agent,A,M,XA,YA),
 location(mob,Mob,M,XMob,YMob),
 line_of_sight(A,Mob)
 ->
 walk_to_location(A,M,XMob,YMob),
 assert(plan(attack(A,Mob))),
 retract(location(mob,Mob,M,XMob,YMob)),
 retract(ownership(A,Item,I)),
 NewI is I+1, assert(ownership(A,Item,NewI)),
 collect_items(A,Item,N)).

As we can see in the above rule, we have limited
the attacks on adequate mobs to only those that are
located in the line of sight of the AI player. In the case
when the monster Mob is close enough to the AI
player A, predicate attack(A,Mob) is activated. Again,
the action collect_items calls the walk_to_location
action.

So, once we start an instance of command
do_quest(npc,ai_player,quest) its result is a sequence
of Prolog instances of basic actions. Specifically, after
running the command do_quest(npc,a,vincent) which
states that AI player a has got quest instructions of an
NPC, a sequence of actions which AI player a needs
to solve this quest is generated.

When the AI player needs a strategic plan, that is
when the AI player needs to decide between two or
more possible options, then it is necessary to
introduce branching in the rule that solves the quest.
A very simple example is the quest Letter Quest
whose instructions, among other things, state that:
You have two options to get to the Graveyard. First,
you can go south of Hurnscald and talk to Dyrin and
pay 750 GP to be transported there. If you're feeling
more adventurous, you can try to find your way there
by foot.

The part of the code in Prolog which allows such
branching is as follows:

do_quest(NPC,A,letter_quest) :-
 ...
 location(place,graveyard,M,Xgyard,Ygyard),
 (ownership(A,money,Ma),Ma>=750,

 % Additional reasons to pay the fare

 location(npc,dyrin,M,XDyrin,YDyrin)
 ->
 walk_to_location(A,M,XDyrin,YDyrin),
 assert(plan(talk(A,dyrin,'Hi Dyrin! I pay you
750 GP for transport to Graveyard.'))),
 assert(plan(talk(dyrin,A,'OK. Let`s go!'))),
 retract(ownership(A,money,Ma)),
 NewMa is Ma-750,
 assert(ownership(A,money,NewMa));
 walk_to_location(A,M,Xgyard,Ygyard)),
 ...

First, the player must make a decision based on
whether he even has the money to pay the fare.
However, it is necessary to bring a deeper strategic
decision about which way of traveling is better for
him. Such a decision may depend on many factors.
One such factor may be that the player can solve
some waiting quest along the way as it travels to the
destination (the travel route can in this case be
important). It may be wise to go on foot because on
the road he can collect some items that he lacks to
start or finish some other quest.

The AI player can make more complex
conditional decisions in the case of communication
and interaction with other players or NPC's. In the
case when an AI player is physically close enough to
another player or NPC, the simplest form of
communication may be formalized in the form of a
predicate whose name and parameters describe the
type of interaction. For example, if an AI player a1
has a need to exchange or purchase some item, and an
AI player a2 is close enough, then such a need can be
expressed by the predicate trade(a1,a2,item). If the AI
player a2 is interacting with AI player a1 then his
response can be formalized in the form of predicate
cost by which AI player a2 informs AI player a1 about
the price of the requested item: cost(a2,a1,item,price).
Then follows a decision about the exchange, and
depending on that decision, the exchange will be
carried out or not.

Such decisions can become even more complex if
multiple items have to be purchased or traded. In such
cases, some form of automated negotiation algorithm
has to be implemented similar to [5] which is out of
the scope of this paper.

3.3 Solving quests

The AI player is going to solve a quest if he has met
all the preconditions for that quest (for example the
required level). If he gets a quest for which there are
no preconditions to resolve, then it remains in his
mind, and he is going to go and solve something else.
Therefore, quests that AI players get, but have not
started to resolve, are recorded in our system as
instances of predicate
waiting_quest(npc,ai_player,quest).

In addition, there is a possibility of failure during
the solving of the quest. An instance of the
failed_quest(npc,ai_player,quest) predicate records a
failure to resolve the quest.

