

Problems during Database Migration to the Cloud

Goran Vodomin, Darko Andročec

Faculty of Organization and Informatics

University of Zagreb

Pavlinska 2, 42000 Varaždin, Croatia

{gvodomin, dandrocec}@foi.hr

Abstract. Numerous heterogeneities among different

local databases and cloud storages make database

migration to the cloud an interesting and complex

research and practical problem. Successful execution

of more complex interoperability scenarios cannot be

imagined without being able to move data from local

servers to the cloud, and from one cloud storage to

another. In this work, the authors have developed a

working prototype of a migration tool for MySQL,

PostgreSQL and Microsoft SQL Server. The main

contribution of this work is the identification of

problems that can occur during database migration

process to the cloud. The authors also list differences

between data storage models of various commercial

cloud providers to envisage possible issues when

moving data from one cloud storage to another.

Keywords: Cloud, data migration, migration tool,

migration problems

1 Introduction

Due to its advantages, cloud computing is now used

by many business and public sector organizations.

The most common definition of cloud computing is

the National Institute of Standards and Technology’s

(NIST’s) formulation, claiming that this paradigm “is

a pay-per-use model for enabling available,

convenient, on-demand network access to a shared

pool of configurable computing resources (e.g.

networks, servers, storage, applications, services) that

can be rapidly provisioned and released with minimal

management effort or service provider interaction”

[4]. Every computing paradigm has some limitations.

One of the main obstacles of cloud computing is

provider data lock-in. This problem is characterized

by complex and time-consuming migration of data to

alternative cloud vendors. There are also problems

when trying to initially migrate data from local

servers to the cloud. The main aim of this paper is to

identify issues that can occur during database

migration process to the cloud. The authors also list

differences between data storage models of various

commercial cloud providers to envisage possible

problems when moving data from one cloud storage

to another.

 This paper proceeds as follows. First, in Section 2,

the related work is listed. In Section 3, data migration

to the cloud is explained in more detail. Section 4

shows sample database structure used for testing the

authors’ migration tool. In Section 5, the authors’ data

migration tool is presented together with its main

functionalities. Section 6 and Section 7 present the

identified migration problems and differences among

cloud storages. Conclusions are provided in the final

section.

2 Related work

There are some existing works dealing with data

migration from the existing systems to the clouds, or

from one cloud offer to another. Ranabahu and Sheth

[6] present the usage of semantic technologies to

overcome cloud vendor lock-in issues. They

distinguish four types of semantics for an application:

data semantics (definitions of data structures, their

relationships and restrictions), logic and process

semantics (business logic of the application), non-

functional semantics (e.g. access control and logging)

and system semantics (deployment descriptions and

dependency management of the application).

 Miranda et al. [5] used software adaptation

techniques to tackle cloud interoperability and

migration. Software adaptation techniques are aimed

at developing mediator elements, called adaptors.

They identified three important interoperability

problems of cloud service based applications:

communication is conditioned by the technology

supported by each vendor, invoking third-party

services is limited by the supported invocation

mechanisms, and portability problems occur due to

vendor-specific technologies. The variability among

different providers’ APIs and service specifications

can be defined by using formal methods and by

generating the required mappings and adaptation

components. Bastiao Silva et al. [1] developed a

unified API for delivering services using cloud

resources of multiple vendors with abstract layer for

cloud blob stores, cloud columnar data (e.g. Azure

Central European Conference on Information and Intelligent Systems__Page 11

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 23-25, 2015

Table), and Publish/Subscribe mechanism (Channel

API of Google App Engine and Azure Queue).

 There are several cloud APIs and frameworks that

act as intermediaries between different clouds.

Apache Libcloud is a Python library containing a

unified API that can manage cloud resources of

different providers. This library is focused on

infrastructure as a service and supports cloud servers,

block storage, cloud object storage, load balancers,

and Domain Name System (DNS) as a service.

Deltacloud API contains a cloud abstraction API

working as a wrapper around a large number of

clouds to abstract their differences. It is also focused

on infrastructure as a service (IaaS) providers and

provides drivers for Amazon, Eucalyptus, GoGrid,

OpenNebula etc. Apache jclouds is an open-source

library offering blob (binary content) store and

compute service abstraction for 30 IaaS providers.

There are also some commercial (industrial)

approaches to tackle cloud portability and

interoperability. For example, Cloutex can integrate

and synchronize data between Salesforce, Quickbooks

Online and Magento. A similar offer, Import2.com,

enables the transfer of data between cloud application

such as Salesforce, Tumblr, Nimble, Pipedrive,

SugarCRM, and Zoho Customer Relationship

management (CRM) software. Import2 is currently

focused on CRM, helpdesk and blog migration of

cloud data. The two offers mentioned here are focused

on software as a service (SaaS) data.

3 Data migration to the cloud

Data migration to the cloud is the process of moving

data from the existing databases to the databases that

are placed in the cloud. During this process, data

should not be lost or modified. There are many

reasons for moving data to the cloud and some of

them are: system upgrade, data consolidation,

improving data security, etc. [7]. Information systems

often have different models of data storages, so data

often needs to be converted from one format to

another. Through the conversion process, companies

often enhance the model of storage and some of the

data is deleted or modified. After the migration

process is done, organizational structure is often

changed and it is necessary to prepare staff to work

with the new information system. Each data migration

has specific needs and most data migrations differ,

because their characteristics depend on the systems

from which and to which data is migrated.

 The process of migration is not easy and needs to

be well prepared and organized. That is why the

migration can be divided into several steps.

According to the authors ([3], [8]) data migration

consists of eight steps:

1. Define the scope of migration

2. Ensure data security

3. Select service provider

4. Mapping the data

5. Scheduling the migration

6. Select tools for migration or develop migration

scripts

7. Testing before and after the migration.

8. Actual data migration

 The amount of time that will be required to

migrate relational database depends on the amount of

data that is stored in the database, the number of

stored procedures, views and triggers. Data definition

language (DDL) migration can last between a couple

of days or two weeks, during which testing must be

included. There are many tools for relational database

migration such as MySQL Workbench, SQL Server

Management Studio, MicroOLAP DB Designer etc.

Regardless of the variety of tools that simplify the

migration, there are some changes in the database that

the tool will not recognize (table and column splitting,

data type or table name changed). Relational database

migration can be divided into three major phases [3]:

1. Relational schema migration – it includes the

migration of tables, indexes and views.

2. Data migration done via tools or migration scripts.

The time required for data migration depends on the

size of the database.

3. Database stored programs migration – the

migration of stored procedures and triggers.

4 Test database

To simulate and test the migration process, the

authors of this study developed Transport database.

The database shows a transportation company’s data.

The most important information is stored within the

tables vehicle_work and transportation_order. Table

vehicle_work contains data about business partner,

vehicle, employee etc. and table transportation_order

contains data about products which need to be

transported. Besides data, the database also contains

stored procedures (verify_date, verify_cargo), triggers

(trig_date_check, tirg_cargo_check) and views

(vehicle_list, employee_list, warehouse_list). Entity-

relationship model of “Transport” database is

developed in MySQL Workbench 6.0 and shown in

Figure 1.

Figure 1. Transport entity-relationship model

Central European Conference on Information and Intelligent Systems__Page 12

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 23-25, 2015

5 Data migration tool

There are several ways (tools, migration scripts) to

migrate relational database to the cloud. Migration

scripts are often used for modifying and database

administration. Migration script can include changes

like database schema modification, data modification,

database management systems (DBMS) upgrade, user

management etc. [2]. Database administrators like to

develop their own scripts for database maintenance,

however, if the administrator leaves the organization,

new administrators do not have full knowledge of

how to properly use the script. There are two kinds of

migration scripts:

1. Automated migration script – generated by the

software for data migration, example MySQL

Workbench

2. Manual migration script – developed by database

programmer.

 Migration tools can be open source or commercial.

For the purpose of this study, a simple data migration

tool was developed. The tool name is Migrator and it

is developed using Microsoft .Net technology. It is

aimed at migrating data from local database to cloud

storages. Migrator can also be used for some kind of

cloud-to-cloud migration. In that case, the data from

cloud provider is stored on the local storage and it is

used for the migration process on another cloud

provider. The time needed for the migration heavily

depends on the speed of the internet connection,

because program stores data on the local storage and

then restores it on another cloud provider.

 In the “real world” there are numerous types of

relational database management systems (RDBMS)

and Migrator can, for now, work with the following

three popular DBMS systems: MySQL, PostgreSQL

and Microsoft SQL Server. For each type of RDBMS

there is a different set of libraries and methods to

work with. Commercial tools can migrate relational

database from one RDBMS to another RDBMS, but

in most cases they are expensive. There are also open

source tools and scripts which can be used for

migration from one RDBMS to another RDBMS, but

the problem is that these tools and scripts work only

with some RDBMS systems and often cannot migrate

stored procedures, triggers and views. Migrator is a

free migration tool, still in development, which works

under Windows platform. The benefits of its use are:

it is easy to use, does not require a lot of computing

resources, creates a data backup, it can be used for

cloud-to-cloud migrations, it has the ability to migrate

only selected database objects, etc. Although other

free and commercial tools for data migration exist, it

is difficult to determine the most common

interoperability problems and how to resolve them

without developing a new tool. This is the main

reason why the authors decided to develop a new tool.