Central European Conference on Information and Intelligent Systems__Page 7

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 23-25, 2015

We have implemented an algorithm to select a
quest which the AI player will try to solve first. This
algorithm is based on the so-called significance of the
quest for the AI player. The significance of the quest
for an AI player is given by the instance of predicate
quest_sign(ai_player,quest,sign). In order that our
system knows which quest it should firstly begin to
solve, we have introduced a
quest_no(ai_player,quest,no) predicate, where the
number no indicates the ordinal number (priority) of
the quest. Priority is calculated based on the above
properties of quests and is recalculated when
necessary. Thus, quests belonging to an AI player A
are sorted by priority, and sorting is conducted
according to the following recursive Prolog rule:

sort_quests(A) :-
 waiting_quest(NPC1,A,Q1),
 waiting_quest(NPC2,A,Q2),
 quest_sign(A,Q1,QS1),
 quest_sign(A,Q2,QS2),
 quest_no(NPC1,A,Q1,QN1),
 quest_no(NPC2,A,Q2,QN2),
 QS1>QS2,

 QN1>QN2
 ->
 retract(quest_no(NPC1,A,Q1,QN1)),
 retract(quest_no(NPC2,A,Q2,QN2)),
 assert(quest_no(NPC1,A,Q1,QN2)),
 assert(quest_no(NPC2,A,Q2,QN1)),
 sort_quests(A);
 true.

Depending on the recalculation of priorities of

quests, it is possible that the current quest is
temporarily interrupted, another quest is conducted
and afterwards the interrupted quest continues.

If the AI player has no waiting quests or cannot
solve any waiting quest for some reason, then its goal
is to explore the map hoping to find a new NPC that
will give him a new quest. For this purpose, we have
implemented a Prolog rule by which the AI player
walks to a random location on the map it is currently
located on:

random_walk(A) :-
 location(agent,A,M,Xa,Ya),
 randomX(M,RLX),
 randomY(M,RLY),
 location(npc,NPC,M,XNPC,YNPC),
 line_of_sight(A,NPC)
 ->
 walk_to_location(A,M,XNPC,YNPC);
 walk_to_location(A,M,RLX,RLY).

whereby the actions randomX(M,RLX) and
randomY(M,RLY) yield random coordinates
(RLX,RLY) on map M. If during a random walk, the
AI player passes close to an NPC, then it will turn to
him.

Using the above mentioned Prolog rules we reach
the point that we must not "tell" the AI player which
quest should be solved or what to do at all. He knows
it according to the following Prolog rule:

do(A) :-
 sort_quests(A),
 quest_no(NPC,A,Q,1)
 ->
 do_quest(NPC,A,Q);
 random_walk(A).

The rule do(A) says that AI player A will first sort
the quests based on importance. Then, if there is a
quest on waiting with the highest priority (priority 1),
the AI player should go to solve it. Otherwise, the AI
player should perform a random walk in order to
approach some NPC if it passes next to him close
enough.

4 Changes in the environment

Since the environment of MMORPGs can be highly
dynamic due to the large number of various
interacting elements, it is necessary to deal with
possible changes in the environment of the AI player.
Therefore, AI players should be intelligent which
means that they should be able to adapt to changes in
the environment. We approach this by using a
modified BDI control loop approach described below.

4.1 Formalization of the overall control
loop of AI players

The overall control loop of our AI player is
formalized mostly in accordance with the overall
control structure of a practical reasoning agent given
in [11]. Namely, in our system we are focused on
reasoning directed towards actions and not only on
theoretical reasoning which affects only the AI
player’s beliefs about the world. In our formalization
the AI player continuously:

1. Observes the environment and changes in that

environment. Changes can occur in:
- the location of certain players, NPCs,

monsters, items, etc.;
- attributes of players;
- attributes of quests (a quest is waiting to be

performed, priority, done or failed);
- etc.

2. Deliberates to decide what intention to achieve.
Deliberation is done by firstly determining the
available options and then by filtering. Options of
an AI player are quests, or eventually random
walks around the map, until he finds a new NPC
that will give him a new quest. Thus, deliberation
is actually deciding which quest the AI player will
try to perform next. In order to select the most
appealing between the competing options, an AI
player uses a filtering mechanism. In our case, the
filtering is actually the sorting of quests in order of
priority.

Central European Conference on Information and Intelligent Systems__Page 8

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 23-25, 2015

3. Establishing a plan to achieve the selected
intention, that is to solve the selected quest.
Namely, when the AI player in step 2 chooses a
quest to perform, it is necessary to determine the
way in which the quest can be performed.

4. Executes the plan.

As in other similar planning systems, an important
question occurs: How often (and when) should an AI
player re-observe the environment and reconsider his
intentions? Given that in The Mana World game these
processes are not computationally cheap, it is
necessary to reconsider as rarely as possible. On the
other hand, during this time the environment changes,
possibly rendering his newly formed intentions
irrelevant. It is obvious that we have to find the
optimum. Of course, the optimum is contained in this
kind of system behavior: the AI player has to
reconsider his intentions if, and only if, afterwards the
intentions will have to be changed. Our plan is to
reach this optimum experimentally by observing the
behavior of our AI players in The Mana World test
scenario.