Migrator can be downloaded from GitHub public

repository:

https://github.com/GorskiV/Migrator.

 If the migration must be carried out between

different RDBMS systems, data conversion must be

made. Each RDBMS has its own syntax, datatypes

and a way of writing stored views, procedures and

triggers. Because of the mentioned problems,

Migrator does not support the migration between

different RDBMS systems for now. On the other

hand, commercial tools (for example SwisSQL,

Oracle SQL Developer, ESF Database Migration

Toolkit) can overcome the afore mentioned problems

and these functionalities make the difference

compared to Migrator. In addition, commercial tools

can work with more RDBMS types.

 Migrator consists of seven main classes that are

necessary to complete the migration of relational

database. The most important class is MigratorModel

which is aimed at working with three different types

of RDBMS. Within this class, methods are used to

connect, retrieve, backup and restore data from

different RDBMS systems. Methods which are used

for establishing connection are MySqlConnect(),

SqlServerConnect() and PostgreSQLConnect(). Each

of these methods has a connection string as an

argument which is provided by the user. After

establishing the connection, based on which RDBMS

is chosen, different sets of methods are used. For

example, if the user chooses MySQL for retrieving

data, the program uses the following methods:

MySqlTables(), MySqlViews(), MySqlProcedures()

and MySqlTriggers(). The same principle is applied

for retrieving data when PostgreSQL and SQL Server

are selected. Each method uses a connection string as

an argument to connect to a database. Things get

more complicated when backup and restore have to be

taken into consideration. For backing up and restoring

PostgreSQL database, Migrator uses third party

software pg_dump and pg_restore. Before backing up

and restoring PostgreSQL database program verifies

if this software is installed on user computer. Methods

used for verifying are verifyPostgreInstalation(),

PG_DumpExePath(), LookForFile(),

performFileSearchTask() and they are developed by

Vinay Swa. After data is retrieved, the user selects

which data will be migrated. The user chooses tables,

views, triggers and procedures for the migration

process. Depending on the selected data, different

methods are called for data backup. Arguments for

backup methods are RDBMS type, connection string,

backup path and data list. When SQL Server is

selected, the user does not have an option for

choosing the data that will be migrated. The problem

is that there are not methods and libraries available for

backing up specified data. In this case, the user can

backup and restore the entire database. In the end,

previously backed data is used for restoring on cloud

provider. There are three methods for restoring data

on cloud provider: MySqlImport(),

PostgreSQLBackupImport() and SqlServerImport().

The most important arguments for restoring data are

Central European Conference on Information and Intelligent Systems__Page 13

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 23-25, 2015

https://github.com/GorskiV/Migrator

connection string and path to the previously backed

data. The migration process and methods for restoring

data are called when the user presses the button Start

Migration. It is important to note that external

libraries and third party software are used for the

entire migration process.

 Figure 2 shows the main form. The form displays

three different options for choosing RDBMS. Based

on the selection, different sets of methods are used

within MigratorModel class during the process of

migration. For example, if the user chooses MySQL in

the further process it is necessary to provide data

(connection strings) which will work with this type of

RDBMS. When selecting PostgreSQL RDBMS

Migrator checks if there are pg_dump and pg_restore

tools installed on user system. These are external tools

which are needed for backup and restoring of data

from PostgreSQL database. Microsoft .Net

technology provides Npgsql library to work with

PostgreSQL but within Npgsql library there are only

methods and classes which select and insert data from

database, they do not support backup and restore data.

Figure 2. Main form of the Migrator tool

Figure 3 shows the form for entering connection

parameters for the chosen RDBMS. Once the user

enters data, he can test the connection, and if the data

is valid, the connection is successful. Checkbox SQL

Server Windows authentication is checked if the user

intends to connect on SQL Server which requires

Windows authentication (in most cases this is local

SQL Server database).

Figure 3. Entering connection parameters

After the user connects to database, Figure 3 displays

all the data within database. This data can be tables,

views, procedures and triggers. The form header

displays options for choosing which data will be

displayed inside the table. On the right side there are

also options for selecting the data that will be

migrated. The user does not have to choose all tables,

views or procedures for the migration process. He can

select only a few tables or views which will be

migrated. By clicking on the Next button, program

backups all the selected data. This backup will be

used in the further process of the migration.

Figure 4. Select data for migration

When backup is completed, a new form is opened

similar to Figure 3. On this form the user provides

connection parameters for the selected target

database. Database can be located on localhost (for

testing purposes) or on the cloud. There is also Test

connection button where the user can check if the

connection parameters are valid. If the connection is

successful, the user can start the migration. Migration

data is retrieved from the previously created backup.

If all goes well, the program informs the user about

successful migration. On the other hand, if there is a

problem during the migration, the program raises

error notice and aborts the migration. In the end, after

the migration is completed, GUI shows the migrated

data on cloud database, as seen in Figure 5, and the

user can start a new migration or close the program.

Figure 5. Migrated data

Data migration is carried out on the Google Cloud

platform and all the data is migrated (tables, views,

Central European Conference on Information and Intelligent Systems__Page 14

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 23-25, 2015

procedures, triggers). Figure 6 displays the created

database on Google Cloud Platform.

Figure 6. Google Cloud SQL

6 Problems identified during

migration

During relational database migration various

problems may occur. Most of the problems depend on

the chosen cloud service provider. It is often

necessary to make server configuration before the

migration step. Not all cloud providers will provide

super roles during database and server configuration

and this can be a problem. In some relational database

management systems, functions, procedures and

especially triggers need to have super role to be able

to work. In some cases, data conversion is required, if

the migration has to be completed between different

RDBMS systems. For each cloud provider, there are

some problems which occurred during the migration.

Problems are related with server configuration and the

migration of stored procedures, triggers and functions.

 For example, Amazon AWS has the following

requirements when working with their MySQL

instances:

- Data type configuration – date format has to be

year-month-day-hour-min-sec. During the migration

of date data (date data is contained in the following

tables of the authors’ sample database: vehicle_work,

holidays, purchase_order etc.) schema migration of

mentioned tables preformed successfully, but if the

date data was not in the correct format, it will not

migrate. To overcome these problems during data

backup, date format has to be specified. Date format

has to correspond with the format of cloud database,

and then date data migration performed well.

- Server configuration – before the migration of stored

procedures, trigger and functions parameter

log_bin_trust_function_creators has to be set on 1

- Data configuration – user defined functions have to

contain clause DETERMINISTIC, or parameter

log_bin_trust_function_creators has to be set on 1.

During the migration of stored procedures

(verify_date, verify_cargo) and triggers

(trig_date_check, tirg_cargo_check) clause

DETERMINISTIC was not included because server

parameter log_bin_trust_function_creators was set on

1.

- Server configuration – if user defined functions,

views, stored procedures and triggers start with

uppercase, parameter lower_case_table_names has to

be set on 2. Transport database does not contain

objects that start with uppercase and therefore this

parameter has not been changed.

 Google Cloud SQL has only MySQL offer, there is

no offer for PostgreSQL or SQL Server RDBMSs.

Also, in its MySQL offer, there is a requirement that -

for stored functions, views and triggers - the attribute

DEFINER has to be excluded because it requires

super privileges which are not provided. For example,

if the attempt is made to migrate trigger with the

following code: create definer=gorski trigger

trig_date_verification before insert on

vehicle_work… the migration will fail. While

creating a backup, attribute DEFINER has to be

excluded and later, after the migration is done,

database administrator defines privileges (using

GRANT statement) for using procedures, triggers

etc... Microsoft Azure does not support neither

MySQL nor PostgreSQL. Azure version of SQL

Server RDBMS has the following additional

requirements:

- There is a need for additional configuration for

composite foreign keys. Transport database contains a

table (purchase_order_item) which has composite

foreign keys (fk_purchase_order and fk_products).

Composite foreign keys require a clustered index, and

after table schema migration, on older versions of

Azure SQL Server, clustered indexes have to be

created manually before data migration, otherwise

data migration will fail. Azure SQL Database's latest

update (V12) allows tables without clustered indexes,

and if upgrade is done, there is no need for clustered

indexes. In this case, the authors upgraded database

on the latest update and after the upgrade the

migration performed well.

- There is no support for triggers.

7 Differences between cloud

storages

There are many data migration/interoperability

problems among cloud storages. The first identified

problem is the difference between data storage

models. As an illustration, it is difficult or even

impossible to move data without losing important

information from an SQL model of one provider to a

NoSQL model of another platform as a service

provider. Even if the same models were chosen (e.g.