4.2 Implementation of the overall control
loop of AI players

Our planning system is separated from the physical
realization of the AI players at the game level.
Namely, at the game level, the AI player engine is
implemented as a knowledge base into SPADE
(Smart Python multi-Agent Development
Environment) [7] and connected as a client to the The
Mana World server, in order to provide an interface
between the planning system and actual avatars in the
game that shall play alongside human players. By
starting the planning system, we get a sequence of
actions that the AI player should take to achieve his
objective.

We need to connect the physical implementation
at the game level with a generated plan, and with a
periodic control of the state of the environment. If
there are changes in the environment (in a way that
affects the existing plan) it is necessary to generate a
new plan. The above is realized by the following
general algorithm:

1. Load the physical state at the game level in the

Prolog planning system;
2. In the Prolog system generate a (possible) AI

player’s plan to achieve the objective based on the
current state of the environment (for example, to
solve a certain quest or do a random walk);

3. Carry out only N first steps of the plan at the game
level (we discussed what should be N in section
4.1);

4. Upgrade the state in the Prolog system to the
newly arisen state on the game level;

5. Go back to step 2.

The above loop (algorithm) should proceed until
the AI player completes his task, that is until he
achieves his objective.

5 Conclusion & Future Work

In this paper, we have shown a possible
implementation of artificial players in MMORPGs.
MMORPG environments provide an interesting
environment to test large-scale multi-agent system
(LSMAS) design techniques, since for most of the
methods used in such systems, adequate scenarios
(quests) can be implemented to test them.

In our endeavors, we have chosen to use an open
source MMORPG platform and implement AI players
using Prolog. An automated planning system has been
implemented based on a formalization of quests, as
well as a practical reasoning control loop. We have
discussed some of the practical issues which might
arise in the testing of such AI players including the
optimal time when to reconsider the environment,
since this is a resource consuming action.

The developed approach provides an initial step
towards using automated planning agents in complex
social environments, since MMORPGs feature a
complex world in which a multitude of humans
interact through their avatars with the world and with
one or more instances of artificial agents.
MMORPGs's imagined worlds are in a way an
approximation of the real world, whilst the complex
interaction of social entities (both human and
artificial) provide us with a glimpse into the processes
an artificial agent might have to deal with in real
world scenarios.

In our future studies we plan to conduct a large-
scale experiment in a specially designed test scenario
in which human players will play alongside AI
players similar to the one described herein. We will
gather statistical data about both human and artificial
players with the intention of identifying the most
valuable organizational methods used by players in
order to optimize artificial players in the future.

6 Acknowledgments

This work has been supported in full by the Croatian
Science Foundation under the project number 8537.

References

[1] Bramer, M. Logic Programming with Prolog.

Springer-Verlag, London, UK, 2013.

Central European Conference on Information and Intelligent Systems__Page 9

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 23-25, 2015

[2] Bratman, M. E. Intention, Plans, and Practical
Reason. Harvard University Press, Cambridge,
UK, 1987.

[3] Fairclough, C; Cunningham, P. A multiplayer
case based story engine. In 4th International
Conference on Intelligent Games and Simulation,
pages 41-46, EUROSIS, 2003.

[4] Fairclough, C; Cunningham, P. An interactive
story engine. In O'Neill, Sutcliffe, Ryan, Eaton
and Griffith (Editors), Proceedings of the 13th
Irish International Conference on Artificial
Intelligence and Cognitive Science, Lecture Notes
in Artificial Intelligence, 2464: 171-176, 2002.

[5] Faratin, P. Negotiation among groups of
autonomous computational agents, Ph.D. thesis.
Department of Electronic Engineering, Queen
Mary and Westfield College, University of
London, UK, 1998.

[6] Foundation for Intelligent Physical Agents. FIPA
ACL Message Structure Specification,
http://www.fipa.org/specs/fipa00061/SC00061G.
html, accessed: June 30th 2015.

[7] Gregori, M. E; Cámara, J. P; Bada, G. A. A
jabber-based multi-agent system platform. In
Proceedings of the fifth international joint
conference on Autonomous agents and multiagent
systems, pages 1282-1284, ACM, New York,
USA, 2006.

[8] The Mana World Contributors. The Mana World
- A free open source 2D MMORPG in
development, https://www.themanaworld.org,
accessed: November 15th 2014.

[9] Wielemaker, J; Fruehwirth, T; De Koninck, L;
Triska, M; Uneson, M. SWI Prolog Reference
Manual 7.1. Books on Demand, 2014.

[10] Wikipedia Contributors. Massively multiplayer
online role-playing game,
http://en.wikipedia.org/wiki/Massively_multiplay
er_online_role-playing_game, accessed: March
12th 2015.

[11] Wooldridge, M. An Introduction to Multiagent
Systems. John Wiley & Sons, Chichester, UK,
2002.

Central European Conference on Information and Intelligent Systems__Page 10

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 23-25, 2015