SQL) in two various offers, these models will still

have significant differences due to provider’s design

and used technology. For example, each provider

supports their own set of data types. Data types differ

in name, value space, permitted range of values,

precision of data etc. Some offers also have

predefined standard objects or tables. Data import or

export is often complicated. Most providers offer only

Central European Conference on Information and Intelligent Systems__Page 15

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 23-25, 2015

basic CSV or XML exports (list of columns and row

data), so users cannot determine data types,

identifiers, possible relationships between tables (e.g.

foreign keys) etc. Users must use remote APIs of

cloud providers to get that information. APIs are not

standardized, so users need to cope with different

functions, input and output parameters and different

means to access remote API functionalities by using

libraries for programming languages and/or SOAP or

REST web services. Various platform as a service

providers also use their own versions of data query

languages.

8 Conclusion

There are many data migration problems when trying

to move from local servers to the cloud, and when

migrating data from one cloud offer to another. Some

cloud vendors simply do not support some databases

(for example, Google Cloud SQL has only MySQL

offer, Microsoft Azure does not support neither

MySQL nor PostgreSQL). Users are limited to choose

provider that supports their preferred database, or they

must use some migration scripts or tools to execute

mappings and migrate to another cloud storage

option.

 To minimize the possible data migration problems,

users should carefully choose cloud storage offer. It is

also best to avoid using vendors’ specific features that

are not supported in any other cloud offer. For

example, most data type problems can be avoided if

the established variants of data types (for example,

integer, string etc.) are used. The more users use

advanced and innovative functionalities that are

provider or cloud storage offer specific, the more

difficult it will be for migration and interoperability to

occur. The future work could include several

improvements of this migration tool. For example, the

authors could consider how to migrate data from

relational databases to NoSQL cloud storages and how

to perform data type mappings between them.

Acknowledgments

The authors would like to thank the reviewers for

their comments that helped improve the manuscript.
This work has been fully supported by the Croatian

Science Foundation under the project IP-2014-09-

3877.

References

[1] Bastião Silva, LA; Costa, C; Oliveira, JL. A

common API for delivering services over multi-

vendor cloud resources. Journal of Systems and

Software. 86(9):2309–17, 2013

[2] Hickford, J. Using Migration Scripts in Database

Deployments. https://www.simple-

talk.com/sql/database-administration/using-

migration-scripts-in-database-deployments/,

downloaded: August 8th, 2014

[3] Laszewski, T; Prakash, N. (2011). Migrating to

the Cloud.

http://www.oracle.com/technetwork/articles/clou

dcomp/migrating-to-the-cloud-chap-3-

495856.pdf, downloaded: August 11th, 2014

[4] Linthicum D.S.: Cloud Computing and SOA

Convergence in Your Enterprise, Addison-

Wesley, New York, USA, 2009

[5] Miranda, J; Murillo, JM; Guillé, J; Canal, C.

Identifying adaptation needs to avoid the vendor

lock-in effect in the deployment of cloud SBAs.

In Proceedings of the 2nd International

Workshop on Adaptive Services for the Future

Internet and 6th International Workshop on Web

APIs and Service Mashups (WAS4FI-Mashups

’12), Bertinoro, Italy, 2012

[6] Ranabahu, A; Sheth, A. Semantics Centric

Solutions for Application and Data Portability in

Cloud Computing. In IEEE Second International

Conference on Cloud Computing Technology and

Science (CloudCom 2010), pages 234-241,

Indianapolis, USA, 2010

[7] Russom, P. Best Practices in Data Migration,

http://download.101com.com/pub/TDWI/Files/T

DWI_Monograph_BPinDataMigration_April200

6.pdf, downloaded: July 25th, 2014

[8] Swa, V. Postgres Database Backup/Restore From

C#.

http://www.codeproject.com/Articles/360472/Pos

tgres-Database-Backup-Restore-From-Csharp,

downloaded: May 5th, 2015

Central European Conference on Information and Intelligent Systems__Page 16

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 23-25, 2015

https://www.simple-talk.com/sql/database-administration/using-migration-scripts-in-database-deployments/
https://www.simple-talk.com/sql/database-administration/using-migration-scripts-in-database-deployments/
https://www.simple-talk.com/sql/database-administration/using-migration-scripts-in-database-deployments/
http://www.oracle.com/technetwork/articles/cloudcomp/migrating-to-the-cloud-chap-3-495856.pdf
http://www.oracle.com/technetwork/articles/cloudcomp/migrating-to-the-cloud-chap-3-495856.pdf
http://www.oracle.com/technetwork/articles/cloudcomp/migrating-to-the-cloud-chap-3-495856.pdf
http://www.codeproject.com/Articles/360472/Postgres-Database-Backup-Restore-From-Csharp
http://www.codeproject.com/Articles/360472/Postgres-Database-Backup-Restore-From-Csharp

